ORACLE

Fully Updated for Java SE 9 (JDK 9)

Java

A Beginner’'s Guide
Seventh Edition

Create, Compile, and Run Java Programs Today

Herbert Schildt
Vvess

About the Author

Best-selling author Herbert Schildt has written extensively about programming for
over three decades and 1s a leading authority on the Java language. His books have
sold millions of copies worldwide and have been translated into all major foreign
languages. He is the author of numerous books on Java, including Java: The
Complete Reference, Herb Schildt’s Java Programming Cookbook, Introducing
JavaFX 8 Programming, and Swing: A Beginner’s Guide. He has also written
extensively about C, C++, and C#. Although interested in all facets of computing, his
primary focus is computer languages. Schildt holds both graduate and undergraduate
degrees from the University of Illinois. His website is www.HerbSchildt.com.

About the Technical Editor

Dr. Danny Coward has worked on all editions of the Java platform. He led the
definition of Java Servlets into the first version of the Java EE platform and beyond,
web services into the Java ME platform, and the strategy and planning for Java SE 7.
He founded JavaFX technology and, most recently, designed the largest addition to
the Java EE 7 standard, the Java WebSocket API. From coding in Java, to designing
APIs with industry experts, to serving for several years as an executive to the Java
Community Process, he has a uniquely broad perspective into multiple aspects of
Java technology. In addition, he is the author of two books on Java programming;:
Java WebSocket Programming and Java EE: The Big Picture. Dr. Coward holds a
bachelor’s, master’s, and doctorate in mathematics from the University of Oxford.

http://www.HerbSchildt.com

Java™
A Beginner's Guide

Seventh Edition

Herbert Schildt

Copyright © 2018 by McGraw-Hill Education (Publisher). All rights reserved.
Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of the
publisher.

ISBN: 978-1-25-958932-4
MHID: 1-25-958932-3.

The material in this eBook also appears in the print version of this title: ISBN: 978-
1-25-958931-7, MHID: 1-25-958931-5.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a
trademark symbol after every occurrence of a trademarked name, we use names in an
editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as
premiums and sales promotions or for use in corporate training programs. To contact
a representative, please visit the Contact Us page at www.mhprofessional.com.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates.
All other trademarks are the property of their respective owners, and McGraw-Hill
Education makes no claim of ownership by the mention of products that contain
these marks.

Screen displays of copyrighted Oracle software programs have been reproduced
herein with the permission of Oracle Corporation and/or its affiliates.

Information has been obtained by Publisher from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources,
Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or
completeness of any information included in this work and is not responsible for any
errors or omissions or the results obtained from the use of such information.

http://www.mhprofessional.com

Oracle Corporation does not make any representations or warranties as to the
accuracy, adequacy, or completeness of any information contained in this Work, and
1s not responsible for any errors or omissions.

TERMS OF USE

This 1s a copyrighted work and McGraw-Hill Education and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as
permitted under the Copyright Act of 1976 and the right to store and retrieve one
copy of the work, you may not decompile, disassemble, reverse engineer, reproduce,
modify, create derivative works based upon, transmit, distribute, disseminate, sell,
publish or sublicense the work or any part of it without McGraw-Hill Education’s
prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS
LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION
THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill Education and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall
be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill Education
has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill Education and/or its licensors be liable
for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to
any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

Contents

INTRODUCTION

1 Java Fundamentals
The Origins of Java
Java’s Lineage: C and C++
How Java Impacted the Internet
Java Simplified Web-Based Programming
Java Applets
Security
Portability
Java’s Magic: The Bytecode
Moving Beyond Applets
The Java Buzzwords
Object-Oriented Programming
Encapsulation
Polymorphism
Inheritance
Obtaining the Java Development Kit
A First Simple Program
Entering the Program
Compiling the Program
The First Sample Program Line by Line
Handling Syntax Errors
A Second Simple Program
Another Data Type
Try This 1-1: Converting Gallons to Liters
Two Control Statements

The if Statement
The for Loop
Create Blocks of Code
Semicolons and Positioning
Indentation Practices
Try This 1-2: Improving the Gallons-to-Liters Converter
The Java Keywords
Identifiers in Java
The Java Class Libraries
Chapter 1 Self Test

2 Introducing Data Types and Operators
Why Data Types Are Important
Java’s Primitive Types
Integers
Floating-Point Types
Characters
The Boolean Type
Try This 2-1: How Far Away Is the Lightning?
Literals
Hexadecimal, Octal, and Binary Literals
Character Escape Sequences
String Literals
A Closer Look at Variables
Initializing a Variable
Dynamic Initialization
The Scope and Lifetime of Variables
Operators
Arithmetic Operators
Increment and Decrement
Relational and Logical Operators
Short-Circuit Logical Operators
The Assignment Operator
Shorthand Assignments
Type Conversion in Assignments
Casting Incompatible Types
Operator Precedence

Try This 2-2: Display a Truth Table for the Logical Operators
Expressions
Type Conversion in Expressions

Spacing and Parentheses
Chapter 2 Self Test

3 Program Control Statements
Input Characters from the Keyboard
The if Statement
Nested ifs
The if-else-if Ladder
The switch Statement
Nested switch Statements
Try This 3-1: Start Building a Java Help System
The for Loop
Some Variations on the for Loop
Missing Pieces
The Infinite Loop
Loops with No Body
Declaring Loop Control Variables Inside the for Loop
The Enhanced for Loop
The while Loop
The do-while Loop
Try This 3-2: Improve the Java Help System
Use break to Exit a Loop
Use break as a Form of goto
Use continue
Try This 3-3: Finish the Java Help System
Nested Loops
Chapter 3 Self Test

4 Introducing Classes, Objects, and Methods
Class Fundamentals
The General Form of a Class
Defining a Class
How Objects Are Created
Reference Variables and Assignment

Methods

Adding a Method to the Vehicle Class
Returning from a Method
Returning a Value
Using Parameters

Adding a Parameterized Method to Vehicle
Try This 4-1: Creating a Help Class
Constructors
Parameterized Constructors
Adding a Constructor to the Vehicle Class
The new Operator Revisited
Garbage Collection
The this Keyword
Chapter 4 Self Test

5 More Data Types and Operators
Arrays
One-Dimensional Arrays
Try This 5-1: Sorting an Array
Multidimensional Arrays
Two-Dimensional Arrays
Irregular Arrays
Arrays of Three or More Dimensions
Initializing Multidimensional Arrays
Alternative Array Declaration Syntax
Assigning Array References
Using the length Member
Try This 5-2: A Queue Class
The For-Each Style for Loop
[terating Over Multidimensional Arrays
Applying the Enhanced for
Strings
Constructing Strings
Operating on Strings
Arrays of Strings
Strings Are Immutable
Using a String to Control a switch Statement

Using Command-Line Arguments

The Bitwise Operators
The Bitwise AND, OR, XOR, and NOT Operators
The Shift Operators
Bitwise Shorthand Assignments

Try This 5-3: A ShowBits Class

The ? Operator

Chapter 5 Self Test

6 A Closer Look at Methods and Classes
Controlling Access to Class Members
Java’s Access Modifiers
Try This 6-1: Improving the Queue Class
Pass Objects to Methods
How Arguments Are Passed
Returning Objects
Method Overloading
Overloading Constructors
Try This 6-2: Overloading the Queue Constructor
Recursion
Understanding static
Static Blocks
Try This 6-3: The Quicksort
Introducing Nested and Inner Classes
Varargs: Variable-Length Arguments
Varargs Basics
Overloading Varargs Methods
Varargs and Ambiguity
Chapter 6 Self Test

7 Inheritance
Inheritance Basics
Member Access and Inheritance
Constructors and Inheritance
Using super to Call Superclass Constructors
Using super to Access Superclass Members
Try This 7-1: Extending the Vehicle Class

Creating a Multilevel Hierarchy
When Are Constructors Executed?
Superclass References and Subclass Objects
Method Overriding
Overridden Methods Support Polymorphism
Why Overridden Methods?

Applying Method Overriding to TwoDShape
Using Abstract Classes
Using final

final Prevents Overriding

final Prevents Inheritance

Using final with Data Members
The Object Class
Chapter 7 Self Test

8 Packages and Interfaces
Packages
Defining a Package
Finding Packages and CLASSPATH
A Short Package Example
Packages and Member Access
A Package Access Example
Understanding Protected Members
Importing Packages
Java’s Class Library Is Contained in Packages
Interfaces
Implementing Interfaces
Using Interface References
Try This 8-1: Creating a Queue Interface
Variables in Interfaces
Interfaces Can Be Extended
Default Interface Methods
Default Method Fundamentals
A More Practical Example of a Default Method
Multiple Inheritance Issues
Use static Methods in an Interface
Private Interface Methods

Final Thoughts on Packages and Interfaces
Chapter 8 Self Test

9 Exception Handling
The Exception Hierarchy
Exception Handling Fundamentals
Using try and catch
A Simple Exception Example
The Consequences of an Uncaught Exception
Exceptions Enable You to Handle Errors Gracefully
Using Multiple catch Statements
Catching Subclass Exceptions
Try Blocks Can Be Nested
Throwing an Exception
Rethrowing an Exception
A Closer Look at Throwable
Using finally
Using throws
Three Additional Exception Features
Java’s Built-in Exceptions
Creating Exception Subclasses
Try This 9-1: Adding Exceptions to the Queue Class
Chapter 9 Self Test

10 Using I/O
Java’s I/O Is Built upon Streams
Byte Streams and Character Streams
The Byte Stream Classes
The Character Stream Classes
The Predefined Streams
Using the Byte Streams
Reading Console Input
Writing Console Output
Reading and Writing Files Using Byte Streams
Inputting from a File
Writing to a File
Automatically Closing a File

Reading and Writing Binary Data
Try This 10-1: A File Comparison Utility
Random-Access Files
Using Java’s Character-Based Streams
Console Input Using Character Streams
Console Output Using Character Streams
File I/O Using Character Streams
Using a FileWriter
Using a FileReader
Using Java’s Type Wrappers to Convert Numeric Strings
Try This 10-2: Creating a Disk-Based Help System
Chapter 10 Self Test

11 Multithreaded Programming

Multithreading Fundamentals

The Thread Class and Runnable Interface

Creating a Thread
One Improvement and Two Simple Variations

Try This 11-1: Extending Thread

Creating Multiple Threads

Determining When a Thread Ends

Thread Priorities

Synchronization

Using Synchronized Methods

The synchronized Statement

Thread Communication Using notify(), wait(), and notifyAll()
An Example That Uses wait() and notify()

Suspending, Resuming, and Stopping Threads

Try This 11-2: Using the Main Thread

Chapter 11 Self Test

12 Enumerations, Autoboxing, Static Import, and Annotations
Enumerations
Enumeration Fundamentals
Java Enumerations Are Class Types
The values() and valueOf() Methods
Constructors, Methods, Instance Variables, and Enumerations

Two Important Restrictions
Enumerations Inherit Enum
Try This 12-1: A Computer-Controlled Traffic Light
Autoboxing
Type Wrappers
Autoboxing Fundamentals
Autoboxing and Methods
Autoboxing/Unboxing Occurs in Expressions
A Word of Warning
Static Import
Annotations (Metadata)
Chapter 12 Self Test

13 Generics

Generics Fundamentals

A Simple Generics Example
Generics Work Only with Reference Types
Generic Types Differ Based on Their Type Arguments
A Generic Class with Two Type Parameters
The General Form of a Generic Class

Bounded Types

Using Wildcard Arguments

Bounded Wildcards

Generic Methods

Generic Constructors

Generic Interfaces

Try This 13-1: Create a Generic Queue

Raw Types and Legacy Code

Type Inference with the Diamond Operator

Erasure

Ambiguity Errors

Some Generic Restrictions
Type Parameters Can’t Be Instantiated
Restrictions on Static Members
Generic Array Restrictions
Generic Exception Restriction

Continuing Your Study of Generics

14

15

Chapter 13 Self Test

Lambda Expressions and Method References
Introducing Lambda Expressions
Lambda Expression Fundamentals
Functional Interfaces
Lambda Expressions in Action
Block Lambda Expressions
Generic Functional Interfaces

Try This 14-1: Pass a Lambda Expression as an Argument

Lambda Expressions and Variable Capture

Throw an Exception from Within a Lambda Expression

Method References
Method References to static Methods
Method References to Instance Methods
Constructor References

Predefined Functional Interfaces
Chapter 14 Self Test

Modules
Module Basics

A Simple Module Example

Compile and Run the First Module Example

A Closer Look at requires and exports
java.base and the Platform Modules
Legacy Code and the Unnamed Module
Exporting to a Specific Module
Using requires transitive
Try This 15-1: Experiment with requires transitive
Use Services

Service and Service Provider Basics

The Service-Based Keywords

A Module-Based Service Example
Additional Module Features

Open Modules

The opens Statement

requires static

Continuing Your Study of Modules
Chapter 15 Self Test

16 Introducing Swing

The Origins and Design Philosophy of Swing
Components and Containers

Components

Containers

The Top-Level Container Panes
Layout Managers
A First Simple Swing Program

The First Swing Example Line by Line
Swing Event Handling

Events

Event Sources

Event Listeners

Event Classes and Listener Interfaces
Use JButton
Work with JTextField
Create a JCheckBox
Work with JList
Try This 16-1: A Swing-Based File Comparison Utility
Use Anonymous Inner Classes or Lambda Expressions to Handle Events
Chapter 16 Self Test

17 Introducing JavaFX
JavaFX Basic Concepts
The JavaFX Packages
The Stage and Scene Classes
Nodes and Scene Graphs
Layouts
The Application Class and the Life-cycle Methods
Launching a JavaFX Application
A JavaFX Application Skeleton
Compiling and Running a JavaFX Program
The Application Thread
A Simple JavaFX Control: Label

Using Buttons and Events
Event Basics
Introducing the Button Control
Demonstrating Event Handling and the Button
Three More JavaFX Controls
CheckBox
Try This 17-1: Use the CheckBox Indeterminate State
ListView
TextField
Introducing Effects and Transforms
Effects
Transforms
Demonstrating Effects and Transforms
What Next?
Chapter 17 Self Test

Answers to Self Tests

Chapter 1: Java Fundamentals

Chapter 2: Introducing Data Types and Operators
Chapter 3: Program Control Statements

Chapter 4: Introducing Classes, Objects, and Methods
Chapter 5: More Data Types and Operators

Chapter 6: A Closer Look at Methods and Classes
Chapter 7: Inheritance

Chapter 8: Packages and Interfaces

Chapter 9: Exception Handling

Chapter 10: Using I/O

Chapter 11: Multithreaded Programming

Chapter 12: Enumerations, Autoboxing, Static Import, and Annotations
Chapter 13: Generics

Chapter 14: Lambda Expressions and Method References
Chapter 15: Modules

Chapter 16: Introducing Swing

Chapter 17: Introducing JavaFX

Using Java’s Documentation Comments
The javadoc Tags

@author
{(@code}
@deprecated
{(@docRoot}
(@exception
{@index}
{@inheritDoc}
{@link}
{@linkplain}
{@literal}
@param
(@return
@see
@serial
@serialData
@serialField
@since
@throws
{@value}
@version

The General Form of a Documentation Comment

What javadoc Outputs

An Example That Uses Documentation Comments

C An Overview of Java Web Start

What Is Java Web Start?

Four Key Java Web Start Essentials
Java Web Start Apps Require a JAR File
Java Web Start Apps Are Signed
Java Web Start Relies on JNLP
Linking to the Java Web Start JNLP File

Experimenting with Java Web Start Using the Local File System
Create a JAR File for ButtonDemo
Create a Keystore and Sign ButtonDemo.jar
Create a JNLP file for ButtonDemo
Create a Short HTML File Called StartBD.html
Add ButtonDemo.jnlp to the Exception Site List in the Java Control Panel

Execute ButtonDemo via Your Browser
Running a Java Web Start Application Using javaws
Using Java Web Start with an Applet

Introducing JShell

JShell Basics

List, Edit, and Rerun Code
Add a Method

Create a Class

Use an Interface

Evaluate Expressions and Use Built-in Variables
Importing Packages
Exceptions

Some More JShell Commands
Exploring JShell Further

More Java Keywords

The transient and volatile Modifiers
instanceof

strictfp

assert

Native Methods

Another Form of this

Index

Introduction

It uses a step-by-step approach complete with numerous examples, self tests,

and projects. It assumes no previous programming experience. The book starts
with the basics, such as how to compile and run a Java program. It then discusses the
keywords, features, and constructs that form the core of the Java language. You’ll
also find coverage of some of Java’s most advanced features, including
multithreaded programming, generics, lambda expressions, and modules. An
introduction to the fundamentals of Swing and JavaFX concludes the book. By the
time you finish, you will have a firm grasp of the essentials of Java programming.

It is important to state at the outset that this book is just a starting point. Java is
more than just the elements that define the language. Java also includes extensive
libraries and tools that aid in the development of programs. To be a top-notch Java
programmer implies mastery of these areas, too. After completing this book, you will
have the knowledge to pursue any and all other aspects of Java.

The purpose of this book is to teach you the fundamentals of Java programming.

The Evolution of Java

Only a few languages have fundamentally reshaped the very essence of
programming. In this elite group, one stands out because its impact was both rapid
and widespread. This language is, of course, Java. It is not an overstatement to say
that the original release of Java 1.0 in 1995 by Sun Microsystems, Inc., caused a
revolution in programming. This revolution radically transformed the Web into a
highly interactive environment. In the process, Java set a new standard in computer
language design.

Over the years, Java has continued to grow, evolve, and otherwise redefine itself.
Unlike many other languages, which are slow to incorporate new features, Java has
often been at the forefront of computer language development. One reason for this is
the culture of innovation and change that came to surround Java. As a result, Java

has gone through several upgrades—some relatively small, others more significant.

The first major update to Java was version 1.1. The features added by Java 1.1
were more substantial than the increase in the minor revision number would have
you think. For example, Java 1.1 added many new library elements, redefined the
way events are handled, and reconfigured many features of the original 1.0 library.

The next major release of Java was Java 2, where the 2 indicates “second
generation.” The creation of Java 2 was a watershed event, marking the beginning of
Java’s “modern age.” The first release of Java 2 carried the version number 1.2. It
may seem odd that the first release of Java 2 used the 1.2 version number. The
reason is that it originally referred to the internal version number of the Java libraries
but then was generalized to refer to the entire release itself. With Java 2, Sun
repackaged the Java product as J2SE (Java 2 Platform Standard Edition), and the
version numbers began to be applied to that product.

The next upgrade of Java was J2SE 1.3. This version of Java was the first major
upgrade to the original Java 2 release. For the most part, it added to existing
functionality and “tightened up” the development environment. The release of J2SE
1.4 further enhanced Java. This release contained several important new features,
including chained exceptions, channel-based I/0O, and the assert keyword.

The release of J2SE 5 created nothing short of a second Java revolution. Unlike
most of the previous Java upgrades, which offered important but incremental
improvements, J2SE 5 fundamentally expanded the scope, power, and range of the
language. To give you an idea of the magnitude of the changes caused by J2SE 5,
here is a list of its major new features:

Generics

Autoboxing/unboxing

Enumerations

The enhanced “for-each” style for loop

Variable-length arguments (varargs)

Static import

Annotations
This is not a list of minor tweaks or incremental upgrades. Each item in the list
represents a significant addition to the Java language. Some, such as generics, the
enhanced for loop, and varargs, introduced new syntax elements. Others, such as

autoboxing and auto-unboxing, altered the semantics of the language. Annotations
added an entirely new dimension to programming.

The importance of these new features is reflected in the use of the version number
“5.” The next version number for Java would normally have been 1.5. However, the
new features were so significant that a shift from 1.4 to 1.5 just didn’t seem to
express the magnitude of the change. Instead, Sun elected to increase the version
number to 5 as a way of emphasizing that a major event was taking place. Thus, it
was named J2SE 5, and the Java Development Kit (JDK) was called JDK 5. In order
to maintain consistency, however, Sun decided to use 1.5 as its internal version
number, which is also referred to as the developer version number. The “5” in J2SE
5 1s called the product version number.

The next release of Java was called Java SE 6, and Sun once again decided to
change the name of the Java platform. First, notice that the “2” has been dropped.
Thus, the platform now had the name Java SE, and the official product name was
Java Platform, Standard Edition 6, with the development kit being called JDK 6. As
with J2SE 5, the 6 in Java SE 6 is the product version number. The internal,
developer version number is 1.6.

Java SE 6 built on the base of J2SE 5, adding incremental improvements. Java SE
6 added no major features to the Java language proper, but it did enhance the API
libraries, added several new packages, and offered improvements to the run time. It
also went through several updates during its long (in Java terms) life cycle, with
several upgrades added along the way. In general, Java SE 6 served to further
solidify the advances made by J2SE 5.

The next release of Java was called Java SE 7, with the development kit being
called JDK 7. It has an internal version number of 1.7. Java SE 7 was the first major
release of Java after Sun Microsystems was acquired by Oracle. Java SE 7 added
several new features, including significant additions to the language and the API
libraries. Some of the most important features added by Java SE 7 were those
developed as part of Project Coin. The purpose of Project Coin was to identify a
number of small changes to the Java language that would be incorporated into JDK
7, including

A String can control a switch statement.
Binary integer literals.

Underscores in numeric literals.

An expanded try statement, called try-with-resources, that supports automatic
resource management.

Type inference (via the diamond operator) when constructing a generic instance.

Enhanced exception handling in which two or more exceptions can be caught by

a single catch (multicatch) and better type checking for exceptions that are
rethrown.

As you can see, even though the Project Coin features were considered to be small
changes to the language, their benefits were much larger than the qualifier “small”
would suggest. In particular, the try-with-resources statement profoundly affects the
way that a substantial amount of code is written.

The next release of Java was Java SE 8, with the development kit being called
JDK 8. It has an internal version number of 1.8. JDK 8 represented a very significant
upgrade to the Java language because of the inclusion of a far-reaching new
language feature: the lambda expression. The impact of lambda expressions was, and
continues to be, quite profound, changing both the way that programming solutions
are conceptualized and how Java code is written. In the process, lambda expressions
can simplify and reduce the amount of source code needed to create certain
constructs. The addition of lambda expressions also caused a new operator (the —)
and a new syntax element to be added to the language.

In addition to lambda expressions, JDK 8 added many other important new
features. For example, beginning with JDK 8, it is now possible to define a default
implementation for a method specified by an interface. JDK 8 also bundled support
for JavaFX, Java’s new GUI framework. JavaFX is expected to soon play an
important part in nearly all Java applications, ultimately replacing Swing for most
GUI-based projects. In the final analysis, Java SE 8 was a major release that
profoundly expanded the capabilities of the language and changed the way that Java
code is written.

Java SE 9

The newest release of Java is Java SE 9. The developer’s kit is called JDK 9. With
the release of JDK 9, the internal version number is also 9. JDK 9 represents a major
Java release, incorporating significant enhancements to both the Java language and
its libraries. The primary new feature is modules, which enable you to specify the
relationships and dependencies of the code that comprises an application. Modules
also add another dimension to Java’s access control features. The inclusion of
modules caused a new syntax element, several new keywords, and various tool
enhancements to be added to Java. Modules also have a profound effect on the API
library because, beginning with JDK 9, the library packages are now organized into
modules.

In addition to modules, JDK 9 includes several other new features. One of
particular interest 1s JShell, which is a tool that supports interactive program

experimentation and learning. (An introduction to JShell is found in Appendix D.)
Another interesting upgrade is support for private interface methods. Their inclusion
further enhances JDK 8’s support for default methods in interfaces. JDK 9 adds a
search feature to the javadoc tool and a new tag called @index to support it. As with
previous releases, JDK 9 contains a number of updates and enhancements to Java’s
API libraries.

As a general rule, in any Java release, it is the new features that receive the most
attention. However, there is one high-profile aspect of Java that is deprecated by
JDK 9: applets. Beginning with JDK 9, applets are no longer recommended for new
projects. As will be explained in greater detail in Chapter 1, because of waning
browser support for applets (and other factors), JDK 9 deprecates the entire applet
API. At this time, the use of Java Web Start is recommended for deploying
applications over the Internet. (An introduction to Java Web Start is found in
Appendix C.) Because applets are being phased out and not recommended for new
code, they are no longer discussed in this book. However, readers interested in
applets will find coverage of them in previous editions of this book.

In the final analysis, JDK 9 continues Java’s legacy of innovation, ensuring that
Java remains the vibrant, nimble language that the programming world has come to
expect. The material in this book has been updated to reflect Java SE 9 (JDK 9), with
many new features, updates, and additions indicated throughout.

How This Book Is Organized

This book presents an evenly paced tutorial in which each section builds upon the
previous one. It contains 17 chapters, each discussing an aspect of Java. This book is
unique because it includes several special elements that reinforce what you are
learning.

Key Skills & Concepts

Each chapter begins with a set of critical skills that you will be learning.

Self Test

Each chapter concludes with a Self Test that lets you test your knowledge. The
answers are in Appendix A.

Ask the Expert
Sprinkled throughout the book are special “Ask the Expert” boxes. These contain

additional information or interesting commentary about a topic. They use a
Question/Answer format.

Try This Elements

Each chapter contains one or more Try This elements, which are projects that show
you how to apply what you are learning. In many cases, these are real-world
examples that you can use as starting points for your own programs.

No Previous Programming Experience
Required

This book assumes no previous programming experience. Thus, if you have never
programmed before, you can use this book. If you do have some previous
programming experience, you will be able to advance a bit more quickly. Keep in
mind, however, that Java differs in several key ways from other popular computer
languages. It is important not to jump to conclusions. Thus, even for the experienced
programmer, a careful reading is advised.

Required Software

To compile and run all of the programs in this book, you will need the latest Java
Development Kit (JDK) from Oracle, which, at the time of this writing, is JDK 9.
This is the JDK for Java SE 9. Instructions for obtaining the Java JDK are given in
Chapter 1.

If you are using an earlier version of Java, you will still be able to use this book,
but you won’t be able to compile and run the programs that use Java’s newer
features.

Don’t Forget: Code on the Web

Remember, the source code for all of the examples and projects in this book is
available free of charge on the Web at www.oraclepressbooks.com.

Special Thanks

Special thanks to Danny Coward, the technical editor for this edition of the book.
Danny has worked on several of my books, and his advice, insights, and suggestions

http://www.oraclepressbooks.com

have always been of great value and much appreciated.

For Further Study

Java: A Beginner’s Guide is your gateway to the Herb Schildt series of Java
programming books. Here are some others that you will find of interest:
Java: The Complete Reference

Herb Schildt’s Java Programming Cookbook

The Art of Java

Swing: A Beginner’s Guide

Introducing JavaFX 8 Programming

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 1

Java Fundamentals

Key SKkills & Concepts

Know the history and philosophy of Java

Understand Java’s contribution to the Internet

Understand the importance of bytecode

Know the Java buzzwords

Understand the foundational principles of object-oriented programming
Create, compile, and run a simple Java program

Use variables

Use the if and for control statements

Create blocks of code

Understand how statements are positioned, indented, and terminated
Know the Java keywords

Understand the rules for Java identifiers

early days of the Web helped shape the modern form of the Internet, including

both the client and server sides. Its innovative features advanced the art and
science of programming, setting a new standard in computer language design. The
forward-thinking culture that grew up around Java ensured it would remain vibrant
and alive, adapting to the often rapid and varied changes in the computing landscape.
Simply put: not only is Java one of the world’s most important computer languages,
it is a force that revolutionized programming and, in the process, changed the world.

In computing, few technologies have had the impact of Java. Its creation in the

Although Java is a language often associated with Internet programming, it is by
no means limited in that regard. Java is a powerful, full-featured, general-purpose
programming language. Thus, if you are new to programming, Java is an excellent
language to learn. Moreover, to be a professional programmer today implies the
ability to program in Java—it is that important. In the course of this book, you will
learn the basic skills that will help you master it.

The purpose of this chapter is to introduce you to Java, beginning with its history,
its design philosophy, and several of its most important features. By far, the hardest
thing about learning a programming language is the fact that no element exists in
isolation. Instead, the components of the language work in conjunction with each
other. This interrelatedness is especially pronounced in Java. In fact, it is difficult to
discuss one aspect of Java without involving others. To help overcome this problem,
this chapter provides a brief overview of several Java features, including the general
form of a Java program, some basic control structures, and simple operators. It does
not go into too many details, but, rather, concentrates on general concepts common
to any Java program.

The Origins of Java

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank,
and Mike Sheridan at Sun Microsystems in 1991. This language was initially called
“Oak” but was renamed “Java” in 1995. Somewhat surprisingly, the original impetus
for Java was not the Internet! Instead, the primary motivation was the need for a
platform-independent language that could be used to create software to be embedded
in various consumer electronic devices, such as toasters, microwave ovens, and
remote controls. As you can probably guess, many different types of CPUs are used
as controllers. The trouble was that (at that time) most computer languages were
designed to be compiled into machine code that was targeted for a specific type of
CPU. For example, consider the C++ language.

Although it was possible to compile a C++ program for just about any type of
CPU, to do so required a full C++ compiler targeted for that CPU. The problem,
however, is that compilers are expensive and time consuming to create. In an attempt
to find a better solution, Gosling and the others worked on a portable, cross-platform
language that could produce code that would run on a variety of CPUs under
differing environments. This effort ultimately led to the creation of Java.

About the time that the details of Java were being worked out, a second, and
ultimately more important, factor emerged that would play a crucial role in the future
of Java. This second force was, of course, the World Wide Web. Had the Web not
taken shape at about the same time that Java was being implemented, Java might

have remained a useful but obscure language for programming consumer electronics.
However, with the emergence of the Web, Java was propelled to the forefront of
computer language design, because the Web, too, demanded portable programs.

Most programmers learn early in their careers that portable programs are as
elusive as they are desirable. While the quest for a way to create efficient, portable
(platform-independent) programs is nearly as old as the discipline of programming
itself, it had taken a back seat to other, more pressing problems. However, with the
advent of the Internet and the Web, the old problem of portability returned with a
vengeance. After all, the Internet consists of a diverse, distributed universe populated
with many types of computers, operating systems, and CPUs.

What was once an irritating but low-priority problem had become a high-profile
necessity. By 1993 it became obvious to members of the Java design team that the
problems of portability frequently encountered when creating code for embedded
controllers are also found when attempting to create code for the Internet. This
realization caused the focus of Java to switch from consumer electronics to Internet
programming. So, while it was the desire for an architecture-neutral programming
language that provided the initial spark, it was the Internet that ultimately led to
Java’s large-scale success.

Java’s Lineage: C and C++

The history of computer languages is not one of isolated events. Rather, it is a
continuum in which each new language is influenced in one way or another by what
has come before. In this regard, Java is no exception. Before moving on, it is useful
to understand where Java fits into the family tree of computer languages.

The two languages that form Java’s closest ancestors are C and C++. As you may
know, C and C++ are among the most important computer languages ever invented,
and are still in widespread use today. From C, Java inherits its syntax. Java’s object
model is adapted from C++. Java’s relationship to C and C++ is important for a
number of reasons. First, at the time of Java’s creation, many programmers were
familiar with the C/C++ syntax. Because Java uses a similar syntax, it was relatively
easy for a C/C++ programmer to learn Java. This made it possible for Java to be
readily utilized by the pool of existing programmers, thus facilitating Java’s
acceptance by the programming community.

Second, Java’s designers did not “reinvent the wheel.” Instead, they further
refined an already highly successful programming paradigm. The modern age of
programming began with C. It moved to C++, and then to Java. By inheriting and
building upon that rich heritage, Java provides a powerful, logically consistent
programming environment that takes the best of the past and adds new features

related to the online environment and advances in the art of programming. Perhaps
most important, because of their similarities, C, C++, and Java define a common,
conceptual framework for the professional programmer. Programmers do not face
major rifts when switching from one language to another.

Java has another attribute in common with C and C++: it was designed, tested, and
refined by real, working programmers. It is a language grounded in the needs and
experiences of the people who devised it. There is no better way to produce a top-
flight professional programming language.

One last point: although C++ and Java are related, especially in their support for
object-oriented programming, Java is not simply the “Internet version of C++.” Java
has significant practical and philosophical differences from C++. Furthermore, Java
1s not an enhanced version of C++. For example, it is neither upwardly nor
downwardly compatible with C++. Moreover, Java was not designed to replace C++.
Java was designed to solve a certain set of problems. C++ was designed to solve a
different set of problems. They will coexist for many years to come.

How Java Impacted the Internet

The Internet helped catapult Java to the forefront of programming, and Java, in turn,
had a profound effect on the Internet. First, the creation of Java simplified Internet
programming in general, acting as a catalyst that drew legions of programmers to the
Web. Second, Java innovated a new type of networked program called the applet
that changed the way the online world thought about content. Finally, and perhaps
most importantly, Java addressed some of the thorniest issues associated with the
Internet: portability and security.

Ask the Expert

Q: What is C# and how does it relate to Java?

A: A few years after the creation of Java, Microsoft developed the C#
language. This is important because C# is closely related to Java. In fact,
many of C#’s features directly parallel Java. Both Java and C# share the
same general C++-style syntax, support distributed programming, and
utilize a similar object model. There are, of course, differences between
Java and C#, but the overall “look and feel” of these languages is very
similar. This means that if you already know C#, then learning Java will
be especially easy. Conversely, if C# is in your future, then your

knowledge of Java will come in handy.

Given the similarity between Java and C#, one might naturally ask, “Will
C# replace Java?” The answer is no. Java and C# are optimized for two
different types of computing environments. Just as C++ and Java will
coexist for a long time to come, so will C# and Java.

Java Simplified Web-Based Programming

Java simplified Web-based programming in a number of ways. Arguably the most
important is found in its ability to create portable, cross-platform programs. Of
nearly equal importance is Java’s support for networking. Its library of ready-to-use
functionality enabled programmers to easily write programs that accessed or made
use of the Internet. It also provided mechanisms that enabled programs to be easily
delivered over the Internet. Although the details are beyond the scope of this book, it
1s sufficient to know that Java’s support for networking was a key factor in its rapid
rise.

Java Applets

At the time of Java’s creation, one of its most exciting features was the applet. An
applet is a special kind of Java program that is designed to be transmitted over the
Internet and automatically executed inside a Java-compatible web browser. If the
user clicks a link that contains an applet, the applet will download and run in the
browser automatically. Applets were intended to be small programs, typically used
to display data provided by the server, handle user input, or provide simple
functions, such as a loan calculator. The key feature of applets is that they execute
locally, rather than on the server. In essence, the applet allowed some functionality to
be moved from the server to the client.

The creation of the applet was important because, at the time, it expanded the
universe of objects that can move about freely in cyberspace. In general, there are
two very broad categories of objects that are transmitted between the server and the
client: passive information and dynamic, active programs. For example, when you
read your e-mail, you are viewing passive data. Even when you download a program,
the program’s code is still only passive data until you execute it. By contrast, the
applet is a dynamic, self-executing program. Such a program is an active agent on
the client computer, yet it is delivered by the server.

In the early days of Java, applets were a crucial part of Java programming. They
illustrated the power and benefits of Java, added an exciting dimension to web pages,

and enabled programmers to explore the full extent of what was possible with Java.
Although there are still applets in use today, over time they became less important.
As will be explained, beginning with JDK 9, applets are being phased out, with other
mechanisms supplying an alternative way of delivering dynamic, active programs
via the Web.

Security

As desirable as dynamic, networked programs are, they also present serious
problems in the areas of security and portability. Obviously, a program that
downloads and executes automatically on the client computer must be prevented
from doing harm. It must also be able to run in a variety of different environments
and under different operating systems. As you will see, Java addressed these
problems in an effective and elegant way. Let’s look a bit more closely at each,
beginning with security.

As you are likely aware, every time that you download a program, you are taking
a risk because the code you are downloading might contain a virus, Trojan horse, or
other harmful code. At the core of the problem is the fact that malicious code can
cause its damage because it has gained unauthorized access to system resources. For
example, a virus program might gather private information, such as credit card
numbers, bank account balances, and passwords, by searching the contents of your
computer’s local file system. In order for Java to enable programs to be safely
downloaded and executed on the client computer, it was necessary to prevent them
from launching such an attack.

Java achieved this protection by enabling you to confine an application to the Java
execution environment and prevent it from accessing other parts of the computer.
(You will see how this 1s accomplished shortly.) The ability to download an
application with a high level of confidence that no harm will be done contributed
significantly to Java’s early success.

Portability

Portability is a major aspect of the Internet because there are many different types of
computers and operating systems connected to it. If a Java program were to be run
on virtually any computer connected to the Internet, there needed to be some way to
enable that program to execute on different types of systems. In other words, a
mechanism that allows the same application to be downloaded and executed by a
wide variety of CPUs, operating systems, and browsers 1s required. It is not practical
to have different versions of the same application for different computers. The same
code must work in al/l/ computers. Therefore, some means of generating portable

executable code was needed. As you will soon see, the same mechanism that helps
ensure security also helps create portability.

Java’s Magic: The Bytecode

The key that allows Java to address both the security and the portability problems
just described is that the output of a Java compiler is not executable code. Rather, it
1s bytecode. Bytecode is a highly optimized set of instructions designed to be
executed by the Java run-time system, which is called the Java Virtual Machine
(JVM). In essence, the original JVM was designed as an interpreter for bytecode.
This may come as a bit of a surprise because many modern languages are designed
to be compiled into CPU-specific, executable code due to performance concerns.
However, the fact that a Java program is executed by the JVM helps solve the major
problems associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program
in a wide variety of environments because only the JVM needs to be implemented
for each platform. Once the run-time package exists for a given system, any Java
program can run on it. Remember, although the details of the JVM will differ from
platform to platform, all JVMs understand the same Java bytecode. If a Java program
were compiled to native code, then different versions of the same program would
have to exist for each type of CPU connected to the Internet. This is, of course, not a
feasible solution. Thus, the execution of bytecode by the JVM is the easiest way to
create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure.
Because the JVM is in control, it manages program execution. Thus, it is possible for
the JVM to create a restricted execution environment, called the sandbox, that
contains the program, preventing unrestricted access to the machine. Safety is also
enhanced by certain restrictions that exist in the Java language.

When a program is interpreted, it generally runs slower than the same program
would run if compiled to executable code. However, with Java, the differential
between the two is not so great. Because bytecode has been highly optimized, the use
of bytecode enables the JVM to execute programs much faster than you might
expect.

Although Java was designed as an interpreted language, there is nothing about
Java that prevents on-the-fly compilation of bytecode into native code in order to
boost performance. For this reason, the HotSpot technology was introduced not long
after Java’s initial release. HotSpot provides a just-in-time (JIT) compiler for
bytecode. When a JIT compiler is part of the JVM, selected portions of bytecode are
compiled into executable code in real time on a piece-by-piece, demand basis. That

1s, a JIT compiler compiles code as it is needed, during execution. Furthermore, not
all sequences of bytecode are compiled—only those that will benefit from
compilation. The remaining code is simply interpreted. However, the just-in-time
approach still yields a significant performance boost. Even when dynamic
compilation is applied to bytecode, the portability and safety features still apply
because the JVM is still in charge of the execution environment.

One other point: Beginning with JDK 9, selected Java environments will also
include an ahead-of-time compiler that can be used to compile bytecode into native
code prior to execution by the JVM, rather than on-the-fly. Ahead-of-time
compilation is a specialized feature and it does not replace Java’s traditional
approach just described. Furthermore, ahead-of-time compilation has several
restrictions. Here are three examples: At the time of this writing, ahead-of-time
compilation is only for experimental purposes, is available only on 64-bit Linux
versions of Java, and pre-compiled code must be executed on the same (or similarly
configured) system that compiled the code. Thus, ahead-of-time compilation reduces
portability. Because of the highly specialized nature of ahead-of-time compilation, it
1s not discussed further in this book.

Ask the Expert

Q: I have heard about a special type of Java program called a servlet.
What is it?

A: A Java servlet 1s a small program that executes on a server. Servlets
dynamically extend the functionality of a web server. It is helpful to
understand that as useful as client-side applications can be, they are just
one half of the client/server equation. Not long after the initial release of
Java, 1t became obvious that Java would also be useful on the server side.
The result was the servlet. Thus, with the advent of the servlet, Java
spanned both sides of the client/server connection. Although the topic of
servlets is beyond the scope of this beginner’s guide, they are something
that you will want to study as you advance in Java programming.
(Coverage of servlets can be found in my book Java: The Complete
Reference, Tenth Edition published by Oracle Press/McGraw-Hill
Education, 2018.)

Moving Beyond Applets

As explained previously, in the early years of Java, applets were a crucial part of
Java programming. They not only added excitement to a web page, they were a
highly visible part of Java, which added to its charisma. However, applets rely on a
Java browser plug-in. Thus, for an applet to work, the browser must support it.
Recently, support for the Java browser plug-in has been waning. Simply put, without
browser support, applets are not viable. Because of this, beginning with JDK 9,
Java’s support for applets has been deprecated. In the language of Java, deprecated
means that a feature is still available but flagged as obsolete. A deprecated feature is
subject to removal in a future release. Thus, deprecated features should not be used
for new code.

Various alternatives to applets are in place, with arguably the most important
being Java Web Start. Java Web Start enables an application to be dynamically
downloaded from a web page. The difference is that the application runs on its own,
not inside the browser. Thus, it does not rely on the Java plug-in. Java Web Start is a
deployment mechanism that works with many types of Java programs. Although
deployment strategies are beyond the scope of this book, because of its importance, a
brief introduction to Java Web Start is presented in Appendix C.

The Java Buzzwords

No overview of Java is complete without a look at the Java buzzwords. Although the
fundamental forces that necessitated the invention of Java are portability and
security, other factors played an important role in molding the final form of the
language. The key considerations were summed up by the Java design team in the
following list of buzzwords.

Simple Java has a concise, cohesive set of features that makes it easy to learn and use.

Secure Java provides a secure means of creating Infernet applications.

Portable Java programs can execute in any environment for which there is a Java
run-time system.

Object-oriented Java embodies the modern, object-oriented programming philosophy.

Robust Java encourages error-free programming by being strictly typed and
performing run-time checks.

Mulfthreaded [Jova provides integrated support for multithreaded programming.

Architecture-neutral Java is not tied to a specific machine or operating system architecture.

Inerpreted Java supports cross-platform code through the use of Java bytecode.

High performance The Java bytecode is highly optimized for speed of execution.

Distributed Java was designed with the distributed environment of the Internet in mind.

Dynamic | Java programs carry with them substantial amounts of run-fime type

information that is used to verify and resolve accesses to objects at run time.

Object-Oriented Programming

At the center of Java is object-oriented programming (OOP). The object-oriented
methodology is inseparable from Java, and all Java programs are, to at least some
extent, object-oriented. Because of OOP’s importance to Java, it is useful to
understand in a general way OOP’s basic principles before you write even a simple
Java program. Later in this book, you will see how to put these concepts into
practice.

OOP is a powerful way to approach the job of programming. Programming
methodologies have changed dramatically since the invention of the computer,
primarily to accommodate the increasing complexity of programs. For example,
when computers were first invented, programming was done by toggling in the
binary machine instructions using the computer’s front panel. As long as programs
were just a few hundred instructions long, this approach worked. As programs grew,
assembly language was invented so that a programmer could deal with larger,
increasingly complex programs, using symbolic representations of the machine
instructions. As programs continued to grow, high-level languages were introduced
that gave the programmer more tools with which to handle complexity. The first

widespread language was, of course, FORTRAN. Although FORTRAN was a very
impressive first step, it is hardly a language that encourages clear, easy-to-
understand programs.

The 1960s gave birth to structured programming. This is the method encouraged
by languages such as C and Pascal. The use of structured languages made it possible
to write moderately complex programs fairly easily. Structured languages are
characterized by their support for stand-alone subroutines, local variables, rich
control constructs, and their lack of reliance upon the GOTO. Although structured
languages are a powerful tool, even they reach their limit when a project becomes
too large.

Consider this: At each milestone in the development of programming, techniques
and tools were created to allow the programmer to deal with increasingly greater
complexity. Each step of the way, the new approach took the best elements of the
previous methods and moved forward. Prior to the invention of OOP, many projects
were nearing (or exceeding) the point where the structured approach no longer
works. Object-oriented methods were created to help programmers break through
these barriers.

Object-oriented programming took the best ideas of structured programming and
combined them with several new concepts. The result was a different way of
organizing a program. In the most general sense, a program can be organized in one
of two ways: around its code (what is happening) or around its data (what is being
affected). Using only structured programming techniques, programs are typically
organized around code. This approach can be thought of as “code acting on data.”

Object-oriented programs work the other way around. They are organized around
data, with the key principle being “data controlling access to code.” In an object-
oriented language, you define the data and the routines that are permitted to act on
that data. Thus, a data type defines precisely what sort of operations can be applied
to that data.

To support the principles of object-oriented programming, all OOP languages,
including Java, have three traits in common: encapsulation, polymorphism, and
inheritance. Let’s examine each.

Encapsulation

Encapsulation is a programming mechanism that binds together code and the data it
manipulates, and that keeps both safe from outside interference and misuse. In an
object-oriented language, code and data can be bound together in such a way that a
self-contained black box is created. Within the box are all necessary data and code.
When code and data are linked together in this fashion, an object is created. In other
words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public.
Private code or data is known to and accessible by only another part of the object.
That is, private code or data cannot be accessed by a piece of the program that exists
outside the object. When code or data is public, other parts of your program can
access 1t even though it is defined within an object. Typically, the public parts of an
object are used to provide a controlled interface to the private elements of the object.

Java’s basic unit of encapsulation is the class. Although the class will be examined
in great detail later in this book, the following brief discussion will be helpful now.
A class defines the form of an object. It specifies both the data and the code that will
operate on that data. Java uses a class specification to construct objects. Objects are
instances of a class. Thus, a class is essentially a set of plans that specify how to
build an object.

The code and data that constitute a class are called members of the class.
Specifically, the data defined by the class are referred to as member variables or
instance variables. The code that operates on that data is referred to as member
methods or just methods. Method is Java’s term for a subroutine. If you are familiar
with C/C++, it may help to know that what a Java programmer calls a method, a
C/C++ programmer calls a function.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is the quality that allows one
interface to access a general class of actions. The specific action is determined by the
exact nature of the situation. A simple example of polymorphism is found in the
steering wheel of an automobile. The steering wheel (i.e., the interface) is the same
no matter what type of actual steering mechanism is used. That is, the steering wheel
works the same whether your car has manual steering, power steering, or rack-and-
pinion steering. Therefore, once you know how to operate the steering wheel, you
can drive any type of car.

The same principle can also apply to programming. For example, consider a stack
(which is a first-in, last-out list). You might have a program that requires three
different types of stacks. One stack is used for integer values, one for floating-point
values, and one for characters. In this case, the algorithm that implements each stack
is the same, even though the data being stored differs. In a non-object-oriented
language, you would be required to create three different sets of stack routines, with
each set using different names. However, because of polymorphism, in Java you can
create one general set of stack routines that works for all three specific situations.
This way, once you know how to use one stack, you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase
“one interface, multiple methods.” This means that it is possible to design a generic

interface to a group of related activities. Polymorphism helps reduce complexity by
allowing the same interface to be used to specify a general class of action. It is the
compiler’s job to select the specific action (i.e., method) as it applies to each
situation. You, the programmer, don’t need to do this selection manually. You need
only remember and utilize the general interface.

Inheritance

Inheritance is the process by which one object can acquire the properties of another
object. This is important because it supports the concept of hierarchical
classification. If you think about it, most knowledge is made manageable by
hierarchical (i.e., top-down) classifications. For example, a Red Delicious apple is
part of the classification apple, which in turn is part of the fruit class, which is under
the larger class food. That is, the food class possesses certain qualities (edible,
nutritious, etc.) which also, logically, apply to its subclass, fruit. In addition to these
qualities, the fruit class has specific characteristics (juicy, sweet, etc.) that
distinguish it from other food. The apple class defines those qualities specific to an
apple (grows on trees, not tropical, etc.). A Red Delicious apple would, in turn,
inherit all the qualities of all preceding classes, and would define only those qualities
that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of
its characteristics. Using inheritance, an object need only define those qualities that
make it unique within its class. It can inherit its general attributes from its parent.
Thus, it is the inheritance mechanism that makes it possible for one object to be a
specific instance of a
more general case.

Obtaining the Java Development Kit

Now that the theoretical underpinning of Java has been explained, it is time to start
writing Java programs. Before you can compile and run those programs, however,
you must have the Java Development Kit (JDK) installed on your computer. The
JDK is available free of charge from Oracle. At the time of this writing, the current
release of the JDK is JDK 9. This is the version used by Java SE 9. (SE stands for
Standard Edition.) Because JDK 9 contains many new features that are not supported
by earlier versions of Java, it is recommended that you use JDK 9 (or later) to
compile and run the programs in this book. If you use an earlier version, then
programs containing new features will not compile.

The JDK can be downloaded from
www.oracle.com/technetwork/java/javase/downloads/index.html. Just go to the

http://www.oracle.com/technetwork/java/javase/downloads/index.html

download page and follow the instructions for the type of computer that you have.
After you have installed the JDK, you will be able to compile and run programs. The
JDK supplies two primary programs. The first is javac, which is the Java compiler.
The second is java, which is the standard Java interpreter and is also referred to as
the application launcher.

One other point: The JDK runs in the command prompt environment and uses
command-line tools. It is not a windowed application. It is also not an integrated
development environment (IDE).

NOTE

In addition to the basic command-line tools supplied with the JDK, there are several
high-quality IDEs available for Java, such as NetBeans and Eclipse. An IDE can be
very helpful when developing and deploying commercial applications. As a general
rule, you can also use an IDE to compile and run the programs in this book if you so
choose. However, the instructions presented in this book for compiling and running a
Java program describe only the JDK command-line tools. The reasons for this are
easy to understand. First, the JDK is readily available to all readers. Second, the
instructions for using the JDK will be the same for all readers. Furthermore, for the
simple programs presented in this book, using the JDK command-line tools is
usually the easiest approach. If you are using an IDE, you will need to follow its
instructions. Because of differences between IDEs, no general set of instructions can
be given.

Ask the Expert

Q: You state that object-oriented programming is an effective way to
manage large programs. However, it seems that it might add
substantial overhead to relatively small ones. Since you say that all
Java programs are, to some extent, object-oriented, does this impose
a penalty for smaller programs?

A: No. As you will see, for small programs, Java’s object-oriented features
are nearly transparent. Although it is true that Java follows a strict object
model, you have wide latitude as to the degree to which you employ it.
For smaller programs, their “object-orientedness™ is barely perceptible.
As your programs grow, you will integrate more object-oriented features
effortlessly.

A First Simple Program

Let’s start by compiling and running the short sample program shown here:

/*

This is a simple Java program.

Call this file Example.java.
)
class Example {
// A Java program begins with a call to main().
public static void main(String args[]) {
System.out.println("Java drives the Web.");
)

}

You will follow these three steps:

1. Enter the program.
2. Compile the program.
3. Run the program.

Entering the Program

The programs shown in this book are available from www.oraclepressbooks.com.
However, if you want to enter the programs by hand, you are free to do so. In this
case, you must enter the program into your computer using a text editor, not a word
processor. Word processors typically store format information along with text. This
format information will confuse the Java compiler. If you are using a Windows
platform, you can use WordPad or any other programming editor that you like.

For most computer languages, the name of the file that holds the source code to a
program is arbitrary. However, this is not the case with Java. The first thing that you
must learn about Java is that the name you give to a source file is very important. For
this example, the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. 1t is a text file that
contains (among other things) one or more class definitions. (For now, we will be
using source files that contain only one class.) The Java compiler requires that a
source file use the .java filename extension. As you can see by looking at the

http://www.oraclepressbooks.com

program, the name of the class defined by the program is also Example. This is not a
coincidence. In Java, all code must reside inside a class. By convention, the name of
the main class should match the name of the file that holds the program. You should
also make sure that the capitalization of the filename matches the class name. The
reason for this is that Java is case sensitive. At this point, the convention that
filenames correspond to class names may seem arbitrary. However, this convention
makes it easier to maintain and organize your programs.

Compiling the Program
To compile the Example program, execute the compiler, javac, specifying the name
of the source file on the command line, as shown here:

javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode
version of the program. Remember, bytecode is not executable code. Bytecode must
be executed by a Java Virtual Machine. Thus, the output of javac is not code that can
be directly executed.

To actually run the program, you must use the Java interpreter, java. To do so,
pass the class name Example as a command-line argument, as shown here:

java Example

When the program is run, the following output is displayed:

Java drives the Web.

When Java source code is compiled, each individual class is put into its own
output file named after the class and using the .class extension. This is why it is a
good idea to give your Java source files the same name as the class they contain—
the name of the source file will match the name of the .class file. When you execute
the Java interpreter as just shown, you are actually specifying the name of the class
that you want the interpreter to execute. It will automatically search for a file by that
name that has the .class extension. If it finds the file, it will execute the code
contained in the specified class.

NOTE

If, when you try to compile the program, the computer cannot find javac (and
assuming that you have installed the JDK correctly), you may need to specify the
path to the command-line tools. In Windows, for example, this means that you will
need to add the path to the command-line tools to the paths defined for the PATH

environmental variable. For example, if JDK 9 was installed under the Program Files
directory, then the path to the command-line tools will be similar to C:\Program
Files\Java\jdk-9\bin. (Of course, you will need to find the path to Java on your
computer, which may differ from the one just shown. Also the specific version of the
JDK may differ.) You will need to consult the documentation for your operating
system on how to set the path, because this procedure differs between OSes.

The First Sample Program Line by Line

Although Example.java is quite short, it includes several key features that are
common to all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*

This is a simple Java program.

Call this file Example.java.
®f

This is a comment. Like most other programming languages, Java lets you enter a
remark into a program’s source file. The contents of a comment are ignored by the
compiler. Instead, a comment describes or explains the operation of the program to
anyone who is reading its source code. In this case, the comment describes the
program and reminds you that the source file should be called Example.java. Of
course, in real applications, comments generally explain how some part of the
program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program
is called a multiline comment. This type of comment must begin with /* and end with
*/. Anything between these two comment symbols is ignored by the compiler. As the
name suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. As
mentioned, the class is Java’s basic unit of encapsulation. Example is the name of
the class. The class definition begins with the opening curly brace ({) and ends with
the closing curly brace (}). The elements between the two braces are members of the
class. For the moment, don’t worry too much about the details of a class except to
note that in Java, all program activity occurs within one. This is one reason why all
Java programs are (at least a little bit) object-oriented.

The next line in the program is the single-line comment, shown here:

// A Java program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment
begins with a // and ends at the end of the line. As a general rule, programmers use
multiline comments for longer remarks and single-line comments for brief, line-by-
line descriptions.

The next line of code is shown here:

public static void main (String args[]) {

This line begins the main() method. As mentioned earlier, in Java, a subroutine is
called a method. As the comment preceding it suggests, this is the line at which the
program will begin executing. In general, Java applications begin execution by
calling main(). The exact meaning of each part of this line cannot be given now,
since it involves a detailed understanding of several other of Java’s features.
However, since many of the examples in this book will use this line of code, let’s
take a brief look at each part now.

The public keyword is an access modifier. An access modifier determines how
other parts of the program can access the members of the class. When a class
member is preceded by public, then that member can be accessed by code outside
the class in which it is declared. (The opposite of public is private, which prevents a
member from being used by code defined outside of its class.) In this case, main()
must be declared as public, since it must be called by code outside of its class when
the program is started. The keyword static allows main() to be called before an
object of the class has been created. This 1s necessary because main() is called by
the JVM before any objects are made. The keyword void simply tells the compiler
that main() does not return a value. As you will see, methods may also return
values. If all this seems a bit confusing, don’t worry. All of these concepts will be
discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Any
information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are
called parameters. If no parameters are required for a given method, you still need to
include the empty parentheses. In main() there is only one parameter, String args|
], which declares a parameter named args. This is an array of objects of type String.
(Arrays are collections of similar objects.) Objects of type String store sequences of
characters. In this case, args receives any command-line arguments present when the
program is executed. This program does not make use of this information, but other
programs shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All
of the code included in a method will occur between the method’s opening curly
brace and its closing curly brace.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println ("Java drives the Web.");

This line outputs the string "Java drives the Web." followed by a new line on the
screen. Output is actually accomplished by the built-in println() method. In this
case, println() displays the string that is passed to it. As you will see, println() can
be used to display other types of information, too. The line begins with System.out.
While too complicated to explain in detail at this time, briefly, System is a
predefined class that provides access to the system, and out is the output stream that
1s connected to the console. Thus, System.out is an object that encapsulates console
output. The fact that Java uses an object to define console output is further evidence
of its object-oriented nature.

As you have probably guessed, console output (and input) is not used frequently
in real-world Java applications. Since most modern computing environments are
windowed and graphical in nature, console I/O 1s used mostly for simple utility
programs, for demonstration programs, and for server-side code. Later in this book,
you will learn other ways to generate output using Java, but for now, we will
continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. Many statements in
Java end with a semicolon. As you will see, the semicolon is an important part of the
Java syntax.

The first } in the program ends main(), and the last } ends the Example class
definition.

One last point: Java is case sensitive. Forgetting this can cause you serious
problems. For example, if you accidentally type Main instead of main, or PrintLn
instead of println, the preceding program will be incorrect. Furthermore, although
the Java compiler will compile classes that do not contain a main() method, it has
no way to execute them. So, if you had mistyped main, the compiler would still
compile your program. However, the Java interpreter would report an error because
it would be unable to find the main() method.

Handling Syntax Errors

If you have not yet done so, enter, compile, and run the preceding program. As you
may know from your previous programming experience, it is quite easy to
accidentally type something incorrectly when entering code into your computer.

Fortunately, if you enter something incorrectly into your program, the compiler will
report a syntax error message when it tries to compile it. The Java compiler attempts
to make sense out of your source code no matter what you have written. For this
reason, the error that is reported may not always reflect the actual cause of the
problem. In the preceding program, for example, an accidental omission of the
opening curly brace after the main() method causes the compiler to report the
following two errors:

Example.java:8: ';' expected
public static void main(String args/([])

A

Example.java:11: class, interface, or enum expected

}

A

Clearly, the first error message i1s completely wrong because what is missing is not a
semicolon, but a curly brace.

The point of this discussion is that when your program contains a syntax error,
you shouldn’t necessarily take the compiler’s messages at face value. The messages
may be misleading. You may need to “second-guess” an error message in order to
find the real problem. Also, look at the last few lines of code in your program that
precede the line being flagged. Sometimes an error will not be reported until several
lines after the point at which the error actually occurred.

A Second Simple Program

Perhaps no other construct is as important to a programming language as the
assignment of a value to a variable. A variable is a named memory location that can
be assigned a value. Further, the value of a variable can be changed during the
execution of a program. That is, the content of a variable is changeable, not fixed.
The following program creates two variables called var1 and var2:

/*

This demonstrates a variable.

Call this file Example2.java.
®if

class Example2 {
public static void main(String args[]) {
int varl; // this declares a variable «————Dedare variables.
int var2; // this declares another variable

varl = 1024; // this assigns 1024 to varl «——— Assign a variable a value.
System.out.println("varl contains " + varl);
var2 = varl / 2;

System.out.print ("var2 contains varl / 2: ");
System.out.println(var2);

When you run this program, you will see the following output:

varl contains 1024
var?2 contains wvarl / 2: 512

This program introduces several new concepts. First, the statement

int varl; // this declares a variable

declares a variable called var1 of type integer. In Java, all variables must be declared
before they are used. Further, the type of values that the variable can hold must also
be specified. This is called the #ype of the variable. In this case, varl can hold
integer values. These are whole number values. In Java, to declare a variable to be of
type integer, precede its name with the keyword int. Thus, the preceding statement
declares a variable called varl of type int.

The next line declares a second variable called var2:

int var2; // this declares another variable

Notice that this line uses the same format as the first line except that the name of the
variable is different.
In general, to declare a variable you will use a statement like this:

lype var-name;

Here, type specifies the type of variable being declared, and var-name is the name of

the variable. In addition to int, Java supports several other data types.
The following line of code assigns varl the value 1024:

varl = 1024; // this assigns 1024 to varl

In Java, the assignment operator is the single equal sign. It copies the value on its
right side into the variable on its left.

The next line of code outputs the value of varl preceded by the string "varl
contains "

System.out.println("varl contains " + wvarl);

In this statement, the plus sign causes the value of var1 to be displayed after the
string that precedes it. This approach can be generalized. Using the + operator, you
can chain together as many items as you want within a single println() statement.

The next line of code assigns var2 the value of varl divided by 2:

var?2 = varl / 2;

This line divides the value in var1 by 2 and then stores that result in var2. Thus,
after the line executes, var2 will contain the value 512. The value of varl will be
unchanged. Like most other computer languages, Java supports a full range of
arithmetic operators, including those shown here:

- ‘ Addition

- \ Subtraction

* ! Multiplication
/ ‘ Division

Here are the next two lines in the program:

System.out.print ("var2 contains varl / 2: ");
System.out.println(var2);

Two new things are occurring here. First, the built-in method print() is used to
display the string "var2 contains varl / 2: ". This string is not followed by a new line.
This means that when the next output is generated, it will start on the same line. The
print() method is just like println(), except that it does not output a new line after
each call. Second, in the call to println(), notice that var2 is used by itself. Both
print() and println() can be used to output values of any of Java’s built-in types.

One more point about declaring variables before we move on: It is possible to

declare two or more variables using the same declaration statement. Just separate
their names by commas. For example, var1l and var2 could have been declared like
this:

int varl, wvar2; // both declared using one statement

Another Data Type

In the preceding program, a variable of type int was used. However, a variable of
type int can hold only whole numbers. Thus, it cannot be used when a fractional
component is required. For example, an int variable can hold the value 18, but not
the value 18.3. Fortunately, int is only one of several data types defined by Java. To
allow numbers with fractional components, Java defines two floating-point types:
float and double, which represent single- and double-precision values, respectively.
Of the two, double is the most commonly used.

To declare a variable of type double, use a statement similar to that shown here:

double x;

Here, x is the name of the variable, which is of type double. Because x has a
floating-point type, it can hold values such as 122.23, 0.034, or —19.0.

To better understand the difference between int and double, try the following
program:

/*
This program illustrates the differences
between int and double.

Call this file Example3.java.
o |
class Example3 ({
public static void main(String args[]) {
int var; // this declares an int variable
double x; // this declares a floating-point variable

var = 10; // assign var the value 10
x = 10.0; // assign x the value 10.0

System.out.println("Original value of var: " + var);
System.out.println("Original value of x: " + x);
System.out.println(); // print a blank line «————OQutputa blank line.

// now, divide both by 4
var = var / 4;
X =x/ 4;

System.out.println("var after division: " + var);
System.out.println("x after division: " + Xx);

The output from this program is shown here:

Original wvalue of var: 10
Original wvalue of x: 10.0

var after division: 2« Fractional component lost
x after division: 2.5 Fractional component preserved

As you can see, when var is divided by 4, a whole-number division is performed,
and the outcome i1s 2—the fractional component is lost. However, when the double
variable x i1s divided by 4, the fractional component is preserved, and the proper

answer is displayed.

There 1s one other new thing to notice in the program. To print a blank line,
simply call println() without any arguments.

Ask the Expert

Q: Why does Java have different data types for integers and floating-
point values? That is, why aren’t all numeric values just the same

type?

A: Java supplies different data types so that you can write efficient programs.
For example, integer arithmetic is faster than floating-point calculations.
Thus, if you don’t need fractional values, then you don’t need to incur the
overhead associated with types float or double. Second, the amount of
memory required for one type of data might be less than that required for
another. By supplying different types, Java enables you to make best use
of system resources. Finally, some algorithms require (or at least benefit
from) the use of a specific type of data. In general, Java supplies a
number of built-in types to give you the greatest flexibility.

Try This 1-1 Converting Gallons to Liters

--

-
||

Although the preceding sample programs illustrate several important features of the
Java language, they are not very useful. Even though you do not know much about
Java at this point, you can still put what you have learned to work to create a
practical program. In this project, we will create a program that converts gallons to
liters. The program will work by declaring two double variables. One will hold the
number of the gallons, and the second will hold the number of liters after the
conversion. There are 3.7854 liters in a gallon. Thus, to convert gallons to liters, the
gallon value is multiplied by 3.7854. The program displays both the number of
gallons and the equivalent number of liters.

1. Create a new file called GalToLit.java.

2. Enter the following program into the file:

/*
Try This 1-1

This program converts gallons to liters.

Call this program GalToLit.java.
*/
class GalToLit
public static void main(String args[]) {
double gallons; // holds the number of gallons
double liters; // holds conversion to liters

gallons = 10; // start with 10 gallons

liters = gallons * 3.7854; // convert to liters

System.out.println(gallons + " gallons is " + liters + " liters.");

J
}

3. Compile the program using the following command line:

javac GalTolLit.java

4. Run the program using this command:
java GalToLit

You will see this output:
10.0 gallons is 37.854 liters.
5. As it stands, this program converts 10 gallons to liters. However, by changing the

value assigned to gallons, you can have the program convert a different number
of gallons into its equivalent number of liters.

Two Control Statements

Inside a method, execution proceeds from one statement to the next, top to bottom.
However, it is possible to alter this flow through the use of the various program
control statements supported by Java. Although we will look closely at control
statements later, two are briefly introduced here because we will be using them to

write sample programs.

The if Statement

You can selectively execute part of a program through the use of Java’s conditional
statement: the if. The Java if statement works much like the IF statement in any other
language. It determines the flow of program execution based on whether some
condition is true or false. Its simplest form is shown here:

if(condition) statement;

Here, condition is a Boolean expression. (A Boolean expression is one that evaluates
to either true or false.) If condition is true, then the statement is executed. If
condition is false, then the statement is bypassed. Here is an example:

if (10 < 11) System.out.println("10 is less than 11");

In this case, since 10 is less than 11, the conditional expression is true, and printin()
will execute. However, consider the following:

if (10 < 9) System.out.println("this won't be displayed");

In this case, 10 is not less than 9. Thus, the call to println() will not take place.

Java defines a full complement of relational operators that may be used in a
conditional expression. They are shown here:

Operator ' Meaning

< ' Less than

<= | Less than or equall

> | Greater than

>= | Greater than or equal
== Equal to

|= Not equal

Notice that the test for equality is the double equal sign.
Here is a program that illustrates the if statement:

/*
Demonstrate the if.
Call this file IfDemo.java.
®)
class IfDemo {
public static void main(String argsl[]) {

int a, b, c;

a = 22
D = 3

if(a < b) System.out.println("a is less than b");

// this won't display anything
if(a == b) System.out.println("you won't see this") ;

System.out .println() ;

¢ =a <= by [/ ¢ contains <1

System.out.println("c contains -1");

if (¢ >= 0) System.out.println("c is non-negative") ;
if(c < 0) System.out.println("c is negative") ;
System.out .println() ;

c =b - a; // ¢ now contains 1
System.out.println("c contains 1");

if (¢ >= 0) System.out.println("c is non-negative") ;
if(c < 0) System.out.println("c is negative") ;

The output generated by this program is shown here:

a is less than b

c contains -1
Cc 1s negative

¢ contains 1
1s non-negative

Q

Notice one other thing in this program. The line

int a, b, c;

declares three variables, a, b, and ¢, by use of a comma-separated list. As mentioned
earlier, when you need two or more variables of the same type, they can be declared
in one statement. Just separate the variable names by commas.

The for Loop

You can repeatedly execute a sequence of code by creating a loop. Loops are used
whenever you need to perform a repetitive task because they are much simpler and
easier than trying to write the same statement sequence over and over again. Java
supplies a powerful assortment of loop constructs. The one we will look at here is the
for loop. The simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control
variable to an initial value. The condition is a Boolean expression that tests the loop
control variable. If the outcome of that test is true, statement executes and the for
loop continues to iterate. If it is false, the loop terminates. The iteration expression
determines how the loop control variable is changed each time the loop iterates. Here
1s a short program that illustrates the for loop:

/*

Demonstrate the for loop.

Call this file ForDemo.java.
%y
class ForDemo {
public static void main(String args[])
int count;

for(count = 0; count < 5; count = count+l)4—This]oop iterates five times.
System.out.println("This is count: " + count);

System.out.println("Done!") ;

}
}

The output generated by the program is shown here:

This is count:
This is count:
This is count:
This is count:
This is count:
Done!

W N RO

In this example, count is the loop control variable. It is set to zero in the
initialization portion of the for. At the start of each iteration (including the first one),
the conditional test count < 5 is performed. If the outcome of this test is true, the
println() statement is executed, and then the iteration portion of the loop is
executed, which increases count by 1. This process continues until the conditional
test 1s false, at which point execution picks up at the bottom of the loop. As a point
of interest, in professionally written Java programs, you will almost never see the
iteration portion of the loop written as shown in the preceding program. That is, you
will seldom see statements like this:

count = count + 1;

The reason is that Java includes a special increment operator that performs this
operation more efficiently. The increment operator is ++ (that is, two plus signs back
to back). The increment operator increases its operand by one. By use of the
increment operator, the preceding statement can be written like this:

count++;

Thus, the for in the preceding program will usually be written like this:

for (count = 0; count < 5; count++)

You might want to try this. As you will see, the loop still runs exactly the same as it
did before.

Java also provides a decrement operator, which is specified as — —. This operator
decreases its operand by one.

Create Blocks of Code

Another key element of Java is the code block. A code block is a grouping of two or
more statements. This is done by enclosing the statements between opening and
closing curly braces. Once a block of code has been created, it becomes a logical unit
that can be used any place that a single statement can. For example, a block can be a
target for Java’s if and for statements. Consider this if statement:

w < h) { <———Startof block

w * h;
= 0
} €—————End of block

Here, if w 1s less than h, both statements inside the block will be executed. Thus, the
two statements inside the block form a logical unit, and one statement cannot execute
without the other also executing. The key point here is that whenever you need to
logically link two or more statements, you do so by creating a block. Code blocks
allow many algorithms to be implemented with greater clarity and efficiency.

Here is a program that uses a block of code to prevent a division by zero:

/*

Demonstrate a block of code.

Call this file BlockDemo.java.
%)
class BlockDemo {
public static void main(String args[]) {
double i, j, 4;

1 = Bj

i = 10;

// the target of this if is a block

if(i 1= 0)
System.out.println("i does not equal zero"); .
d=19 /i The target of the if
System.out.println("j / i is " + d); s this entire block.

}
}
}

The output generated by this program is shown here:

i does not equal zero
j / i is 2.0

In this case, the target of the if statement is a block of code and not just a single
statement. If the condition controlling the if is true (as it is in this case), the three
statements inside the block will be executed. Try setting i to zero and observe the
result. You will see that the entire block is skipped.

Ask the Expert

Q: Does the use of a code block introduce any run-time inefficiencies? In
other words, does Java actually execute the { and }?

A: No. Code blocks do not add any overhead whatsoever. In fact, because of
their ability to simplify the coding of certain algorithms, their use

generally increases speed and efficiency. Also, the { and } exist only in
your program’s source code. Java does not, per se, execute the { or }.

As you will see later in this book, blocks of code have additional properties and
uses. However, the main reason for their existence is to create logically inseparable
units of code.

Semicolons and Positioning

In Java, the semicolon is a separator. It is often used to terminate a statement. In
essence, the semicolon indicates the end of one logical entity.

As you know, a block is a set of logically connected statements that are
surrounded by opening and closing braces. A block is not terminated with a
semicolon. Instead, the end of the block is indicated by the closing brace.

Java does not recognize the end of the line as a terminator. For this reason, it does
not matter where on a line you put a statement. For example,

X = y;
y =y + 1;
System.out.println(x + " " + y);

1s the same as the following, to Java:
X =vy; yv =Yy + 1; System.out.println(x + " " + vy);

Furthermore, the individual elements of a statement can also be put on separate
lines. For example, the following is perfectly acceptable:

System.out .println("This is a long line of output" +
X + VY + 2 +
"more output") ;

Breaking long lines in this fashion is often used to make programs more readable. It
can also help prevent excessively long lines from wrapping.

Indentation Practices

You may have noticed in the previous examples that certain statements were
indented. Java is a free-form language, meaning that it does not matter where you
place statements relative to each other on a line. However, over the years, a common

and accepted indentation style has developed that allows for very readable programs.
This book follows that style, and it is recommended that you do so as well. Using
this style, you indent one level after each opening brace, and move back out one
level after each closing brace. Certain statements encourage some additional
indenting; these will be covered later.

b MUITTREYE Improving the Gallons-to-Liters Converter

--

You can use the for loop, the if statement, and code blocks to create an improved
version of the gallons-to-liters converter that you developed in the first project. This
new version will print a table of conversions, beginning with 1 gallon and ending at
100 gallons. After every 10 gallons, a blank line will be output. This is accomplished
through the use of a variable called counter that counts the number of lines that have
been output. Pay special attention to its use.

1. Create a new file called GalToLitTable.java.
2. Enter the following program into the file:

Try This 1-2

This program displays a conversion
table of gallons to liters.

Call this program "GalToLitTable.java".
")
class GalToLitTable {
public static void main(String args[]) {
double gallons, liters;
int counter;

counter = (; <«

for(gallons = 1; gallons <= 100; gallons++) {

Line counter is inifially sef o zero.

liters = gallons * 3.7854; // convert to liters
System.out.println(gallons + " gallons is " +

liters + " liters.");

counter++; <
// every 10th line, print a blank line
if (counter == 10) { <

System.out.println();
counter = 0; // reset the line counter

}
}
}
}

3. Compile the program using the following command line:

javac GalToLitTable.java

4. Run the program using this command:

java GalToLitTable

Here is a portion of the output that you will see:

Increment the line counter
with each loop iteration.

If counter is 10,
output a blank line.

1.0 gallons is 3.7854 liters.
2.0 gallons is 7.5708 liters.
3.0 gallons is 11.356200000000001 liters.
4.0 gallons is 15.1416 liters.
5.0 gallons is 18.927 liters.
6.0 gallons is 22.712400000000002 liters.
7.0 gallons is 26.4978 liters.
8.0 gallons is 30.2832 liters.
9.0 gallons is 34.0686 liters.
10.0 gallons is 37.854 liters.
11.0 gallons is 41.6394 liters.
12.0 gallons is 45.424800000000005 liters.
13.0 gallons is 49.2102 liters.
14.0 gallons is 52.9956 liters.
15.0 gallons is 56.781 liters.
16.0 gallons is 60.5664 liters.
17.0 gallons is 64.3518 liters.
18.0 gallons is 68.1372 liters.
19.0 gallons is 71.9226 liters.
20.0 gallons is 75.708 liters.
21.0 gallons is 79.49340000000001 liters.
22.0 gallons is 83.2788 liters.
23.0 gallons is 87.0642 liters.
24.0 gallons is 90.84960000000001 liters.
25.0 gallons is 94.635 liters.
26.0 gallons is 98.4204 liters.
27.0 gallons is 102.2058 liters.
28.0 gallons is 105.9912 liters.
29.0 gallons is 109.7766 liters.
30.0 gallons is 113.562 liters.
!
The Java Keywords

Sixty-one keywords are currently defined in the Java language (see Table 1-1).

These keywords, combined with the syntax of the operators and separators, form the
definition of the Java language. In general, keywords cannot be used as names for a
variable, class, or method. The exceptions to this rule are the new context-sensitive
keywords added by JDK 9 to support modules. (See Chapter 15 for details.) Also,
beginning with JDK 9, an underscore by itself is considered a keyword in order to
prevent its use as the name of something in your program.

abstract assert ' boolean break byfe case

catch | char class | const | continve | default

do double else enum exports extends

final finally float for goto if
implements | import instanceof int inerface long

module native new open | opens package
privafe profected provides | public requires refurn

short | static strictp | super is.witch | synchronized
this | throw throws to transient transifive

try | uses void volatile | while with

!
Table 1-1 The Java Keywords

The keywords const and goto are reserved but not used. In the early days of Java,
several other keywords were reserved for possible future use. However, the current
specification for Java defines only the keywords shown in Table 1-1.

In addition to the keywords, Java reserves the following: true, false, and null.
These are values defined by Java. You may not use these words for the names of
variables, classes, and so on.

Identifiers in Java

In Java an identifier is a name given to a method, a variable, or any other user-
defined item. Identifiers can be from one to several characters long. Variable names
may start with any letter of the alphabet, an underscore, or a dollar sign. Next may be
either a letter, a digit, a dollar sign, or an underscore. The underscore can be used to

enhance the readability of a variable name, as in line_count. Uppercase and
lowercase are different; that is, to Java, myvar and MyVar are separate names. Here
are some examples of acceptable identifiers:

Test | x | Y2 | MaxLoad
$up _top my_var sample23

Remember, you can’t start an identifier with a digit. Thus, 12x is invalid, for
example.

In general, you cannot use the Java keywords as identifier names. Also, you
should not use the name of any standard method, such as println, as an identifier.
Beyond these two restrictions, good programming practice dictates that you use
identifier names that reflect the meaning or usage of the items being named.

The Java Class Libraries

The sample programs shown in this chapter make use of two of Java’s built-in
methods: println() and print(). These methods are accessed through System.out.
System is a class predefined by Java that is automatically included in your programs.
In the larger view, the Java environment relies on several built-in class libraries that
contain many built-in methods that provide support for such things as I/O, string
handling, networking, and graphics. The standard classes also provide support for a
graphical user interface (GUI). Thus, Java as a totality is a combination of the Java
language itself, plus its standard classes. As you will see, the class libraries provide
much of the functionality that comes with Java. Indeed, part of becoming a Java
programmer is learning to use the standard Java classes. Throughout this book,
various elements of the standard library classes and methods are described.
However, the Java library is something that you will also want to explore more on
your own.

v Chapter 1 Self Test

1. What is bytecode and why is it important to Java’s use for Internet
programming?

2. What are the three main principles of object-oriented programming?

3. Where do Java programs begin execution?
4. What is a variable?

5. Which of the following variable names is invalid?

A. count

B. S$count
C. count27
D. 67count

6. How do you create a single-line comment? How do you create a multiline
comment?

7. Show the general form of the if statement. Show the general form of the for
loop.

8. How do you create a block of code?

9. The moon’s gravity is about 17 percent that of earth’s. Write a program that
computes your effective weight on the moon.

10. Adapt Try This 1-2 so that it prints a conversion table of inches to meters.
Display 12 feet of conversions, inch by inch. Output a blank line every 12
inches. (One meter equals approximately 39.37 inches.)

11. If you make a typing mistake when entering your program, what sort of error
will result?

12. Does it matter where on a line you put a statement?

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 2

Introducing Data Types and Operators

Key SKkills & Concepts

Know Java’s primitive types

Use literals

Initialize variables

Know the scope rules of variables within a method
Use the arithmetic operators

Use the relational and logical operators
Understand the assignment operators

Use shorthand assignments

Understand type conversion in assignments

Cast incompatible types

Understand type conversion in expressions

operators, and Java is no exception. These elements define the limits of a
language and determine the kind of tasks to which it can be applied.
Fortunately, Java supports a rich assortment of both data types and operators, making
it suitable for any type of programming.
Data types and operators are a large subject. We will begin here with an
examination of Java’s foundational data types and its most commonly used
operators. We will also take a closer look at variables and examine the expression.

ﬁ t the foundation of any programming language are its data types and

Why Data Types Are Important

Data types are especially important in Java because it is a strongly typed language.
This means that all operations are type-checked by the compiler for type
compatibility. [llegal operations will not be compiled. Thus, strong type checking
helps prevent errors and enhances reliability. To enable strong type checking, all
variables, expressions, and values have a type. There is no concept of a “type-less”
variable, for example. Furthermore, the type of a value determines what operations
are allowed on it. An operation allowed on one type might not be allowed on
another.

Java’s Primitive Types

Java contains two general categories of built-in data types: object-oriented and non-
object-oriented. Java’s object-oriented types are defined by classes, and a discussion
of classes is deferred until later. However, at the core of Java are eight primitive
(also called elemental or simple) types of data, which are shown in Table 2-1. The
term primitive is used here to indicate that these types are not objects in an object-
oriented sense, but rather, normal binary values. These primitive types are not
objects because of efficiency concerns. All of Java’s other data types are constructed
from these primitive types.

Type Meaning

boolean | Represents true/ fulse values
byte | 8-bit integer

char Character

double ' Double-precision floating point
float .:-..Sing|e-precision floating point
int Integer

long long integer

short Short integer

!
Table 2-1 Java’s Built-in Primitive Data Types

Java strictly specifies a range and behavior for each primitive type, which all

implementations of the Java Virtual Machine must support. Because of Java’s
portability requirement, Java is uncompromising on this account. For example, an int
1s the same 1n all execution environments. This allows programs to be fully portable.
There is no need to rewrite code to fit a specific platform. Although strictly
specifying the range of the primitive types may cause a small loss of performance in
some environments, it is necessary in order to achieve portability.

Integers
Java defines four integer types: byte, short, int, and long, which are shown here:

Type | Width in Bits Range

byte | 8 12810 127

short | 16 -32,7681032,767

it |32 |22,147,483,648 fo 2,147,483 647

ong | 64 -9.223372,036,854,775,808 1o 9,223,372,036 854,775,807

As the table shows, all of the integer types are signed positive and negative values.
Java does not support unsigned (positive-only) integers. Many other computer
languages support both signed and unsigned integers. However, Java’s designers felt
that unsigned integers were unnecessary.

NOTE

Technically, the Java run-time system can use any size it wants to store a primitive
type. However, in all cases, types must act as specified.

The most commonly used integer type is int. Variables of type int are often
employed to control loops, to index arrays, and to perform general-purpose integer
math.

When you need an integer that has a range greater than int, use long. For example,
here is a program that computes the number of cubic inches contained in a cube that
1s one mile by one mile, by one mile:

/*
Compute the number of cubic inches
in 1 cubic mile.
g
class Inches {
public static void main(String args[]) {
long ei;
long im;

im = 5280 * 12;
ci = 1im * im * im;

System.out .println ("There are " + ci +
" cubic inches in cubic mile.") ;

Here is the output from the program:

There are 254358061056000 cubic inches in cubic mile.

Clearly, the result could not have been held in an int variable.

The smallest integer type is byte. Variables of type byte are especially useful
when working with raw binary data that may not be directly compatible with Java’s
other built-in types. The short type creates a short integer. Variables of type short
are appropriate when you don’t need the larger range offered by int.

Ask the Expert

Q: You say that there are four integer types: int, short, long, and byte.
However, I have heard that char can also be categorized as an integer
type in Java. Can you explain?

A: The formal specification for Java defines a type category called integral
types, which includes byte, short, int, long, and char. They are called
integral types because they all hold whole-number, binary values.

However, the purpose of the first four is to represent numeric integer
quantities. The purpose of char is to represent characters. Therefore, the
principal uses of char and the principal uses of the other integral types
are fundamentally different. Because of the differences, the char type is
treated separately in this book.

Floating-Point Types

As explained in Chapter 1, the floating-point types can represent numbers that have
fractional components. There are two kinds of floating-point types, float and double,
which represent single- and double-precision numbers, respectively. Type float is 32
bits wide and type double is 64 bits wide.

Of the two, double is the most commonly used, and many of the math functions in
Java’s class library use double values. For example, the sqrt() method (which is
defined by the standard Math class) returns a double value that is the square root of
its double argument. Here, sqrt() is used to compute the length of the hypotenuse,
given the lengths of the two opposing sides:

/*
Use the Pythagorean theorem to
find the length of the hypotenuse
given the lengths of the two opposing
sides.

)

class Hypot {

public static void main(String args|[]) {

double x, vy, z;

3 = 3¢

¥ = 4 ﬁ Notice how sqri() is called. It is preceded by

the name of the class of which it is a member.
z = Math.ggrt (x*x + y*y);

System.out .println ("Hypotenuse is " +2z) ;

The output from the program is shown here:

Hypotenuse is 5.0

One other point about the preceding example: As mentioned, sqrt() is a member
of the standard Math class. Notice how sqrt() is called; it is preceded by the name
Math. This is similar to the way System.out precedes println(). Although not all
standard methods are called by specifying their class name first, several are.

Characters

In Java, characters are not 8-bit quantities like they are in many other computer
languages. Instead, Java uses Unicode. Unicode defines a character set that can
represent all of the characters found in all human languages. In Java, char is an
unsigned 16-bit type having a range of 0 to 65,535. The standard 8-bit ASCII
character set is a subset of Unicode and ranges from 0 to 127. Thus, the ASCII
characters are still valid Java characters.

A character variable can be assigned a value by enclosing the character in single
quotes. For example, this assigns the variable ch the letter X:

char ch;
ch = 'X';

You can output a char value using a println() statement. For example, this line
outputs the value in ch:

System.out.println("This is ch: " + ch);

Since char is an unsigned 16-bit type, it is possible to perform various arithmetic
manipulations on a char variable. For example, consider the following program:

// Character variables can be handled like integers.
class CharArithDemo {
public static void main(String args[]) {
char ch;

ph = 1813
System.out.println("ch contains " + ch);

ch++; // increment ch <«——— A char can be incremented.
System.out.println("ch is now " + ch);

ch = 90; // give ch the value Z <——— A char can be assigned an integer value.
System.out.println("ch is now " + ch);

The output generated by this program is shown here:

ch contains X
ch is now Y
ch 1is now %

In the program, ch is first given the value X. Next, ch is incremented. This results
in ch containing Y, the next character in the ASCII (and Unicode) sequence. Next,
ch is assigned the value 90, which is the ASCII (and Unicode) value that
corresponds to the letter Z. Since the ASCII character set occupies the first 127
values in the Unicode character set, all the “old tricks” that you may have used with
characters in other languages will work in Java, too.

Ask the Expert

Q: Why does Java use Unicode?

A: Java was designed for worldwide use. Thus, it needs to use a character set
that can represent all the world’s languages. Unicode is the standard
character set designed expressly for this purpose. Of course, the use of
Unicode is inefficient for languages such as English, German, Spanish, or
French, whose characters can be contained within 8 bits. But such is the
price that must be paid for global portability.

The Boolean Type

The boolean type represents true/false values. Java defines the values true and false
using the reserved words true and false. Thus, a variable or expression of type
boolean will be one of these two values.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolDemo ({
public static void main(String args[]) {
boolean b;

b = false;
System.out.println("b is " + Db);
b = true;

System.out.println("b is " + b);

// a boolean value can control the if statement
if (b) System.out.println("This is executed.");

b = false;
if (b) System.out.println("This is not executed.");

// outcome of a relational operator is a boolean value
System.out.println("10 > 9 is " + (10 > 9));

The output generated by this program is shown here:

b is false

b is true

This 1s executed.
10 > 9 is true

There are three interesting things to notice about this program. First, as you can
see, when a boolean value is output by println(), "true" or "false" is displayed.

Second, the value of a boolean variable is sufficient, by itself, to control the if
statement. There 1s no need to write an if statement like this:

if (b == true)

Third, the outcome of a relational operator, such as <, is a boolean value. This is
why the expression 10 > 9 displays the value "true." Further, the extra set of
parentheses around 10 > 9 is necessary because the + operator has a higher
precedence than the >.

Try This 2-1 How Far Away Is the Lightning?

-

In this project, you will create a program that computes how far away, in feet, a
listener 1s from a lightning strike. Sound travels approximately 1,100 feet per second
through air. Thus, knowing the interval between the time you see a lightning bolt and
the time the sound reaches you enables you to compute the distance to the lightning.
For this project, assume that the time interval is 7.2 seconds.

1. Create a new file called Sound.java.

2. To compute the distance, you will need to use floating-point values. Why?
Because the time interval, 7.2, has a fractional component. Although it would be
permissible to use a value of type float, we will use double in the example.

3. To compute the distance, you will multiply 7.2 by 1,100. You will then assign
this value to a variable.

4. Finally, you will display the result.

Here is the entire Sound.java program listing:

Try This 2-1
Compute the distance to a lightning
strike whose sound takes 7.2 seconds
to reach you.

*y

class Sound ({

public static void main(String args([]) {

double dist;

dist = 7.2 * 1100;

System.out.println("The lightning is " + dist +
" feet away.");

}
}

5. Compile and run the program. The following result is displayed:
The lightning is 7920.0 feet away.

6. Extra challenge: You can compute the distance to a large object, such as a rock
wall, by timing the echo. For example, if you clap your hands and time how long
it takes for you to hear the echo, then you know the total round-trip time.
Dividing this value by two yields the time it takes the sound to go one way. You
can then use this value to compute the distance to the object. Modify the

preceding program so that it computes the distance, assuming that the time
interval is that of an echo.

Literals

In Java, literals refer to fixed values that are represented in their human-readable
form. For example, the number 100 is a literal. Literals are also commonly called
constants. For the most part, literals, and their usage, are so intuitive that they have
been used in one form or another by all the preceding sample programs. Now the
time has come to explain them formally.

Java literals can be of any of the primitive data types. The way each literal is
represented depends upon its type. As explained earlier, character constants are

enclosed in single quotes. For example, 'a' and ' %' are both character constants.

Integer literals are specified as numbers without fractional components. For
example, 10 and —100 are integer literals. Floating-point literals require the use of
the decimal point followed by the number’s fractional component. For example,
11.123 is a floating-point literal. Java also allows you to use scientific notation for
floating-point numbers.

By default, integer literals are of type int. If you want to specify a long literal,
append an | or an L. For example, 12 is an int, but 12L is a long.

By default, floating-point literals are of type double. To specify a float literal,
append an F or f to the constant. For example, 10.19F is of type float.

Although integer literals create an int value by default, they can still be assigned
to variables of type char, byte, or short as long as the value being assigned can be
represented by the target type. An integer literal can always be assigned to a long
variable.

Beginning with JDK 7, you can embed one or more underscores into an integer or
floating-point literal. Doing so can make it easier to read values consisting of many
digits. When the literal is compiled, the underscores are simply discarded. Here is an
example:

123 45 1234

This specifies the value 123,451,234. The use of underscores is particularly useful
when encoding things like part numbers, customer IDs, and status codes that are
commonly thought of as consisting of subgroups of digits.

Hexadecimal, Octal, and Binary Literals

As you may know, in programming it is sometimes easier to use a number system
based on 8 or 16 instead of 10. The number system based on 8 is called octal, and it
uses the digits 0 through 7. In octal the number 10 is the same as 8 in decimal. The
base 16 number system is called hexadecimal and uses the digits 0 through 9 plus the
letters A through F, which stand for 10, 11, 12, 13, 14, and 15. For example, the
hexadecimal number 10 is 16 in decimal. Because of the frequency with which these
two number systems are used, Java allows you to specify integer literals in
hexadecimal or octal instead of decimal. A hexadecimal literal must begin with 0x or
0X (a zero followed by an x or X). An octal literal begins with a zero. Here are some
examples:

hex OxFF; // 255 in decimal
oct 011; // 9 in decimal

As a point of interest, Java also allows hexadecimal floating-point literals, but they

are seldom used.

Beginning with JDK 7, it is possible to specify an integer literal by use of binary.
To do so, precede the binary number with a O0b or 0B. For example, this specifies the
value 12 in binary: 0b1100.

Character Escape Sequences

Enclosing character constants in single quotes works for most printing characters,
but a few characters, such as the carriage return, pose a special problem when a text
editor is used. In addition, certain other characters, such as the single and double
quotes, have special meaning in Java, so you cannot use them directly. For these
reasons, Java provides special escape sequences, sometimes referred to as backslash
character constants, shown in Table 2-2. These sequences are used in place of the
characters that they represent.

Escape Sequence Desc ription

L | Single quote

L Double quote

\\ [Backslosh

\r “ Carriage return

\n New line

\f Form feed

\t | Horizontal tab

\b Backspace

\ddd | Octal constant (where ddd is an octal constant]
\uxxxx Hexadecimal constant (where xxxx is a hexadecimal constant)

r
Table 2-2 Character Escape Sequences

For example, this assigns ch the tab character:

ch = "\t';

The next example assigns a single quote to ch:

ch = l\ll,.

String Literals

Java supports one other type of literal: the string. A string is a set of characters
enclosed by double quotes. For example,

"this is a test"

1s a string. You have seen examples of strings in many of the println() statements in
the preceding sample programs.

In addition to normal characters, a string literal can also contain one or more of the
escape sequences just described. For example, consider the following program. It
uses the \m and \t escape sequences.

// Demonstrate escape sequences in strings.
class StrDemo {
public static void main (String args[]) {
System.out.println("First line\nSecond line");
System.out .println ("A\tB\tC") ;
System.out .println ("D\tE\tF") ; Use \n to generate a new line.

}

} Use tabs to align output.

The output is shown here:

First line

Second line

A B a
D E F

Ask the Expert

Q: Is a string consisting of a single character the same as a character
literal? For example, is ""k" the same as 'k'?

A: No. You must not confuse strings with characters. A character literal
represents a single letter of type char. A string containing only one letter
is still a string. Although strings consist of characters, they are not the
same type.

Notice how the \n escape sequence is used to generate a new line. You don’t need
to use multiple println() statements to get multiline output. Just embed \n within a
longer string at the points where you want the new lines to occur.

A Closer Look at Variables

Variables were introduced in Chapter 1. Here, we will take a closer look at them. As
you learned earlier, variables are declared using this form of statement,

type var-name;

where fype is the data type of the variable, and var-name is its name. You can
declare a variable of any valid type, including the simple types just described, and
every variable will have a type. Thus, the capabilities of a variable are determined by
its type. For example, a variable of type boolean cannot be used to store floating-
point values. Furthermore, the type of a variable cannot change during its lifetime.
An int variable cannot turn into a char variable, for example.

All variables in Java must be declared prior to their use. This is necessary because
the compiler must know what type of data a variable contains before it can properly
compile any statement that uses the variable. It also enables Java to perform strict
type checking.

Initializing a Variable

In general, you must give a variable a value prior to using it. One way to give a
variable a value is through an assignment statement, as you have already seen.
Another way is by giving it an initial value when it is declared. To do this, follow the
variable’s name with an equal sign and the value being assigned. The general form
of initialization is shown here:

type var = value;

Here, value is the value that is given to var when var is created. The value must be
compatible with the specified type. Here are some examples:

int count = 10; // give count an initial wvalue of 10
char ch = 'X'; // initialize ch with the letter X
float £ = 1.2F; // £ is initialized with 1.2

When declaring two or more variables of the same type using a comma-separated
list, you can give one or more of those variables an initial value. For example:

int a, b =8, ¢ =19, d; // b and ¢ have initializations

In this case, only b and ¢ are initialized.

Dynamic Initialization

Although the preceding examples have used only constants as initializers, Java
allows variables to be initialized dynamically, using any expression valid at the time
the variable 1s declared. For example, here is a short program that computes the
volume of a cylinder given the radius of its base and its height:

// Demonstrate dynamic initialization.
class DynInit
public static void main(String args[])

double radius = 4, height = 5; _ o _
volume is dynamically initialized at run time.

// dynamically initialize volume
double volume = 3.1416 * radius * radius * height;
System.out.println("Volume is " + volume);

}

Here, three local variables—radius, height, and volume—are declared. The first
two, radius and height, are initialized by constants. However, volume is initialized
dynamically to the volume of the cylinder. The key point here is that the
initialization expression can use any element valid at the time of the initialization,
including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables

So far, all of the variables that we have been using were declared at the start of the
main() method. However, Java allows variables to be declared within any block. As
explained in Chapter 1, a block is begun with an opening curly brace and ended by a
closing curly brace. A block defines a scope. Thus, each time you start a new block,
you are creating a new scope. A scope determines what objects are visible to other
parts of your program. It also determines the lifetime of those objects.

Some other computer languages define two general categories of scopes: global
and local. Although supported by Java, these are not the best ways to categorize
Java’s scopes. The most important scopes in Java are those defined by a class and
those defined by a method. A discussion of class scope (and variables declared
within it) is deferred until later in this book, when classes are described. For now, we

will examine only the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if
that method has parameters, they too are included within the method’s scope.

As a general rule, variables declared inside a scope are not visible (that is,
accessible) to code that is defined outside that scope. Thus, when you declare a
variable within a scope, you are localizing that variable and protecting it from
unauthorized access and/or modification. Indeed, the scope rules provide the
foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are
creating a new, nested scope. When this occurs, the outer scope encloses the inner
scope. This means that objects declared in the outer scope will be visible to code
within the inner scope. However, the reverse is not true. Objects declared within the
inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class ScopeDemo {
public static void main(String args[]) {
int x; // known to all code within main

2 = 10
if (x == 10) { // start new scope

int y = 20; // known only to this block
// x and y both known here.
System.out.println("x and y: " + x + " " + vy);
X=y % 2

}

// y = 100; // Error! y not known here <«———Here,y is outside of its scope.

// x 1s still known here.
System.out.println("x is " + x);

As the comments indicate, the variable x 1s declared at the start of main()’s scope
and 1s accessible to all subsequent code within main(). Within the if block, y is

declared. Since a block defines a scope, y is visible only to other code within its
block. This 1s why outside of its block, the line y = 100; is commented out. If you
remove the leading comment symbol, a compile-time error will occur, because y is
not visible outside of its block. Within the if block, x can be used because code
within a block (that is, a nested scope) has access to variables declared by an
enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they
are declared. Thus, if you define a variable at the start of a method, it is available to
all of the code within that method. Conversely, if you declare a variable at the end of
a block, it is effectively useless, because no code will have access to it.

Here is another important point to remember: variables are created when their
scope is entered, and destroyed when their scope is left. This means that a variable
will not hold its value once it has gone out of scope. Therefore, variables declared
within a method will not hold their values between calls to that method. Also, a
variable declared within a block will lose its value when the block is left. Thus, the
lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, that variable will be reinitialized
each time the block in which it is declared is entered. For example, consider this
program:

// Demonstrate lifetime of a variable.
class VarInitDemo {
public static void main(String argsl[]) {
inkt x;

for(x = 0; x < 3; x++) {

int y = -1; // y is initialized each time block is entered
System.out.println("y is: " + y); // this always prints -1
¥ = 100;

System.out.println("y is now: " + y);

The output generated by this program is shown here:

y is: -1

y 1s now: 100
y is: -1

y 1s now: 100
y is: -1

¥

is now: 100

As you can see, y is reinitialized to —1 each time the inner for loop is entered. Even
though it is subsequently assigned the value 100, this value is lost.

There is one quirk to Java’s scope rules that may surprise you: although blocks
can be nested, no variable declared within an inner scope can have the same name as
a variable declared by an enclosing scope. For example, the following program,
which tries to declare two separate variables with the same name, will not compile.

/*
This program attempts to declare a variable
in an inner scope with the same name as one
defined in an outer scope.

*** Thig program will not compile. ***
kS
class NestVar {
public static void main(String args([]) {
int count;

for(count = 0; count < 10; count = count+l) {
System.out.println("This is count: " + count);

Can't declare count again because
int count; // illegal!!! < its already declared.
for(count = 0; count < 2; count++)

System.out.println("This program is in error!");

Operators

Java provides a rich operator environment. An operator is a symbol that tells the

compiler to perform a specific mathematical or logical manipulation. Java has four
general classes of operators: arithmetic, bitwise, relational, and logical. Java also
defines some additional operators that handle certain special situations. This chapter
will examine the arithmetic, relational, and logical operators. We will also examine
the assignment operator. The bitwise and other special operators are examined later.

Arithmetic Operators

Java defines the following arithmetic operators:

Operator Meaning

+ | Addition (also unary plus|

= | Subtraction (also unary minus)

: Multiplication
/ | Division

% | Modulus

++ Increment
— Decrement

The operators +, —, *, and / all work the same way in Java as they do in any other
computer language (or algebra, for that matter). These can be applied to any built-in
numeric data type. They can also be used on objects of type char.

Although the actions of arithmetic operators are well known to all readers, a few
special situations warrant some explanation. First, remember that when / is applied to
an integer, any remainder will be truncated; for example, 10/3 will equal 3 in integer
division. You can obtain the remainder of this division by using the modulus
operator %. It yields the remainder of an integer division. For example, 10 % 3 is 1.
In Java, the % can be applied to both integer and floating-point types. Thus, 10.0 %
3.0 1s also 1. The following program demonstrates the modulus operator.

o

// Demonstrate the % operator.
class ModDemo {
public static void main(String args[]) {
int iresult, irem;
double dresult, drem;

iresult 10 / 3;
irem = 10 % 3;

dresult = 10.0 / 3.0;
drem = 10.0 3.90;

o\@

System.out.println("Result and remainder of 10 / 3: " +
iresult + " " 4+ irem);
System.out.println("Result and remainder of 10.0 / 3.0: " +
dresult + " " + drem);

The output from the program is shown here:

Result and remainder of 10 / 3: 3 1
Result and remainder of 10.0 / 3.0: 3.3333333333333335 1.0

As you can see, the % yields a remainder of 1 for both integer and floating-point
operations.

Increment and Decrement

Introduced in Chapter 1, the ++ and the — — are Java’s increment and decrement
operators. As you will see, they have some special properties that make them quite
interesting. Let’s begin by reviewing precisely what the increment and decrement
operators do.

The increment operator adds 1 to its operand, and the decrement operator subtracts
1. Therefore,

Xx =x + 1;

is the same as

is the same as
X==;

Both the increment and decrement operators can either precede (prefix) or follow
(postfix) the operand. For example,

Xx =x + 1;

can be written as

++x; // prefix form

or as

x++; // postfix form

In the foregoing example, there is no difference whether the increment is applied
as a prefix or a postfix. However, when an increment or decrement is used as part of
a larger expression, there is an important difference. When an increment or
decrement operator precedes its operand, Java will perform the corresponding
operation prior to obtaining the operand’s value for use by the rest of the expression.
If the operator follows its operand, Java will obtain the operand’s value before
incrementing or decrementing it. Consider the following:

10;
++x;

X
Yy

In this case, y will be set to 11. However, if the code is written as

X
y

10;
xX++;

then y will be set to 10. In both cases, x is still set to 11; the difference is when it
happens. There are significant advantages in being able to control when the
increment or decrement operation takes place.

Relational and Logical Operators

In the terms relational operator and logical operator, relational refers to the

relationships that values can have with one another, and /ogical refers to the ways in
which true and false values can be connected together. Since the relational operators
produce true or false results, they often work with the logical operators. For this
reason they will be discussed together here.

The relational operators are shown here:

Operator Meaning
== Equal fo
= Not equal fo
j Greater than
< | Less than
>= | Greater than or equol to
<= Less than or equal to

The logical operators are shown next:

Operator Meaning

& AND

| -

A | XOR (exclusive OR|
I | Shork-circuit O
&& Short-circuit AND

| NOT

The outcome of the relational and logical operators is a boolean value.

In Java, all objects can be compared for equality or inequality using = = and !=.
However, the comparison operators, <, >, <=, or >=, can be applied only to those
types that support an ordering relationship. Therefore, all of the relational operators
can be applied to all numeric types and to type char. However, values of type
boolean can only be compared for equality or inequality, since the true and false
values are not ordered. For example, true > false has no meaning in Java.

For the logical operators, the operands must be of type boolean, and the result of a

logical operation is of type boolean. The logical operators, &, |, *, and !, support the
basic logical operations AND, OR, XOR, and NOT, according to the following truth

table:
p q pdq Plq P"q 'p
False False False False False True
True False False True True False
False True False True True True
True True True True False False

As the table shows, the outcome of an exclusive OR operation is true when

exactly one and only one operand is true.

Here is a program that demonstrates several of the relational and logical operators:

// Demonstrate the relational and logical operators.
class RelLogOps f{
public static void main(String args[])
int i, j;
boolean bl, b2;

1 = 10;

j = 11;

if(i < j) System.out.println("i & J") 3

if (i <= j) System.out.println("i <= j");

if(i = 7} System.out.println("i 1= J");

if (i == j) System.out.println("this won't execute");
if (i >= j) System.out.println("this won't execute");
if (i > j) System.out.println("this won't execute");
bl = true;

b2 false;

f(bl & b2) System.out.println("this won't execute");
f(!(bl & b2)) System.out.println("! (bl & b2) is true");
f (bl | b2) System.out.println("bl | b2 is true");

f(bl * b2) System.out.println("bl * b2 is true");

)
The output from the program is shown here:
i< J
1 €=
i I= 3

(bl & b2) 1is true
bl | b2 is true
bl * b2 is true

Short-Circuit Logical Operators

Java supplies special short-circuit versions of its AND and OR logical operators that
can be used to produce more efficient code. To understand why, consider the
following. In an AND operation, if the first operand is false, the outcome is false no

matter what value the second operand has. In an OR operation, if the first operand is
true, the outcome of the operation is true no matter what the value of the second
operand. Thus, in these two cases there is no need to evaluate the second operand.
By not evaluating the second operand, time is saved and more efficient code is
produced.

The short-circuit AND operator is &&, and the short-circuit OR operator is ||.
Their normal counterparts are & and |. The only difference between the normal and
short-circuit versions is that the normal operands will always evaluate each operand,
but short-circuit versions will evaluate the second operand only when necessary.

Here is a program that demonstrates the short-circuit AND operator. The program
determines whether the value in d is a factor of n. It does this by performing a
modulus operation. If the remainder of n / d is zero, then d is a factor. However,
since the modulus operation involves a division, the short-circuit form of the AND is
used to prevent a divide-by-zero error.

// Demonstrate the short-circuit operators.
class SCops {
public static void main(String args[]) |

int n, 4, q;
n = 10;
d = 2;

if(d != 0 && (n % d) == 0)
System.out.println(d + " is a factor of " + n);

d =0; // now, set d to zero

// Since d is zero, the second operand is not evaluated.
if(d !1=0 && (n $ d) == 0)e The short-circuit

System.out.println(d + " is a factor of " + n); operator prevents
a division by zero.

/* Now, try same thing without short-circuit operator.

This will cause a divide-by-zero error.

f/ Now both
1f(d !1=0 & (n % d) ==0)= expressions
System.out.println(d + " is a factor of " + n); are evaluated,

allowing a division
by zero fo occur.

To prevent a divide-by-zero, the if statement first checks to see if d is equal to

ZCro.

If it is, the short-circuit AND stops at that point and does not perform the

modulus division. Thus, in the first test, d is 2 and the modulus operation is
performed. The second test fails because d is set to zero, and the modulus operation
1s skipped, avoiding a divide-by-zero error. Finally, the normal AND operator is
tried. This causes both operands to be evaluated, which leads to a run-time error
when the division by zero occurs.

One last point: The formal specification for Java refers to the short-circuit
operators as the conditional-or and the conditional-and operators, but the term
“short-circuit” is commonly used.

The Assignment Operator

You have been using the assignment operator since Chapter 1. Now it is time to take
a formal look at it. The assignment operator is the single equal sign, =. This operator
works in Java much as it does in any other computer language. It has this general
form:

var = expression;

Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be
familiar with: it allows you to create a chain of assignments. For example, consider
this fragment:

int %, v, 2;

¥ = v = 2= 100; [/ set %, ¥, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This
works because the = is an operator that yields the value of the right-hand expression.
Thus, the value of z =100 is 100, which is then assigned to y, which in turn is
assigned to x. Using a “chain of assignment” is an easy way to set a group of
variables to a common value.

Shorthand Assignments

Java provides special shorthand assignment operators that simplify the coding of
certain assignment statements. Let’s begin with an example. The assignment
statement shown here

x =x + 10;

can be written, using Java shorthand, as

x += 10;

Ask the Expert

Q: Since the short-circuit operators are, in some cases, more efficient
than their normal counterparts, why does Java still offer the normal
AND and OR operators?

A: In some cases you will want both operands of an AND or OR operation to

be evaluated because of the side effects produced. Consider the
following:

// Side effects can be important.
class SideEffects {
public static void main(String args[]) {
int 1;

T = B3

/* Here, 1 is still incremented even though

the if statement fails. */
if (false & (++1 < 100))

System.out.println("thig won't be displayed") ;
System.out.println("if statement executed: " + 1i); // displays 1

/* In this case, 1 is not incremented because

the short-circuit operator skips the increment. */
if (false && (++1 < 100))

System.out.println("this won't be displayed") ;
System.out.println("if statement executed: " + 1i); // still 1 !!

}
}

As the comments indicate, in the first if statement, i is incremented whether
the if succeeds or not. However, when the short-circuit operator is used, the
variable i is not incremented when the first operand is false. The lesson here is
that if your code expects the right-hand operand of an AND or OR operation to
be evaluated, you must use Java’s non-short-circuit forms of these operations.

The operator pair += tells the compiler to assign to x the value of x plus 10. Here is
another example. The statement

x = x - 100;
is the same as
x -= 100;

Both statements assign to x the value of x minus 100.

This shorthand will work for all the binary operators in Java (that is, those that
require two operands). The general form of the shorthand is

var op = expression;

Thus, the arithmetic and logical shorthand assignment operators are the following:

+= - e - = /:
%= &= | — A=

Because these operators combine an operation with an assignment, they are formally
referred to as compound assignment operators.

The compound assignment operators provide two benefits. First, they are more
compact than their “longhand” equivalents. Second, in some cases, they are more
efficient. For these reasons, you will often see the compound assignment operators
used in professionally written Java programs.

Type Conversion in Assignments

In programming, it is common to assign one type of variable to another. For
example, you might want to assign an int value to a float variable, as shown here:
int 3;

float £;

1 = 10;
f = 1i; // assign an int to a float

When compatible types are mixed in an assignment, the value of the right side is
automatically converted to the type of the left side. Thus, in the preceding fragment,
the value in i is converted into a float and then assigned to f. However, because of
Java’s strict type checking, not all types are compatible, and thus, not all type
conversions are implicitly allowed. For example, boolean and int are not
compatible.

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if

The two types are compatible.

The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example,
the int type is always large enough to hold all valid byte values, and both int and
byte are integer types, so an automatic conversion from byte to int can be applied.

For widening conversions, the numeric types, including integer and floating-point
types, are compatible with each other. For example, the following program is

perfectly valid since long to double is a widening conversion that is automatically
performed.

// Demonstrate automatic conversion from long to double.
class LtoD {
public static void main(String args([]) {
long L;
double D;

L
D

100123285L;
I, ; «—— Automatic conversion from long to double

System.out.println("L and D: " + L + " " + D);

Although there is an automatic conversion from long to double, there is no
automatic conversion from double to long, since this is not a widening conversion.
Thus, the following version of the preceding program is invalid.

// *** This program will not compile. ***
class LtoD {
public static void main(String args[]) {

long L;

double D;

D = 100123285.0;

L = D; // Illegal!!!<———No automatic conversion from double to long
System.out.println("L and D: " + L + " " + D);

There are no automatic conversions from the numeric types to char or boolean.
Also, char and boolean are not compatible with each other. However, an integer
literal can be assigned to char.

Casting Incompatible Types

Although the automatic type conversions are helpful, they will not fulfill all
programming needs because they apply only to widening conversions between
compatible types. For all other cases you must employ a cast. A cast is an instruction
to the compiler to convert one type into another. Thus, it requests an explicit type
conversion. A cast has this general form:

(target-type) expression

Here, target-type specifies the desired type to convert the specified expression to.
For example, if you want to convert the type of the expression x/y to int, you can
write

double x, vy;

@ es
(int) (x / vy)

Here, even though x and y are of type double, the cast converts the outcome of the
expression to int. The parentheses surrounding x / y are necessary. Otherwise, the
cast to int would apply only to the x and not to the outcome of the division. The cast
1s necessary here because there is no automatic conversion from double to int.

When a cast involves a narrowing conversion, information might be lost. For
example, when casting a long into a short, information will be lost if the long’s
value is greater than the range of a short because its high-order bits are removed.
When a floating-point value is cast to an integer type, the fractional component will
also be lost due to truncation. For example, if the value 1.23 is assigned to an integer,
the resulting value will simply be 1. The 0.23 is lost.

The following program demonstrates some type conversions that require casts:

// Demonstrate casting.
class CastDemo {
public static void main(String args([]) {
double x, y;
byte b;
int 1i;
char ch;

X
Y

I

10.0;
3.0;

Truncation will occur in this conversion.

i (int) (x / y); // cast double to int
System.out.println("Integer outcome of x / y: " + 1i);

;1 100;
b (byte) 1; No loss of info here. A byte can hold the value 100.
System.out.println("Value of b: " + b);

i = 257;
b = (byte) i;« Information loss this time. A byte cannot hold the value 257.
System.out.println("Value of b: " + b);

b = 88; // ASCII code for X

ch = (char) b;« Casst between incompatible types
System.out.println("ch: " + ch);

The output from the program is shown here:

Integer outcome of x / y: 3
Value of b: 100

Value of b: 1

ch: X

In the program, the cast of (x / y) to int results in the truncation of the fractional
component, and information is lost. Next, no loss of information occurs when b is
assigned the value 100 because a byte can hold the value 100. However, when the
attempt 1s made to assign b the value 257, information loss occurs because 257

exceeds a byte’s maximum value. Finally, no information is lost, but a cast is needed
when assigning a byte value to a char.

Operator Precedence

Table 2-3 shows the order of precedence for all Java operators, from highest to
lowest. This table includes several operators that will be discussed later in this book.
Although technically separators, the [], (), and . can also act like operators. In that
capacity, they would have the highest precedence.

Highest

+4+ (posffix|

- - (postfix)

++ (prefix)

- - (prefix]

+ (unary)

= (unary)

(type-cast)

%

+

>>

<<

>

instanceof

op=

Lowest

I
Table 2-3

The Precedence of the Java Operators

I8’ P2yl Display a Truth Table for the Logical

Operators

-

In this project, you will create a program that displays the truth table for Java’s
logical operators. You must make the columns in the table line up. This project
makes use of several features covered in this chapter, including one of Java’s escape
sequences and the logical operators. It also illustrates the differences in the
precedence between the arithmetic + operator and the logical operators.

1. Create a new file called LogicalOpTable.java.

2. To ensure that the columns line up, you will use the \t escape sequence to embed
tabs into each output string. For example, this println() statement displays the
header for the table:

System.out.println ("P\tQ\tAND\tOR\tXOR\tNOT") ;

3. Each subsequent line in the table will use tabs to position the outcome of each
operation under its proper heading.

4. Here is the entire LogicalOpTable.java program listing. Enter it at this time.

// Try This 2-2: a truth table for the logical operators.
class LogicalOpTable f{
public static void main(String args([]) {

boolean p, q;
System.out.println ("P\tQ\tAND\tOR\tXOR\tNOT") ;

p = true; q = true;

System.out.print(p + "\t" + g +"\t");
System.out.print ((p&g) + "\t" + (p|g) + "\t");
System.out.println((p®q) + "\t" + (!p));

p = true; q = false;

System.out.print(p + "\t" + g +"\t");
System.out.print ((p&g) + "\t" + (p|qg) + "\t");
System.out.println((p®q) + "\t" + (!p));

p = false; g = true;

System.out.print(p + "\t" + g +"\t");
System.out.print ((p&q) + "\t" + (p|a) + "\t");
System.out.println((p®q) + "\t" + (!p));

p = false; g = false;
System.out.print(p + "\t" + g +"\t");
System.out .print ((p&g) + "\t" + (p|g) + "\t");
System.out.println((p®q) + "\t" + (!p));
}
}

Notice the parentheses surrounding the logical operations inside the println()
statements. They are necessary because of the precedence of Java’s operators.
The + operator is higher than the logical operators.

5. Compile and run the program. The following table is displayed.

P Q AND OR XOR NOT

true true true true false false
true false false true true false
false true false true true true

false false false false false true

6. On your own, try modifying the program so that it uses and displays 1’s and 0’s,
rather than true and false. This may involve a bit more effort than you might at
first think!

Expressions

Operators, variables, and literals are constituents of expressions. You probably
already know the general form of an expression from your other programming
experience, or from algebra. However, a few aspects of expressions will be discussed
now.

Type Conversion in Expressions

Within an expression, it is possible to mix two or more different types of data as long
as they are compatible with each other. For example, you can mix short and long
within an expression because they are both numeric types. When different types of
data are mixed within an expression, they are all converted to the same type. This is
accomplished through the use of Java’s type promotion rules.

First, all char, byte, and short values are promoted to int. Then, if one operand is
a long, the whole expression is promoted to long. If one operand is a float operand,
the entire expression is promoted to float. If any of the operands is double, the result
is double.

It i1s important to understand that type promotions apply only to the values
operated upon when an expression is evaluated. For example, if the value of a byte
variable is promoted to int inside an expression, outside the expression, the variable
is still a byte. Type promotion only affects the evaluation of an expression.

Type promotion can, however, lead to somewhat unexpected results. For example,
when an arithmetic operation involves two byte values, the following sequence
occurs: First, the byte operands are promoted to int. Then the operation takes place,
yielding an int result. Thus, the outcome of an operation involving two byte values
will be an int. This 1s not what you might intuitively expect. Consider the following
program:

// A promotion surprise!
class PromDemo {

public static void main(String args[]) {
byte b;
int i;
5 - 48 + No cast needed because result is already elevated fo int.

b * b; // OK, no cast needed

| -
I

Cast is needed here to assign an int to a byte!

b = 10;
b = (byte) (b * b); // cast needed!!
System.out.println("i and b: " + 1 + " " + Db);

Somewhat counterintuitively, no cast is needed when assigning b*b to i, because
b is promoted to int when the expression is evaluated. However, when you try to
assign b * b to b, you do need a cast—back to byte! Keep this in mind if you get
unexpected type-incompatibility error messages on expressions that would otherwise
seem perfectly OK.

This same sort of situation also occurs when performing operations on chars. For
example, in the following fragment, the cast back to char is needed because of the
promotion of ch1 and ch2 to int within the expression:

char chl = 'a', ch2 = 'b';

chl = (char) (chl % eh2);

Without the cast, the result of adding ch1 to ch2 would be int, which can’t be
assigned to a char.

Casts are not only useful when converting between types in an assignment. For
example, consider the following program. It uses a cast to double to obtain a
fractional component from an otherwise integer division.

// Using a cast.
class UseCast {
public static void main(String args[]) ({

int i;
for{di = 0; i « 5; i++) {
System.out.println(i + " / 3: " + i / 3);

System.out.println(i + " / 3 with fractions: "
+ (double) i / 3);
System.out.println() ;

}
J
}
The output from the program is shown here:
0/ 3: 0

0 / 3 with fractions: 0.0

1 £ 32 0
1 / 3 with fractions: 0.3333333333333333

2/ 3:0
2 / 3 with fractions: 0.6666666666666666
3 f 3z 1

3 / 3 with fractions: 1.0

g F 3z 1
4 / 3 with fractions: 1.3333333333333333

Spacing and Parentheses

An expression in Java may have tabs and spaces in it to make it more readable. For
example, the following two expressions are the same, but the second is easier to
read:

x=10/y* (127/x) ;

x = 10 / vy * (127/x);

Parentheses increase the precedence of the operations contained within them, just
like in algebra. Use of redundant or additional parentheses will not cause errors or
slow down the execution of the expression. You are encouraged to use parentheses to
make clear the exact order of evaluation, both for yourself and for others who may
have to figure out your program later. For example, which of the following two
expressions is easier to read?

X = y/3-34*temp+127;

Il

x = (y/3) - (34*temp) + 127;

v Chapter 2 Self Test

1. Why does Java strictly specify the range and behavior of its primitive types?

2. What is Java’s character type, and how does it differ from the character type
used by some other programming languages?

3. A boolean value can have any value you like because any non-zero value is true.
True or False?

4. Given this output,

One
Two
Three

using a single string, show the println() statement that produced it.

5. What is wrong with this fragment?

for(i = 0y 4 = 10; i++) {
int sum;
sum = sum + 1i;
}
System.out .println("Sum is: " + sum) ;

6. Explain the difference between the prefix and postfix forms of the increment
operator.

7. Show how a short-circuit AND can be used to prevent a divide-by-zero error.

8. In an expression, what type are byte and short promoted to?

9. In general, when is a cast needed?

10. Write a program that finds all of the prime numbers between 2 and 100.
11. Does the use of redundant parentheses affect program performance?

12. Does a block define a scope?

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 3
Program Control Statements

Key SKkills & Concepts

Input characters from the keyboard

Know the complete form of the if statement
Use the switch statement

Know the complete form of the for loop
Use the while loop

Use the do-while loop

Use break to exit a loop

Use break as a form of goto

Apply continue

Nest loops

of execution. There are three categories of program control statements: selection

statements, which include the if and the switch; iteration statements, which
include the for, while, and do-while loops; and jump statements, which include
break, continue, and return. Except for return, which is discussed later in this
book, the remaining control statements, including the if and for statements to which
you have already had a brief introduction, are examined in detail here. The chapter
begins by explaining how to perform some simple keyboard input.

In this chapter, you will learn about the statements that control a program’s flow

Input Characters from the Keyboard

Before examining Java’s control statements, we will make a short digression that
will allow you to begin writing interactive programs. Up to this point, the sample
programs in this book have displayed information 7o the user, but they have not
received information from the user. Thus, you have been using console output, but
not console (keyboard) input. The main reason for this is that Java’s input
capabilities rely on or make use of features not discussed until later in this book.
Also, most real-world Java applications will be graphical and window based, not
console based. For these reasons, not much use of console input is found in this
book. However, there is one type of console input that is relatively easy to use:
reading a character from the keyboard. Since several of the examples in this chapter
will make use of this feature, it is discussed here.

To read a character from the keyboard, we will use System.in.read(). System.in
1s the complement to System.out. It is the input object attached to the keyboard. The
read() method waits until the user presses a key and then returns the result. The
character is returned as an integer, so it must be cast into a char to assign it to a char
variable. By default, console input is /ine buffered. Here, the term buffer refers to a
small portion of memory that is used to hold the characters before they are read by
your program. In this case, the buffer holds a complete line of text. As a result, you
must press ENTER before any character that you type will be sent to your program.
Here is a program that reads a character from the keyboard:

// Read a character from the keyboard.
class KbIn {
public static void main(String args(])
throws java.io.IOException

char ch;
System.out.print ("Press a key followed by ENTER: ");
ch = (char) System.in.read(); // get a char «———Read a character

from the keyboard.
System.out.println("Your key is: " + ch);

Here is a sample run:

Press a key followed by ENTER: t
Your key is: t

In the program, notice that main() begins like this:

public static void main (String args/|])
throws java.io.IOException {

Because System.in.read() is being used, the program must specify the throws
java.io.IOException clause. This line is necessary to handle input errors. It is part of
Java’s exception handling mechanism, which is discussed in Chapter 9. For now,
don’t worry about its precise meaning.

The fact that System.in is line buffered is a source of annoyance at times. When
you press ENTER, a carriage return, line feed sequence is entered into the input
stream. Furthermore, these characters are left pending in the input buffer until you
read them. Thus, for some applications, you may need to remove them (by reading
them) before the next input operation. You will see an example of this later in this
chapter.

The if Statement

Chapter 1 introduced the if statement. It is examined in detail here. The complete
form of the if statement is

if(condition) statement;
else statement;

where the targets of the if and else are single statements. The else clause is optional.
The targets of both the if and else can be blocks of statements. The general form of
the if, using blocks of statements, is

if(condition)
{

Statement sequence

}

else

{

statement sequence

|

If the conditional expression is true, the target of the if will be executed; otherwise, if
it exists, the target of the else will be executed. At no time will both of them be
executed. The conditional expression controlling the if must produce a boolean

result.

To demonstrate the if (and several other control statements), we will create and
develop a simple computerized guessing game that would be suitable for young
children. In the first version of the game, the program asks the player for a letter
between A and Z. If the player presses the correct letter on the keyboard, the
program responds by printing the message ** Right **. The program is shown here:

// Guess the letter game.
class Guess {
public static void main(String args|[])
throws java.io.IOException {

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");
System.out.print ("Can you guess it: ");

ch = (char) System.in.read(); // read a char from the keyboard

if (ch == answer) System.out.println("** Right **");

This program prompts the player and then reads a character from the keyboard.
Using an if statement, it then checks that character against the answer, which is K in
this case. If K was entered, the message is displayed. When you try this program,
remember that the K must be entered in uppercase.

Taking the guessing game further, the next version uses the else to print a message
when the wrong letter is picked.

// Guess the letter game, 2nd version.
class Guess2
public static void main(String args|[])
throws java.io.IOException ({

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");
System.out.print ("Can you guess it: ");

ch = (char) System.in.read(); // get a char
if (ch == answer) System.out.println("** Right **");
else System.out.println("...Sorry, you're wrong.");

Nested ifs

A nested if 1s an if statement that is the target of another if or else. Nested ifs are
very common in programming. The main thing to remember about nested ifs in Java
is that an else statement always refers to the nearest if statement that is within the
same block as the else and not already associated with an else. Here is an example:

if(i == 10) {

if(j < 20) a = b;

if(k > 100) c = 4;

else a = ¢; // this else refers to if(k > 100)
}
else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j < 20), because it is
not in the same block (even though it is the nearest if without an else). Rather, the
final else is associated with if(i == 10). The inner else refers to if(k > 100), because
it is the closest if within the same block.

You can use a nested if to add a further improvement to the guessing game. This
addition provides the player with feedback about a wrong guess.

// Guess the letter game, 3rd version.
class Guess3 {
public static void main(String args([])
throws java.io.IOException

char ch, answer = 'K';

System.out.println("I'm thinking of a letter between A and Z.");
System.out.print ("Can you guess it: ");

ch = (char) System.in.read(); // get a char
if(ch == answer) System.out.println("** Right **"),
else

System.out.print ("...Sorry, you're ");

This is a nested if.

// a nested if
if (ch < answer) System.out.println("too low") ;
else System.out.println("too high") ;

}
)
J

A sample run is shown here:

I'm thinking of a letter between A and Z.
Can you guess it: Z
...Sorry, you're too high

The if-else-if Ladder

A common programming construct that is based upon the nested if is the if-else-if
ladder. 1t looks like this:

if(condition)
statement;

else if(condition)
statement;

else if(condition)
statement;

else
statement;

The conditional expressions are evaluated from the top downward. As soon as a true
condition is found, the statement associated with it is executed, and the rest of the
ladder is bypassed. If none of the conditions are true, the final else statement will be
executed. The final else often acts as a default condition; that is, if all other
conditional tests fail, the last else statement is performed. If there is no final else and
all other conditions are false, no action will take place.

The following program demonstrates the if-else-if ladder:

// Demonstrate an if-else-if ladder.
class Ladder
public static void main(String args([]) ({
int x;

for (x=0; x<6; X++) {
1f (x==1)
System.out.println("x is one");
else if (x==2)
System.out.println("x is two");

else if (x==3)
System.out.println("x is three");

else if (x==4)
System.out.println("x is four");
else

System.out.println("x is not between 1 and 4") ; «—Thisis the
} default statement.

The program produces the following output:

is not between 1 and 4
is one

is two

is three

is four

is not between 1 and 4

Moo XXX

As you can see, the default else is executed only if none of the preceding if
statements succeeds.

The switch Statement

The second of Java’s selection statements is the switch. The switch provides for a
multiway branch. Thus, it enables a program to select among several alternatives.
Although a series of nested if statements can perform multiway tests, for many
situations the switch is a more efficient approach. It works like this: the value of an
expression is successively tested against a list of constants. When a match is found,
the statement sequence associated with that match is executed. The general form of
the switch statement is

switch(expression) {

case constantl:
Statement sequence
break;

case constant2:
Statement sequence
break;

case constant3:
Statement sequence
break;

default:
statement sequence

For versions of Java prior to JDK 7, the expression controlling the switch must

resolve to type byte, short, int, char, or an enumeration. (Enumerations are
described in Chapter 12.) However, beginning with JDK 7, expression can also be of
type String. This means that modern versions of Java can use a string to control a
switch. (This technique is demonstrated in Chapter 5, when String is described.)
Frequently, the expression controlling a switch is simply a variable rather than a
larger expression.

Each value specified in the case statements must be a unique constant expression
(such as a literal value). Duplicate case values are not allowed. The type of each
value must be compatible with the type of expression.

The default statement sequence is executed if no case constant matches the
expression. The default is optional; if it is not present, no action takes place if all
matches fail. When a match is found, the statements associated with that case are
executed until the break is encountered or, in the case of default or the last case,
until the end of the switch is reached.

The following program demonstrates the switch:

// Demonstrate the switch.
class SwitchDemo {
public static void main (String args[]) {

int i;

for (i=

0z

System

1<10; i++)
switch(i)
case 0:
System.out.println("i
break;
case 1:
System.
break;
case 2:
System.
break;
case 3:
System.
break;
case 4:
System.
break;
default:

out.println("i

out.println("i

sut.println(*i

out.println("i

.out.println("i

is

is

is

is

is

is

zero") ;

one") ;

two") ;

three") ;

four"™) ;

five or more");

The output produced by this program is shown here:

is
is
is
is
is
is
is
is
is
is

e S S s o o

Zero
one
two
three
four
five

five
five

five
five

or

QF
B

or
or

more

more
more

more
more

As you can see, each time through the loop, the statements associated with the case

constant that matches i are executed. All others are bypassed. When i is five or
greater, no case statements match, so the default statement is executed.

Technically, the break statement is optional, although most applications of the
switch will use it. When encountered within the statement sequence of a case, the
break statement causes program flow to exit from the entire switch statement and
resume at the next statement outside the switch. However, if a break statement does
not end the statement sequence associated with a case, then all the statements at and
following the matching case will be executed until a break (or the end of the switch)
is encountered.

For example, study the following program carefully. Before looking at the output,
can you figure out what it will display on the screen?

// Demonstrate the switch without break statements.
class NoBreak (
public static void main(String args[]) {
int i;

for (i=0; i<=5; i++) {
switch(i) {

case 0:
System.out.println("i is less than one");
case 1:
System.out.println("i is less than two");
case 2:
System.out.println("i is less than three"); __lheameshhmeMs
all through here.
case 3:
System.out.println("i is less than four");
case 4:
System.out.println("i is less than five");

}

System.out.println();

}

This program displays the following output:

is less than one
is less than two
is less than three
is less than four
is less than five

= A

is less than two
is less than three

is less than four
is lesg than five

He e -

is less than three
is less than four
i ig8 less than five

- - K-

i is less than four
i is less than five

i is less than five

As this program illustrates, execution will continue into the next case if no break
statement 1s present.

You can have empty cases, as shown in this example:

switch (i) {
case 1:
case 2:
case 3: System.out.println("i is 1, 2 or 3");
break;
case 4: System.out.println("i is 4");
break;

}

In this fragment, if i has the value 1, 2, or 3, the first println() statement executes. If
it is 4, the second println() statement executes. The “stacking” of cases, as shown in
this example, is common when several cases share common code.

Nested switch Statements

It is possible to have a switch as part of the statement sequence of an outer switch.
This is called a nested switch. Even if the case constants of the inner and outer
switch contain common values, no conflicts will arise. For example, the following

code fragment is perfectly acceptable:

switch(chl) {
case 'A': System.out.println("This A is part of outer switch.");
switch(ch2) {
case 'A':
System.out.println("This A is part of inner switch");
break;
case 'B': // "
} // end of inner switch
break;
case 'B': //

Try This 3-1 Start Building a Java Help System

"

This project builds a simple help system that displays the syntax for the Java control
statements. The program displays a menu containing the control statements and then
waits for you to choose one. After one is chosen, the syntax of the statement is
displayed. In this first version of the program, help is available for only the if and
switch statements. The other control statements are added in subsequent projects.

1. Create a file called Help.java.
2. The program begins by displaying the following menu:

Help on:
1 X
2. switch

Choose one:

To accomplish this, you will use the statement sequence shown here:
System.out.println("Help on:") ;

System.out.println (" 1. 1E%).
System.out.println(" 2. switch");
System.out .print ("Choose one: ") ;

3. Next, the program obtains the user’s selection by calling System.in.read(), as
shown here:

choice = (char) System.in.read();

4. Once the selection has been obtained, the program uses the switch statement
shown here to display the syntax for the selected statement.

switch(choice) {
case 'l':
System.out.println("The if:\n") ;
System.out.println("if (condition) statement;");
System.out.println("else statement;");
break;
case '2':
System.out.println("The switch:\n");
System.out.println("sw1tch(expre551on) {");
System.out.println(" case constant:");
System.out.println(" statement sequence") ;
System.out.println (" break;") ;
System.out.println(" // ...");
System.out.println("}") ;
break;
default:
System.out.print ("Selection not found.") ;
}

Notice how the default clause catches invalid choices. For example, if the user
enters 3, no case constants will match, causing the default sequence to execute.

5. Here is the entire Help.java program listing:

/*
Try This 3-

1}

A simple help system.

*/
class Help {

public static void main(String args/([])
throws java.io.IOException (
char choice;

System.out.println("Help on:");
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.print ("Choose one: ") ;

choice = (char)

System.in.read() ;

System.out.println("\n");

switch(choice)

case '1l':
System.
System.
System.
break;

case '2':
System.
System.
System.
System.
System.
System.
System.
break;

default:
System.

}

}
}

6. Here is a sample run.

out
out
out

out
out
out
out
out
out
out

out

.println("The if:\n")
.println("if (condition) statement;");
.println("else statement;") ;

.println("The switch:\n");

(
.println(“sw1tch(expre551on) {");
.println(" case constant:");
println (" statement sequence") ;
println(” break;") ;

EIREIR(® L) o %)

(

.printin("}") ;

.print ("Selection not found.");

Help on:

1. 3%

2. switch
Choose one: 1

The if:

if (condition) statement;
else statement;

The for Loop

You have been using a simple form of the for loop since Chapter 1. You might be
surprised at just how powerful and flexible the for loop is. Let’s begin by reviewing
the basics, starting with the most traditional forms of the for.

The general form of the for loop for repeating a single statement is
for(initialization; condition; iteration) statement;

For repeating a block, the general form is

for(initialization, condition; iteration)

{

Startement sequence

}

Ask the Expert

Q: Under what conditions should I use an if-else-if ladder rather than a
switch when coding a multiway branch?

A: In general, use an if-else-if ladder when the conditions controlling the
selection process do not rely upon a single value. For example, consider
the following if-else-if sequence:

1£(x « 10) //
elgse if(y != 0) //
else if (!done) //

This sequence cannot be recoded into a switch because all three conditions
involve different variables—and differing types. What variable would
control the switch? Also, you will need to use an if-else-if ladder when
testing floating-point values or other objects that are not of types valid for
use in a switch expression.

The initialization is usually an assignment statement that sets the initial value of the
loop control variable, which acts as the counter that controls the loop. The condition
1s a Boolean expression that determines whether or not the loop will repeat. The
iteration expression defines the amount by which the loop control variable will
change each time the loop is repeated. Notice that these three major sections of the
loop must be separated by semicolons. The for loop will continue to execute as long
as the condition tests true. Once the condition becomes false, the loop will exit, and
program execution will resume on the statement following the for.

The following program uses a for loop to print the square roots of the numbers
between 1 and 99. It also displays the rounding error present for each square root.

// Show square roots of 1 to 99 and the rounding error.
class SgrRoot {
public static void main (String args[])
double num, sroot, rerr;

for(num = 1.0; num < 100.0; num++) {
sroot = Math.sgrt (num) ;
System.out.println("Square root of " + num +
" 18 " + sroot);

// compute rounding error

rerr = num - (sroot * groot);
System.out.println("Rounding error 1is " + rerr);
System.out.println() ;

}
}
}

Notice that the rounding error is computed by squaring the square root of each
number. This result is then subtracted from the original number, thus yielding the
rounding error.

The for loop can proceed in a positive or negative fashion, and it can change the

loop control variable by any amount. For example, the following program prints the
numbers 100 to —95, in decrements of 5:

// A negatively running for loop.
class DecrFor {
public static void main(String args/[]) {

int x;
for(x = 100; x > -100; x -= 5)<«———Loop control variable is
System.out .println(x) ; decremented by 5 each fime.

An important point about for loops is that the conditional expression is always
tested at the top of the loop. This means that the code inside the loop may not be
executed at all if the condition is false to begin with. Here is an example:

for (count=10; count < 5; count++)
X += count; // this statement will not execute

This loop will never execute because its control variable, count, is greater than 5
when the loop is first entered. This makes the conditional expression, count <5,
false from the outset; thus, not even one iteration of the loop will occur.

Some Variations on the for Loop

The for is one of the most versatile statements in the Java language because it allows
a wide range of variations. For example, multiple loop control variables can be used.
Consider the following program:

// Use commas in a for statement.
class Comma {
public static void main(String args[]) {

int 1, §;
for(i=0, j=10; 1 < j; i++, J--) = Notice the two loop
System.out.println("i and j: " + i + " " + j); control variables.

The output from the program is shown here:

iand j: 0 10
iand j: 1 9
iand j: 2 8
iand j: 3 7
i and j: 4 6

Here, commas separate the two initialization statements and the two iteration
expressions. When the loop begins, both i and j are initialized. Each time the loop
repeats, i is incremented and j is decremented. Multiple loop control variables are
often convenient and can simplify certain algorithms. You can have any number of
initialization and iteration statements, but in practice, more than two or three make
the for loop unwieldy.

The condition controlling the loop can be any valid Boolean expression. It does
not need to involve the loop control variable. In the next example, the loop continues
to execute until the user types the letter S at the keyboard:

// Loop until an S is typed.
class ForTest |
public static void main(String args|[])
throws java.io.IOException ({

int i;
System.out.println("Press S to stop.");

for(i = 0; (char) System.in.read() != 'S'; i++)
System.out .println ("Pass #" + 1);

Missing Pieces

Some interesting for loop variations are created by leaving pieces of the loop
definition empty. In Java, it is possible for any or all of the initialization, condition,
or iteration portions of the for loop to be blank. For example, consider the following
program:

// Parts of the for can be empty.
class Empty {
public static void main(String args[]) {
int 1i;

for(i = 0; i < 10;) { <= The iteration expression is missing.
System.out.println("Pass #" + 1i);
i++; // increment loop control var

}
}
}

Here, the iteration expression of the for is empty. Instead, the loop control variable i
is incremented inside the body of the loop. This means that each time the loop
repeats, i is tested to see whether it equals 10, but no further action takes place. Of
course, since i is still incremented within the body of the loop, the loop runs
normally, displaying the following output:

Pass #0
Pass #1
Pass #2
Pass #3
Pass #4
Pass #5
Pass #6
Pass #7
Pass #8
Pass #9

In the next example, the initialization portion is also moved out of the for:

// Move more out of the for loop.
class Empty2 {
public static void main(String args([]) f{
int i;
The initialization expression
* is moved out of the Foop.

i =0; // move initialization out of loop
for(; i < 10;) {
System.out.println("Pass #" + 1);
i++; // increment loop control var

}
}
}

In this version, i is initialized before the loop begins, rather than as part of the for.
Normally, you will want to initialize the loop control variable inside the for. Placing
the initialization outside of the loop is generally done only when the initial value is
derived through a complex process that does not lend itself to containment inside the
for statement.

The Infinite Loop

You can create an infinite loop (a loop that never terminates) using the for by
leaving the conditional expression empty. For example, the following fragment
shows the way many Java programmers create an infinite loop:

for(;;) // intentionally infinite loop
{

[
}

This loop will run forever. Although there are some programming tasks, such as
operating system command processors, that require an infinite loop, most “infinite
loops™ are really just loops with special termination requirements. Near the end of
this chapter, you will see how to halt a loop of this type. (Hint: It’s done using the
break statement.)

Loops with No Body

In Java, the body associated with a for loop (or any other loop) can be empty. This is
because a null statement is syntactically valid. Body-less loops are often useful. For
example, the following program uses one to sum the numbers 1 through 5:

// The body of a loop can be empty.
class Empty3
public static void main(String args|[]) {
int i;
int sum = 0;

// sum the numbers through 5
for(i = 1; 1 <= 5; sum += i++) ; «4———No body in this loop!

System.out .println("Sum is " + sum) ;

}
}

The output from the program is shown here:

Sum is 15

Notice that the summation process is handled entirely within the for statement, and
no body is needed. Pay special attention to the iteration expression:

sum += 1i++

Don’t be intimidated by statements like this. They are common in professionally
written Java programs and are easy to understand if you break them down into their
parts. In other words, this statement says, “Add to sum the value of sum plus i, then
increment i.” Thus, it is the same as this sequence of statements:

sum = sum + 1i;
i++;

Declaring Loop Control Variables Inside the for
Loop

Often the variable that controls a for loop is needed only for the purposes of the loop
and 1s not used elsewhere. When this is the case, it is possible to declare the variable
inside the initialization portion of the for. For example, the following program
computes both the summation and the factorial of the numbers 1 through 5. It
declares its loop control variable i inside the for.

// Declare loop control variable inside the for.
class ForVar ({
public static void main(String args[]) {
int sum = 0;
int fact = 1;

// compute the factorial of the numbers through 5

for(int 1 = 1; i <= 5; i++) { = The variable i is declared
sum += i; // 1 is known throughout the loop inside the for statement.
fact *= i;

}

// but, 1 is not known here

System.out.println("Sum is " + sum);
System.out.println("Factorial is " + fact);

When you declare a variable inside a for loop, there is one important point to
remember: the scope of that variable ends when the for statement does. (That is, the
scope of the variable is limited to the for loop.) Outside the for loop, the variable
will cease to exist. Thus, in the preceding example, i is not accessible outside the for
loop. If you need to use the loop control variable elsewhere in your program, you
will not be able to declare it inside the for loop.

Before moving on, you might want to experiment with your own variations on the
for loop. As you will find, it is a fascinating loop.

The Enhanced for Loop

There is another form of the for loop, called the enhanced for. The enhanced for
provides a streamlined way to cycle through the contents of a collection of objects,
such as an array. The enhanced for loop is discussed in Chapter 5, after arrays have
been introduced.

The while Loop

Another of Java’s loops is the while. The general form of the while loop is

while(condition) statement,

where statement may be a single statement or a block of statements, and condition

defines the condition that controls the loop. The condition may be any valid Boolean

expression. The loop repeats while the condition is true. When the condition

becomes false, program control passes to the line immediately following the loop.
Here is a simple example in which a while is used to print the alphabet:

// Demonstrate the while loop.
class WhileDemo {
public static void main(String args[])
char ch;

// print the alphabet using a while loop

ch = 'a';

while(ch <= 'z') {
System.out.print (ch) ;
ch++;

)

}
}

Here, ch is initialized to the letter a. Each time through the loop, ch is output and
then incremented. This process continues until ch is greater than z.

As with the for loop, the while checks the conditional expression at the top of the
loop, which means that the loop code may not execute at all. This eliminates the
need for performing a separate test before the loop. The following program
illustrates this characteristic of the while loop. It computes the integer powers of 2,
from 0 to 9.

// Compute integer powers of 2.
class Power {
public static void main(String args[]) {
int e;
int result;

for(int i=0;

result = 1;

e

5

i < 10;

while(e > 0) {

}

result *=

e_

=y

23

14+) {

System.out .println("2 to the " + i +

" power is " + result);

The output from the program is shown here:

to
to
to
to
to
to
to
to
to
to

T O T G T 6 T O T O N 6 T (S B S T

Notice that the while loop executes only when e is greater than 0. Thus, when e is
zero, as it is in the first iteration of the for loop, the while loop is skipped.

the
the
the
the
the
the
the
the
the
the

o

O 0 30 Ul & W N K=

power
power
power
power
power
power
power
power
power
power

is
is
is
is
is
is
is
is
is
is

64

128
256
512

Ask the Expert

Q: Given the flexibility inherent in all of Java’s loops, what criteria
should I use when selecting a loop? That is, how do I choose the right
loop for a specific job?

A: Use a for loop when performing a known number of iterations based on
the value of a loop control variable. Use the do-while when you need a
loop that will always perform at least one iteration. The while is best used
when the loop will repeat until some condition becomes false.

The do-while Loop

The last of Java’s loops is the do-while. Unlike the for and the while loops, in which
the condition is tested at the top of the loop, the do-while loop checks its condition at
the bottom of the loop. This means that a do-while loop will always execute at least
once. The general form of the do-while loop is

do {
Statements,
} while(condition);

Although the braces are not necessary when only one statement is present, they are
often used to improve readability of the do-while construct, thus preventing
confusion with the while. The do-while loop executes as long as the conditional
expression is true.

The following program loops until the user enters the letter q:

// Demonstrate the do-while loop.
class DWDemo {
public static void main(String args|[])
throws java.io.IOException (

char ch;

do {
System.out.print ("Press a key followed by ENTER: ") ;
ch = (char) System.in.read(); // get a char

} while(ch != 'q');

}
}

Using a do-while loop, we can further improve the guessing game program from
earlier in this chapter. This time, the program loops until you guess the letter.

// Guess the letter game, 4th version.
class Guess4 {
public static void main(String args|[])
throws java.io.IOException ({

char ch, ignore, answer = 'K';
do {
System.out.println("I'm thinking of a letter between A and Z.");

System.out.print ("Can you guess it: ");

// read a character
ch = (char) System.in.read();

// discard any other characters in the input buffer

do {
ignore = (char) System.in.read();
} while(ignore != '\n');
if (ch == answer) System.out.println("** Right **"),
else {
System.out .print ("...Sorry, you're ");

if (ch < answer) System.out.println("too low");
else System.out.println("too high") ;
System.out .println ("Try again!\n") ;
}
} while(answer != ch);
}
}

Here is a sample run:

I'm thinking of a letter between A and Z.
Can you guess it: A

.« . SOYYY, you're too low

Try again!

I'm thinking of a letter between A and Z.
Can you guess it: Z

...80rry, you're too high

Try again!

I'm thinking of a letter between A and Z.
Can you guess it: K
** Right **

Notice one other thing of interest in this program. There are two do-while loops in
the program. The first loops until the user guesses the letter. Its operation and
meaning should be clear. The second do-while loop, shown again here, warrants
some explanation:

// discard any other characters in the input buffer

do {
ignore = (char) System.in.read() ;
} while(ignore != '\n');

As explained earlier, console input is line buffered—you have to press ENTER before
characters are sent. Pressing ENTER causes a carriage return and a line feed (newline)
sequence to be generated. These characters are left pending in the input buffer. Also,
if you typed more than one key before pressing ENTER, they too would still be in the
input buffer. This loop discards those characters by continuing to read input until the
end of the line is reached. If they were not discarded, then those characters would
also be sent to the program as guesses, which is not what is wanted. (To see the
effect of this, you might try removing the inner do-while loop.) In Chapter 10, after
you have learned more about Java, some other, higher-level ways of handling
console input are described. However, the use of read() here gives you insight into
how the foundation of Java's I/O system operates. It also shows another example of
Java's loops in action.

VAN ICREYE Improve the Java Help System

This project expands on the Java help system that was created in Try This 3-1. This
version adds the syntax for the for, while, and do-while loops. It also checks the
user’s menu selection, looping until a valid response is entered.

1.
2.

Copy Help.java to a new file called Help2.java.

Change the first part of main() so that it uses a loop to display the choices, as
shown here:

public static void main(String args|[])
throws java.io.IOException
char choice, ignore;

do
System.out.println("Help on:") ;
System.out.println(" 1. 1f");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while\n");
System.out.print ("Choose one: ") ;
choice = (char) System.in.read();
do

ignore = (char) System.in.read();

} while (ignore != '\n');

} while(choice < '1' | choice > '5');

Notice that a nested do-while loop is used to discard any unwanted characters
remaining in the input buffer. After making this change, the program will loop,
displaying the menu until the user enters a response that is between 1 and 5.

Expand the switch statement to include the for, while, and do-while loops, as
shown here:

switch (choice)

case 'l':
System.
System.
System.
break;

case '2':
System.
System.
System.

System.
System.

System.
System.
break;
case '3':
System.
System.
System.
break;
case '4':
System.
System.
break;
case '5!':
System.
System.
System.
System.
break;

}

out
out
out

out
out
out
out
out

out
out

out
out
out

out
out

out
out
out
out

{

println ("The if:\n");
.println("if (condition)
.println("else statement;");

statement; ") ;

.println("The switch:\n");
.println ("switch (expression) {");
(
(

.println(" case constant:");
Jprintln [statement sequence") ;
.println (" break;") ;

Jprinklni™ JJ «").z

.println("}") ;

Println("The for:\n"):
.print("for (init; condition;
.println(" statement;");

iteration) ") ;

.println("The while:\n");
.println("while (condition)

statement; ") ;

.println("The do-while:\n") ;
.println("do {");

Jprintln(™
.println("} while (condition);");

statement;") ;

Notice that no default statement is present in this version of the switch. Since
the menu loop ensures that a valid response will be entered, it is no longer
necessary to include a default statement to handle an invalid choice.

4. Here is the entire Help2.java program listing:

/*
Try This 3-2

An improved Help system that uses a
do-while to process a menu selection.

*/
class Help2 {

public static void main(String args/|[])

throws java.io.IOException {

char choice,

do {
System.out
System.out
System.out
System.out
System.out
System.out
System.out

ignore;

.println("Help on:") ;

.print ("Choose one:

')

PEAAEIR(Y L. 1E");
.println(" 2. switch");
Jpriuntlal™ 3. foxrh);
.println(" 4. while");
.println(" 5. do-while\n")

")

I

choice = (char) System.in.read() ;
do {

ignore = (char) System.in.read() ;
} while(ignore != '\n');

} while(choice < 'l' | choice > '5');

System.out.println("\n") ;

switch(choice) {

case 'l':
System.out.println("The if:\n") ;
System.out.println("if (condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n") ;
System.out.println("switch(expression) {");
System.out.println(" case constant:");
System.out.println (" statement sequence") ;
System.out.println(" break;") ;
System.out.println(" // ...");
System.out.println("}");
break;

case '3';
System.out.println("The for:\n");
System.out.print ("for (init; condition; iteration)");
System.out.println(" statement;");
break;

case '4':
System.out.println("The while:\n") ;
System.out.println("while (condition) statement;");
break;

case '5':
System.out.println("The do-while:\n") ;
System.out.println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

Use break to Exit a Loop

It is possible to force an immediate exit from a loop, bypassing any remaining code
in the body of the loop and the loop’s conditional test, by using the break statement.
When a break statement is encountered inside a loop, the loop is terminated and
program control resumes at the next statement following the loop. Here is a simple
example:

// Using break to exit a loop.
class BreakDemo

public static void main(String args|[]) {
int num;
num = 100;

// loop while i-squared is less than num

for(int i=0; i < num; i++) {
if (i*i >= num) break; // terminate loop if i*i >= 100
System.out .print (i + " ");

}

System.out .println ("Loop complete.") ;

This program generates the following output:

0123456 78 9 Loop complete.

As you can see, although the for loop is designed to run from 0 to num (which in
this case is 100), the break statement causes it to terminate early, when i squared is
greater than or equal to num.

The break statement can be used with any of Java’s loops, including intentionally
infinite loops. For example, the following program simply reads input until the user
types the letter q:

// Read input until a g is received.
class Break2 f{

public static void main(String args|[])
throws java.io.IOException

char ch;

for(; ;) { This “infinite” loop is
ch = (char) System.in.read(); // get a char terminated by the break.
}

System.out.println("You pressed gq!");

When used inside a set of nested loops, the break statement will break out of only
the innermost loop. For example:

// Using break with nested loops.
class Break3 {

public static void main(String args|[]) {

for(int i=0; i<3; i++) {

System.out.println("Outer loop count: " + 1);
System.out.print (" Inner loop count: ");
intE £ = D3
while (t < 100) {
if(t == 10) break; // terminate loop if t is 10
System.out.print(t + " ");
t++;

}

System.out.println() ;

}

System.out.println("Loops complete.") ;

}
}

This program generates the following output:

Outer loop count: 0

Inner loop count: 0 1 2 3 4 5 6 7 8 9
Outer loop count: 1

Inner loop count: 0 1 2 3 4 56 7 8 9
Outer loop count: 2

Inner loop count: 0 1 2 3 4 5 6 7 8 9
Loops complete.

As you can see, the break statement in the inner loop causes the termination of only
that loop. The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break
statement may appear in a loop. However, be careful. Too many break statements
have the tendency to destructure your code. Second, the break that terminates a
switch statement affects only that switch statement and not any enclosing loops.

Use break as a Form of goto

In addition to its uses with the switch statement and loops, the break statement can
be employed by itself to provide a “civilized” form of the goto statement. Java does
not have a goto statement, because it provides an unstructured way to alter the flow
of program execution. Programs that make extensive use of the goto are usually hard
to understand and hard to maintain. There are, however, a few places where the goto
is a useful and legitimate device. For example, the goto can be helpful when exiting
from a deeply nested set of loops. To handle such situations, Java defines an
expanded form of the break statement. By using this form of break, you can, for
example, break out of one or more blocks of code. These blocks need not be part of a
loop or a switch. They can be any block. Further, you can specify precisely where
execution will resume, because this form of break works with a label. As you will
see, break gives you the benefits of a goto without its problems.

The general form of the labeled break statement is shown here:
break label,

Typically, label is the name of a label that identifies a block of code. When this form
of break executes, control is transferred out of the named block of code. The labeled
block of code must enclose the break statement, but it does not need to be the
immediately enclosing block. This means that you can use a labeled break statement
to exit from a set of nested blocks. But you cannot use break to transfer control to a
block of code that does not enclose the break statement.

To name a block, put a label at the start of it. The block being labeled can be a

stand-alone block, or a statement that has a block as its target. A label is any valid
Java identifier followed by a colon. Once you have labeled a block, you can then use
this label as the target of a break statement. Doing so causes execution to resume at

the end of the labeled block. For example, the following program shows three nested
blocks:

// Using break with a label.
class Break4
public static void main(String args([])
int i;

for (i=1; i<4; i++) {

one:

two: {

three: {
System.out.println("\ni is " + 1i);
if (i==1) break one; <———Break fo alabel.
if (i==2) break two;
if(i==3) break three;

// this is never reached
System.out.println("won't print") ;

}

System.out.println("After block three.");

}

System.out.println("After block two.");

}

System.out.println("After block one.") ;

}

System.out.println("After for.");

}
}

The output from the program is shown here:

138 1
After block one.

i1 1 2
After block two.
After block one.

i 18 3

After block three.
After block two.
After block one.
After for.

Let’s look closely at the program to understand precisely why this output is
produced. When i 1s 1, the first if statement succeeds, causing a break to the end of
the block of code defined by label one. This causes After block one. to print. When
i 1s 2, the second if succeeds, causing control to be transferred to the end of the block
labeled by two. This causes the messages After block two. and After block one. to
be printed, in that order. When i is 3, the third if succeeds, and control is transferred
to the end of the block labeled by three. Now, all three messages are displayed.

Here is another example. This time, break is being used to jump outside of a
series of nested for loops. When the break statement in the inner loop 1s executed,
program control jumps to the end of the block defined by the outer for loop, which is
labeled by done. This causes the remainder of all three loops to be bypassed.

// Another example of using break with a label.
class Break5 {
public static void main(String args[])

done:
for (int i=0; i<10; i++)
for(int j=0; j<10; j++) {
for (int k=0; k<10; k++) {

System.out.println(k + " ");
if(k == 5) break done; // jump to done
System.out.println("After k loop"); // won't execute
}
System.out.println("After j loop"); // won't execute

}

System.out.println("After i loop") ;

}
J

The output from the program is shown here:

(6 T - VS T 6 T~ |

After 1 loop

Precisely where you put a label is very important—especially when working with
loops. For example, consider the following program:

// Where you put a label is important.
class Breaké6 {
public static void main(String args[]) ({
int #%=0, Vv=0;

// here, put label before for statement.
stopl: for(x=0; X < 5; x++) {
for(y = 0; y < 5; y++) {
if(y == 2) break stopl;
System.out.println("x and y: " + x + " " + y);
}
}

System.out.println() ;

// now, put label immediately before {
for(x=0; x < 5; X++)

stop2: {
for(y = 0; ¥ < 5; y++) {
if(y == 2) break stop2;
System.out.println("x and y: " + x + " " + y);

}
}

The output from this program is shown here:

X and y: 0 0
Xx and y: 0 1
X and y: 0 O
X and y: 0 1
Xand y: 1 0
X and v: 1 1
Xx and y: 2 0
x and y: 2 1
Xx and y: 3 0
X andy: 31
X and y: 4 0
X and y: 4 1

In the program, both sets of nested loops are the same except for one point. In the
first set, the label precedes the outer for loop. In this case, when the break executes,
it transfers control to the end of the entire for block, skipping the rest of the outer
loop’s iterations. In the second set, the label precedes the outer for’s opening curly
brace. Thus, when break stop2 executes, control 1s transferred to the end of the
outer for’s block, causing the next iteration to occur.

Keep in mind that you cannot break to any label that is not defined for an
enclosing block. For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr
public static void main(String args[]) {

one: for(int i=0; i<3; i++) {
System.out.print ("Pass " + 1 + ": ");

}

for (int j=0; 3<100; j++) {
if (§j == 10) break one; // WRONG
System.out.print(j + " ");
}
}
}

Since the loop labeled one does not enclose the break statement, it is not possible to
transfer control to that block.

Ask the Expert

Q: You say that the goto is unstructured and that the break with a label
offers a better alternative. But really, doesn’t breaking to a label,
which might be many lines of code and levels of nesting removed
from the break, also destructure code?

A: The short answer is yes! However, in those cases in which a jarring
change in program flow is required, breaking to a label still retains some
structure. A goto has none!

Use continue

It is possible to force an early iteration of a loop, bypassing the loop’s normal control
structure. This is accomplished using continue. The continue statement forces the
next iteration of the loop to take place, skipping any code between itself and the
conditional expression that controls the loop. Thus, continue is essentially the
complement of break. For example, the following program uses continue to help
print the even numbers between 0 and 100:

// Use continue.
class ContDemo {
public static void main(String args[]) {
int i;

// print even numbers between 0 and 100
for(i = 0; i<=100; i++) {
if((i%2) != 0) continue; // iterate
System.out.println(i) ;

}
}
}

Only even numbers are printed, because an odd one will cause the loop to iterate
early, bypassing the call to println().

In while and do-while loops, a continue statement will cause control to go
directly to the conditional expression and then continue the looping process. In the
case of the for, the iteration expression of the loop is evaluated, then the conditional
expression is executed, and then the loop continues.

As with the break statement, continue may specify a label to describe which

enclosing loop to continue. Here is an example program that uses continue with a
label:

// Use continue with a label.
class ContToLabel (
public static void main(String args[]) {

outerloop:
for(int i=1; i < 10; i++) {
System.out .print ("\nOuter loop pass " + 1 +

", Inner loop: ");
for(int j = 1; j < 10; j++) {
if(j == 5) continue outerloop; // continue outer loop
System.out .print (j) ;

}
}
}
}

The output from the program is shown here:

Outer loop pass 1, Inner loop: 1234
Outer loop pass 2, Inner loop: 1234
Outer loop pass 3, Inner loop: 1234
Outer loop pass 4, Inner loop: 1234
Outer loop pass 5, Inner loop: 1234
Outer loop pass 6, Inner loop: 1234
Outer loop pass 7, Inner loop: 1234
Outer loop pass 8, Inner loop: 1234
Outer loop pass 9, Inner loop: 1234

As the output shows, when the continue executes, control passes to the outer loop,
skipping the remainder of the inner loop.

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements that fit most applications. However, for those special circumstances in
which early iteration is needed, the continue statement provides a structured way to
accomplish it.

Try This 3-3 Finish the Java Help System

This project puts the finishing touches on the Java help system that was created in

the previous projects. This version adds the syntax for break and continue. It also
allows the user to request the syntax for more than one statement. It does this by
adding an outer loop that runs until the user enters q as a menu selection.

1. Copy Help2.java to a new file called Help3.java.

2. Surround all of the program code with an infinite for loop. Break out of this
loop, using break, when a letter q is entered. Since this loop surrounds all of the
program code, breaking out of this loop causes the program to terminate.

3. Change the menu loop as shown here:

do {
System.out.println("Help on:");
System.out .println(" 1. if");

System.out .println(" 2. switch");
System.out .println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while");
System.out.println(" 6. break");

System.out.println(" 7. continue\n") ;
System.out .print ("Choose one (q to quit): ");

choice = (char) System.in.read();
do
ignore = (char) System.in.read() ;
} while (ignore != '\n');
} while(choice < '1' | choice > '7' & choice != 'q');

Notice that this loop now includes the break and continue statements. It also
accepts the letter q as a valid choice.

4. Expand the switch statement to include the break and continue statements, as
shown here:

case '6':
System.out .println ("The break:\n") ;
System.out .println ("break; or break label;");
break;

cage '7';
System.out .println ("The continue:\n");
System.out .println("continue; or continue label;");
break;

5. Here is the entire Help3.java program listing:

/*
Try This 3-3

The finished Java statement Help system
that processes multiple requests.
Y
class Help3 {
public static void main(String args|[])
throws java.io.IOException ({
char choice, ignore;

ford{;:) {
do {

System.out.println("Help on:") ;
System.out.println(" 1. if");
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while");
System.out.println(" 6. break");
System.out.println(" 7. continue\n") ;

System.out.print ("Choose one (g to quit):

choice = (char) System.in.read();
do {
ignore = (char) System.in.read();

} while (ignore != '\n');

)3

case

case

case

break;
YH s
System.out
System.out
System.out

System.out.

break;
Ve
System.out
System.out
break;
b
System.out
System.out
break;

} while(choice < '1' | choice > '7' & choice != 'q');
if (choice == 'gq') break;
System.out .println("\n") ;
switch (choice) {
case V1Y
System.out .println("The if:\n");
System.out .println("if (condition) statement;") ;
System.out .println("else statement;") ;
break;
case '2':
System.out .println ("The switch:\n");
System.out .println ("switch (expression) {");
System.out .println(" case constant:") ;
System.out .println (" statement sequence") ;
System.out .println (" break; ") ;
System.out .println (" Va7 | s MY
System.out .println("}") ;
break;
case '3':
System.out .println ("The for:\n") ;
System.out .print ("for (init; condition; iteration)");
System.out .println (" statement;");
break;
case '4':
System.out .println("The while:\n") ;
System.out .println("while (condition) statement;");

.println ("The do-while:\n") ;
println{"de {");
.println ("

statement; ") ;
println("} while (condition) ;") ;

.println ("The break:\n") ;
.println ("break;

or break label;") ;

.println ("The continue:\n");
.println ("continue;

or continue label;") ;

}

System.out.println() ;

}
}
}

6. Here is a sample run:

Help on:

1. if

2. switch
3. for

4. while

5. do-while
6. break

7. continue
Choose one (g to quit): 1
The if:

if (condition) statement;
else statement;

Help on:
1. if
2. switch
3. for
4. while
5. do-while
6. break

7. continue
Choose one (g to quit): 6
The break:

break; or break label;

Help on:
1. 4F
2. switch
3. Ior
4. while
5. do-while
6. break

7. continue

Choose one (g to quit): g

Nested Loops

As you have seen in some of the preceding examples, one loop can be nested inside
of another. Nested loops are used to solve a wide variety of programming problems
and are an essential part of programming. So, before leaving the topic of Java’s loop
statements, let’s look at one more nested loop example. The following program uses
a nested for loop to find the factors of the numbers from 2 to 100:

/*
Use nested loops to find factors of numbers
between 2 and 100.

%/
class FindFac ({
public static void main(String argsl|[]) {
for(int i=2; i <= 100; i++) {
System.out.print ("Factors of " + 1 + ": ");
for(int j = 2; j < 1i; j++)
if((i%j) == 0) System.out.print(j + " ");
System.out.println() ;
}
}
}

Here is a portion of the output produced by the program:

Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors
Factors

of
or
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

W o ~J0 Ul i W

el el e el el
W WJ0 U WhREO

20 #

2

=

5 10

In the program, the outer loop runs i from 2 through 100. The inner loop
successively tests all numbers from 2 up to i, printing those that evenly divide i.
Extra challenge: The preceding program can be made more efficient. Can you see
how? (Hint: The number of iterations in the inner loop can be reduced.)

v Chapter 3 Self Test

1. Write a program that reads characters from the keyboard until a period is
received. Have the program count the number of spaces. Report the total at the
end of the program.

2. Show the general form of the if-else-if ladder.

3. Given

if(x < 10)
if(y > 100) {
if(!done) x = z;
else y = Z;

}

else System.out.println("erroxr"); // what if?

to what if does the last else associate?
4. Show the for statement for a loop that counts from 1000 to 0 by —2.

5. Is the following fragment valid?
for(int 1 = 0; 1 < num; 1i++)
sum += 1i;

count = 1i;
6. Explain what break does. Be sure to explain both of its forms.

7. In the following fragment, after the break statement executes, what is
displayed?
for(i = 0; 1 < 10; i++) {
while (running) {
if (x<y) break;
//
}

System.out .println("after while");

}

System.out .println("After for");
8. What does the following fragment print?

for(int 1 = 0; 1<10; i++) {
System.out.print(i + " ");
1f((i%2) == 0) continue;

System.out.println() ;
}

9. The iteration expression in a for loop need not always alter the loop control
variable by a fixed amount. Instead, the loop control variable can change in any
arbitrary way. Using this concept, write a program that uses a for loop to
generate and display the progression 1, 2, 4, 8, 16, 32, and so on.

10. The ASCII lowercase letters are separated from the uppercase letters by 32.
Thus, to convert a lowercase letter to uppercase, subtract 32 from it. Use this
information to write a program that reads characters from the keyboard. Have it

convert all lowercase letters to uppercase, and all uppercase letters to
lowercase, displaying the result. Make no changes to any other character. Have
the program stop when the user enters a period. At the end, have the program
display the number of case changes that have taken place.

11. What is an infinite loop?

12. When using break with a label, must the label be on a block that contains the
break?

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 4

Introducing Classes, Objects, and Methods

Key SKkills & Concepts

Know the fundamentals of the class

Understand how objects are created

Understand how reference variables are assigned
Create methods, return values, and use parameters
Use the return keyword

Return a value from a method

Add parameters to a method

Utilize constructors

Create parameterized constructors

Understand new

Understand garbage collection

Use the this keyword

the class. The class is the essence of Java. It is the foundation upon which the

entire Java language is built because the class defines the nature of an object.
As such, the class forms the basis for object-oriented programming in Java. Within a
class are defined data and code that acts upon that data. The code is contained in
methods. Because classes, objects, and methods are fundamental to Java, they are
introduced 1in this chapter. Having a basic understanding of these features will allow
you to write more sophisticated programs and better understand certain key Java

B efore you can go much further in your study of Java, you need to learn about

elements described in the following chapter.

Class Fundamentals

Since all Java program activity occurs within a class, we have been using classes
since the start of this book. Of course, only extremely simple classes have been used,
and we have not taken advantage of the majority of their features. As you will see,
classes are substantially more powerful than the limited ones presented so far.

Let’s begin by reviewing the basics. A class is a template that defines the form of
an object. It specifies both the data and the code that will operate on that data. Java
uses a class specification to construct objects. Objects are instances of a class. Thus,
a class 1s essentially a set of plans that specify how to build an object. It is important
to be clear on one issue: a class is a logical abstraction. It is not until an object of that
class has been created that a physical representation of that class exists in memory.

One other point: Recall that the methods and variables that constitute a class are
called members of the class. The data members are also referred to as instance
variables.

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this by
specifying the instance variables that it contains and the methods that operate on
them. Although very simple classes might contain only methods or only instance
variables, most real-world classes contain both.

A class is created by using the keyword class. A simplified general form of a class
definition is shown here:

class classname {
// declare instance variables
tpe varl,
fype var2,
/...
fype varN;

// declare methods

type methodl(parameters) {
// body of method

}

type method2(parameters) {
// body of method

J
If

tvype methodN(parameters) {
// body of method

Although there is no syntactic rule that enforces it, a well-designed class should
define one and only one logical entity. For example, a class that stores names and
telephone numbers will not normally also store information about the stock market,
average rainfall, sunspot cycles, or other unrelated information. The point here is that
a well-designed class groups logically connected information. Putting unrelated
information into the same class will quickly destructure your code!

Up to this point, the classes that we have been using have had only one method:
main(). Soon you will see how to create others. However, notice that the general
form of a class does not specify a main() method. A main() method is required
only if that class is the starting point for your program. Also, some types of Java
applications don’t require a main().

Defining a Class

To illustrate classes, we will develop a class that encapsulates information about
vehicles, such as cars, vans, and trucks. This class 1s called Vehicle, and it will store
three items of information about a vehicle: the number of passengers that it can
carry, its fuel capacity, and its average fuel consumption (in miles per gallon).

The first version of Vehicle is shown next. It defines three instance variables:

passengers, fuelcap, and mpg. Notice that Vehicle does not contain any methods.
Thus, it 1s currently a data-only class. (Subsequent sections will add methods to it.)

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

A class definition creates a new data type. In this case, the new data type is called
Vehicle. You will use this name to declare objects of type Vehicle. Remember that a
class declaration is only a type description; it does not create an actual object. Thus,
the preceding code does not cause any objects of type Vehicle to come into
existence.

To actually create a Vehicle object, you will use a statement like the following:

Vehicle minivan = new Vehicle(); // create a Vehicle object called
minivan

After this statement executes, minivan refers to an instance of Vehicle. Thus, it will
have “physical” reality. For the moment, don’t worry about the details of this
statement.

Each time you create an instance of a class, you are creating an object that
contains its own copy of each instance variable defined by the class. Thus, every
Vehicle object will contain its own copies of the instance variables passengers,
fuelcap, and mpg. To access these variables, you will use the dot (.) operator. The
dot operator links the name of an object with the name of a member. The general
form of the dot operator is shown here:

object.member

Thus, the object is specified on the left, and the member is put on the right. For
example, to assign the fuelcap variable of minivan the value 16, use the following
statement:

minivan.fuelcap = 16;

In general, you can use the dot operator to access both instance variables and
methods.

Here is a complete program that uses the Vehicle class:

/* A program that uses the Vehicle class.

Call this file VehicleDemo.java
L
class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// This class declares an object of type Vehicle.
class VehicleDemo
public static void main(String args[]) {
Vehicle minivan = new Vehicle() ;
int range;

// assign values to fields in minivan
minivan.passengers = 7;

minivan.fuelcap = 16; <«————Notice the use of the dot
minivan.mpg = 21; operator to access a member.

// compute the range assuming a full tank of gas

range = minivan.fuelcap * minivan.mpg;

System.out.println("Minivan can carry " + minivan.passengers +
" with a range of " + range);

You should call the file that contains this program VehicleDemo.java because the
main() method is in the class called VehicleDemo, not the class called Vehicle.
When you compile this program, you will find that two .class files have been
created, one for Vehicle and one for VehicleDemo. The Java compiler automatically
puts each class into its own .class file. It is not necessary for both the Vehicle and
the VehicleDemo class to be in the same source file. You could put each class in its
own file, called Vehicle.java and VehicleDemo.java, respectively.

To run this program, you must execute VehicleDemo.class. The following output
1s displayed:

Minivan can carry 7 with a range of 336

Before moving on, let’s review a fundamental principle: each object has its own
copies of the instance variables defined by its class. Thus, the contents of the

variables in one object can differ from the contents of the variables in another. There
1s no connection between the two objects except for the fact that they are both
objects of the same type. For example, if you have two Vehicle objects, each has its
own copy of passengers, fuelcap, and mpg, and the contents of these can differ
between the two objects. The following program demonstrates this fact. (Notice that
the class with main() is now called TwoVehicles.)

// This program creates two Vehicle objects.

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

}

// This class declares an object of type Vehicle.
class TwoVehicles
public static void main(String args|[]) {

Vehicle minivan = new Vehicle () ;
; ; Remember
Vehicle sportscar = new Vehicle(); . s £
=il minivan and
. sportscar refer
int rangel, range2; to separate
objects.

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;

sportscar.mpg = 12;

// compute the ranges assuming a full tank of gas
rangel = minivan.fuelcap * minivan.mpg;
range2 = sportscar.fuelcap * sportscar.mpg;

System.out.println("Minivan can carry " + minivan.passengers +
" with a range of " + rangel);

System.out.println("Sportscar can carry " + sportscar.passengers +
" with a range of " + range2);

The output produced by this program is shown here:

Minivan can carry 7 with a range of 336
Sportscar can carry 2 with a range of 168

As you can see, minivan’s data is completely separate from the data contained in
sportscar. The following illustration depicts this situation.

- passengers 7
minivan > fuelcap 16
mpg 21

passengers 2

sportscar = fuelcap 14
mpg 12

How Objects Are Created

In the preceding programs, the following line was used to declare an object of type
Vehicle:

Vehicle minivan = new Vehicle () ;

This declaration performs two functions. First, it declares a variable called minivan
of the class type Vehicle. This variable does not define an object. Instead, it is
simply a variable that can refer to an object. Second, the declaration creates an
instance of the object and assigns to minivan a reference to that object. This is done
by using the new operator.

The new operator dynamically allocates (that is, allocates at run time) memory for
an object and returns a reference to it. This reference is, essentially, the address in
memory of the object allocated by new. This reference is then stored in a variable.
Thus, in Java, all class objects must be dynamically allocated.

The two steps combined in the preceding statement can be rewritten like this to
show each step individually:

Vehicle minivan; // declare reference to object
minivan = new Vehicle(); // allocate a Vehicle object

The first line declares minivan as a reference to an object of type Vehicle. Thus,
minivan is a variable that can refer to an object, but it is not an object itself. At this
point, minivan does not refer to an object. The next line creates a new Vehicle
object and assigns a reference to it to minivan. Now, minivan is linked with an
object.

Reference Variables and Assignment

In an assignment operation, object reference variables act differently than do

variables of a primitive type, such as int. When you assign one primitive-type
variable to another, the situation is straightforward. The variable on the left receives
a copy of the value of the variable on the right. When you assign one object
reference variable to another, the situation is a bit more complicated because you are
changing the object that the reference variable refers to. The effect of this difference
can cause some counterintuitive results. For example, consider the following
fragment:

Vehicle carl = new Vehicle();
Vehicle car2 = carl;

At first glance, it is easy to think that carl and car2 refer to different objects, but
this is not the case. Instead, carl and car2 will both refer to the same object. The
assignment of carl to car2 simply makes car2 refer to the same object as does carl.
Thus, the object can be acted upon by either carl or car2. For example, after the
assignment

carl.mpg = 26;

executes, both of these println() statements

System.out.println(carl.mpg) ;
System.out.println(car2.mpg) ;

display the same value: 26.

Although carl and car2 both refer to the same object, they are not linked in any
other way. For example, a subsequent assignment to car2 simply changes the object
to which car2 refers. For example:

new Vehicle() ;
carl;
new Vehicle () ;

Vehicle carl
Vehicle car2
Vehicle car3

Il

car2 = car3; // now car2 and car3 refer to the same object.

After this sequence executes, car2 refers to the same object as car3. The object
referred to by carl is unchanged.

Methods

As explained, instance variables and methods are constituents of classes. So far, the
Vehicle class contains data, but no methods. Although data-only classes are perfectly
valid, most classes will have methods. Methods are subroutines that manipulate the

data defined by the class and, in many cases, provide access to that data. In most
cases, other parts of your program will interact with a class through its methods.

A method contains one or more statements. In well-written Java code, each
method performs only one task. Each method has a name, and it is this name that is
used to call the method. In general, you can give a method whatever name you
please. However, remember that main() is reserved for the method that begins
execution of your program. Also, don’t use Java’s keywords for method names.

When denoting methods in text, this book has used and will continue to use a
convention that has become common when writing about Java. A method will have
parentheses after its name. For example, if a method’s name is getval, it will be
written getval() when its name is used in a sentence. This notation will help you
distinguish variable names from method names in this book.

The general form of a method is shown here:

ret-type name(parameter-list) {
// body of method
}

Here, ret-type specifies the type of data returned by the method. This can be any
valid type, including class types that you create. If the method does not return a
value, its return type must be void. The name of the method is specified by name.
This can be any legal identifier other than those already used by other items within
the current scope. The parameter-list is a sequence of type and identifier pairs
separated by commas. Parameters are essentially variables that receive the value of
the arguments passed to the method when it is called. If the method has no
parameters, the parameter list will be empty.

Adding a Method to the Vehicle Class

As just explained, the methods of a class typically manipulate and provide access to
the data of the class. With this in mind, recall that main() in the preceding examples
computed the range of a vehicle by multiplying its fuel consumption rate by its fuel
capacity. While technically correct, this is not the best way to handle this
computation. The calculation of a vehicle’s range 1s something that is best handled
by the Vehicle class itself. The reason for this conclusion is easy to understand: the
range of a vehicle is dependent upon the capacity of the fuel tank and the rate of fuel
consumption, and both of these quantities are encapsulated by Vehicle. By adding a
method to Vehicle that computes the range, you are enhancing its object-oriented
structure. To add a method to Vehicle, specify it within Vehicle’s declaration. For
example, the following version of Vehicle contains a method called range() that

displays the range of the vehicle.

// Add range to Vehicle.

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// Display the range.

void range () { <————The range()method is contained within the Vehicle class.
System.out.println("Range is " + fuelcap * mpg) ;

}
}

class AddMeth
public static void main(String args[]) ({
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();

Notice that fuelcap and mpg are used directly, without the dot operator.

int rangel, range2;

// assign values to fields in minivan
minivan.passengers = 7;

minivan. fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;

sportscar.fuelcap = 14;
sportscar.mpg = 12;

System.out .print ("Minivan can carry " + minivan.passengers +
II. ll};
minivan.range(); // display range of minivan

System.out.print ("Sportscar can carry " + sportscar.passengers +

ll. ll);

sportscar.range(); // display range of sportscar.

This program generates the following output:

Minivan can carry 7. Range is 336
Sportscar can carry 2. Range is 168

Let’s look at the key elements of this program, beginning with the range()
method itself. The first line of range() is

void range () {

This line declares a method called range that has no parameters. Its return type is
void. Thus, range() does not return a value to the caller. The line ends with the
opening curly brace of the method body.

The body of range() consists solely of this line:

System.out.println("Range is " + fuelcap * mpqg);

This statement displays the range of the vehicle by multiplying fuelcap by mpg.
Since each object of type Vehicle has its own copy of fuelcap and mpg, when
range() is called, the range computation uses the calling object’s copies of those
variables.

The range() method ends when its closing curly brace is encountered. This causes
program control to transfer back to the caller.

Next, look closely at this line of code from inside main():

minivan.range () ;

This statement invokes the range() method on minivan. That is, it calls range()
relative to the minivan object, using the object’s name followed by the dot operator.
When a method is called, program control is transferred to the method. When the
method terminates, control is transferred back to the caller, and execution resumes
with the line of code following the call.

In this case, the call to minivan.range() displays the range of the vehicle defined
by minivan. In similar fashion, the call to sportscar.range() displays the range of
the vehicle defined by sportscar. Each time range() is invoked, it displays the range
for the specified object.

There 1s something very important to notice inside the range() method: the
instance variables fuelcap and mpg are referred to directly, without preceding them
with an object name or the dot operator. When a method uses an instance variable
that is defined by its class, it does so directly, without explicit reference to an object
and without use of the dot operator. This is easy to understand if you think about it.
A method is always invoked relative to some object of its class. Once this invocation

has occurred, the object is known. Thus, within a method, there is no need to specify
the object a second time. This means that fuelcap and mpg inside range() implicitly
refer to the copies of those variables found in the object that invokes range().

Returning from a Method

In general, there are two conditions that cause a method to return—first, as the
range() method in the preceding example shows, when the method’s closing curly
brace 1s encountered. The second is when a return statement is executed. There are
two forms of return—one for use in void methods (those that do not return a value)
and one for returning values. The first form is examined here. The next section
explains how to return values.

In a void method, you can cause the immediate termination of a method by using
this form of return:

return ;

When this statement executes, program control returns to the caller, skipping any
remaining code in the method. For example, consider this method:

void myMeth () {
int i:

for (1i=0; 1<10; i++) {
if(i == 5) return; // stop at 5
System.out.println() ;

}
)

Here, the for loop will only run from 0 to 5, because once i equals 5, the method
returns. It is permissible to have multiple return statements in a method, especially
when there are two or more routes out of it. For example:

void myMeth () {
4

if (done) return;

//

if (error) return;

L

Here, the method returns if it is done or if an error occurs. Be careful, however,
because having too many exit points in a method can destructure your code; so avoid
using them casually. A well-designed method has well-defined exit points.

To review: A void method can return in one of two ways—its closing curly brace
1s reached, or a return statement is executed.

Returning a Value

Although methods with a return type of void are not rare, most methods will return a
value. In fact, the ability to return a value is one of the most useful features of a
method. You have already seen one example of a return value: when we used the
sqrt() function to obtain a square root.

Return values are used for a variety of purposes in programming. In some cases,
such as with sqrt(), the return value contains the outcome of some calculation. In
other cases, the return value may simply indicate success or failure. In still others, it
may contain a status code. Whatever the purpose, using method return values is an
integral part of Java programming.

Methods return a value to the calling routine using this form of return:

return value;

Here, value is the value returned. This form of return can be used only with
methods that have a non-veid return type. Furthermore, a non-veid method must
return a value by using this form of return.

You can use a return value to improve the implementation of range(). Instead of
displaying the range, a better approach is to have range() compute the range and
return this value. Among the advantages to this approach is that you can use the
value for other calculations. The following example modifies range() to return the
range rather than displaying it.

// Use a return value.

class Vehicle ({

}

int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// Return the range.
int range () {

return mpg * fuelcap; <«————Refurn the range for a given vehicle.

class RetMeth ({

public static void main(String args([]) {

Vehicle minivan = new Vehicle() ;
Vehicle sportscar = new Vehicle() ;

int rangel, range2;

// assign values to fields in minivan
minivan.passengers = 7;
minivan.fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;

sportscar.mpg = 12;

// get the ranges
rangel = minivan.range() ;

range2 = sportscar.range(); Assign the value

returned to a variable.

System.out.println("Minivan can carry " + minivan.passengers +
" with range of " + rangel + " Miles");

System.out.println("Sportscar can carry " + sportscar.passengers +
" with range of " + range2 + " miles");

The output 1s shown here:

Minivan can carry 7 with range of 336 Miles
Sportscar can carry 2 with range of 168 miles

In the program, notice that when range() is called, it is put on the right side of an
assignment statement. On the left is a variable that will receive the value returned by
range(). Thus, after

rangel = minivan.range() ;

executes, the range of the minivan object is stored in rangel.

Notice that range() now has a return type of int. This means that it will return an
integer value to the caller. The return type of a method is important because the type
of data returned by a method must be compatible with the return type specified by
the method. Thus, if you want a method to return data of type double, its return type
must be type double.

Although the preceding program is correct, it is not written as efficiently as it
could be. Specifically, there is no need for the rangel or range2 variables. A call to
range() can be used in the println() statement directly, as shown here:

System.out.println("Minivan can carry " + minivan.passengers +
" with range of " + minivan.range() + " Miles");

In this case, when println() is executed, minivan.range() is called automatically
and its value will be passed to println(). Furthermore, you can use a call to range()
whenever the range of a Vehicle object is needed. For example, this statement
compares the ranges of two vehicles:

if(vl.range() > v2.range()) System.out.printin("vl has greater range"),

Using Parameters

It is possible to pass one or more values to a method when the method is called.
Recall that a value passed to a method is called an argument. Inside the method, the
variable that receives the argument is called a parameter. Parameters are declared
inside the parentheses that follow the method’s name. The parameter declaration
syntax is the same as that used for variables. A parameter is within the scope of its
method, and aside from its special task of receiving an argument, it acts like any
other local variable.

Here is a simple example that uses a parameter. Inside the ChkNum class, the
method isEven() returns true if the value that it is passed is even. It returns false
otherwise. Therefore, isEven() has a return type of boolean.

// A simple example that uses a parameter.

class ChkNum {
// return true if x is even
boolean isEven(int x) { <————Here, xis an integer parameter of isEven).
1f((x%2) == 0) return true;
else return false;

}
}

class ParmDemo
public static void main(String args[]) ({
ChkNum e = new ChkNum() ;

Pass arguments

: . , , to isEven().
if (e.1isEven(10)) System.out.println("10 is even.");

if(e.isEven(9)) System.out.println("9 is even.");

if(e.isEven(8)) System.out.println("8 is even.");

Here is the output produced by the program:

10 is even.
8 is even.

In the program, isEven() is called three times, and each time a different value is
passed. Let’s look at this process closely. First, notice how isEven() is called. The
argument is specified between the parentheses. When isEven() is called the first

time, it is passed the value 10. Thus, when isEven() begins executing, the parameter
x receives the value 10. In the second call, 9 is the argument, and x, then, has the
value 9. In the third call, the argument is 8, which is the value that x receives. The
point is that the value passed as an argument when isEven() is called is the value
received by its parameter, X.

A method can have more than one parameter. Simply declare each parameter,
separating one from the next with a comma. For example, the Factor class defines a
method called isFactor() that determines whether the first parameter is a factor of
the second.

class Factor {
boolean isFactor (int a, int b) { <————This method hastwo parameters.
if((b % a) == 0) return true;
else return false;

}
}

class IsFact {
public static void main(String args[]) {

Factor x = new Factor(); — arguments

to isFactor().
if (x.isFactor (2, 20)) System.out.println("2 is factor");

if (x.isFactor (3, 20)) System.out.println("this won't be displayed");

}
)

Notice that when isFactor() is called, the arguments are also separated by commas.
When using multiple parameters, each parameter specifies its own type, which can
differ from the others. For example, this is perfectly valid:

int myMeth (int a, double b, float c) {
VA

Adding a Parameterized Method to Vehicle

You can use a parameterized method to add a new feature to the Vehicle class: the
ability to compute the amount of fuel needed for a given distance. This new method
1s called fuelneeded(). This method takes the number of miles that you want to
drive and returns the number of gallons of gas required. The fuelneeded() method is
defined like this:

double fuelneeded (int miles) ({
return (double) miles / mpg;
}

Notice that this method returns a value of type double. This is useful since the
amount of fuel needed for a given distance might not be a whole number. The entire
Vehicle class that includes fuelneeded() is shown here:

/*
Add a parameterized method that computes the
fuel required for a given distance.

2

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// Return the range.
int range()
return mpg * fuelcap;

}

// Compute fuel needed for a given distance.
double fuelneeded(int miles) {
return (double) miles / mpg;

}
}

class CompFuel ({
public static void main(String args[]) ({
Vehicle minivan = new Vehicle();
Vehicle sportscar = new Vehicle();
double gallons;
int dist = 252;

// assign values to fields in minivan
minivan.passengers = 7;

minivan. fuelcap = 16;

minivan.mpg = 21;

// assign values to fields in sportscar
sportscar.passengers = 2;
sportscar.fuelcap = 14;

sportscar.mpg = 12;

gallons = minivan.fuelneeded (dist) ;

System.out .println("To go " + dist + " miles minivan needs " +
gallons + " gallons of fuel.");

gallons = sportscar.fuelneeded(dist);

System.out .println("To go " + dist + " miles sportscar needs " +
gallons + " gallons of fuel.");

The output from the program is shown here:

To go 252 miles minivan needs 12.0 gallons of fuel.
To go 252 miles sportscar needs 21.0 gallons of fuel.

NN Creating a Help Class

--

.
--

If one were to try to summarize the essence of the class in one sentence, it might be
this: a class encapsulates functionality. Of course, sometimes the trick i1s knowing
where one “functionality” ends and another begins. As a general rule, you will want
your classes to be the building blocks of your larger application. In order to do this,
each class must represent a single functional unit that performs clearly delineated
actions. Thus, you will want your classes to be as small as possible—but no smaller!
That is, classes that contain extraneous functionality confuse and destructure code,
but classes that contain too little functionality are fragmented. What is the balance? It
1s at this point that the science of programming becomes the art of programming.
Fortunately, most programmers find that this balancing act becomes easier with
experience.

To begin to gain that experience you will convert the help system from Try This
3-3 in the preceding chapter into a Help class. Let’s examine why this is a good idea.
First, the help system defines one logical unit. It simply displays the syntax for
Java’s control statements. Thus, its functionality 1s compact and well defined.
Second, putting help in a class is an esthetically pleasing approach. Whenever you
want to offer the help system to a user, simply instantiate a help-system object.
Finally, because help is encapsulated, it can be upgraded or changed without causing
unwanted side effects in the programs that use it.

1. Create a new file called HelpClassDemo.java. To save you some typing, you
might want to copy the file from Try This 3-3, Help3.java, into
HelpClassDemo.java.

2. To convert the help system into a class, you must first determine precisely what
constitutes the help system. For example, in Help3.java, there is code to display
a menu, input the user’s choice, check for a valid response, and display
information about the item selected. The program also loops until the letter q is
pressed. If you think about it, it is clear that the menu, the check for a valid
response, and the display of the information are integral to the help system. How

user input is obtained, and whether repeated requests should be processed, are
not. Thus, you will create a class that displays the help information, the help
menu, and checks for a valid selection. Its methods will be called helpOn(),
showMenu(), and isValid(), respectively.

Create the helpOn() method as shown here:

void helpOn (int what)
switch (what) {

case "1':
System.out .println("The if:\n");
System.out.println("if (condition) statement;");
System.out.println("else statement;") ;
break;

case '2':
System.out .println ("The switch:\n") ;
System.out .println ("switch(expression) {");

System.out.println(" case constant:");
System.out .println (" statement sequence") ;
System.out .println (" break;") ;
System.out.println(" // ...");
System.out .println("}");
break;

case '3':
System.out .println("The for:\n");
System.out.print ("for (init; condition; iteration)");
System.out.println(" statement;");
break;

case '4':
System.out .println ("The while:\n") ;
System.out .println("while(condition) statement;");
break;

case '5':
System.out .println ("The do-while:\n");
System.out .println("do {");

System.out .println(" statement;");
System.out .println("} while (condition);");
break;

case '6':

System.out .println("The break:\n") ;
System.out .println("break; or break label;");
break;

case '7':
System.out .println("The continue:\n") ;
System.out .println("continue; or continue label;") ;
break;

}

System.out .println() ;
}

4. Next, create the showMenu() method:

void showMenu () {
System.out .println("Help on:") ;
System.out .println(" 1. if");

System.out .println(" 2. switch");
System.out .println(" 3. for");
System.out.println(" 4. while");
System.out .println(" 5. do-while");
System.out .println(" 6. break") ;

System.out .println(" 7. continue\n");
System.out .print ("Choose one (g to quit): ");

}

5. Create the isValid() method, shown here:

boolean isValid(int ch) {
if(ch < '1' | ch > '7' & ch != 'q') return false;
else return true;

}

6. Assemble the foregoing methods into the Help class, shown here:

class Help ({
void helpOn(int what) {

switch (what) {

case '1l':
System.out.println("The if:\n")
System.out .println("if (condition) statement;");
System.out.println("else statement;");
break;

case '2':
System.out.println("The switch:\n")
System.out.println(“sw1tch(expre551on) ¥
System.out .println(" case constant:");
System.out .println (" statement sequence") ;
System.out.println (" break;") ;
System.out.println(" // « B) 3
System.out.println("}")
break;

case '3':
System.out .println("The for:\n");
System.out .print ("for(init; condition; iteration)");
System.out.println(" statement;");
break;

case '4':
System.out .println("The while:\n")
System.out.println("while (condition) statement;");
break;

case '5':
System.out .println("The do-while:\n")
System.out .println("do {");
System.out.println(" statement;");
System.out.println("} while (condition);");
break;

case '6':
System.out .println("The break:\n")
System.out.println("break; or break label;");

break;

cdage 17
System.out .println ("The continue:\n") ;
System.out .println("continue; or continue label;");
break;

}

System.out.println() ;

}

void showMenu ()
System.out .println ("Help on:") ;
System.out.println(" 1. if");

(

(
System.out.println(" 2. switch");
System.out.println(" 3. for");
System.out.println(" 4. while");
System.out.println(" 5. do-while");
System.out.println(" 6. break");

System.out.println(" 7. continue\n");
System.out.print ("Choose one (g to quit): ");

}

boolean isValid(int ch) {
if(eh < "1¥ | ch » Y7" & €h 1= "g') Feturr false;
else return true;

}
}

7. Finally, rewrite the main() method from Try This 3-3 so that it uses the new
Help class. Call this class HelpClassDemo.java. The entire listing for
HelpClassDemo.java is shown here:

/*
Try This 4-1

Convert the help system from Try This 3-3 into
a Help class.

8/

class Help {
void helpOn (int what) {
switch(what) {
case '1':
System.out.println("The if:\n");
System.out.println("if (condition) statement;") ;

System.out.println("else statement;");
break;

case '2':
System.out.println ("The switch:\n") ;
System.out.println ("switch (expression) {");
System.out.println(" case constant:") ;
System.out.println (" statement sequence") ;
System.ocut.println (" break; ") ;
System.out.println((" // ...");
System.out.println("}") ;
break;

case '3':
System.out.println ("The for:\n");
System.out.print ("for(init; condition; iteration)");
System.out.println (" statement;");
break;

case '4':
System.out.println("The while:\n") ;
System.out.println ("while (condition) statement;") ;
break;

case '5':
System.out.println("The do-while:\n") ;
System.out.println("do {");
System.out.println (" statement; ") ;

(

System.out.println ("} while (condition);");
break;
case '6':

System.out.println ("The break:\n") ;
System.out.println ("break; or break label;");
break;

case '7':
System.out.println("The continue:\n") ;
System.ocut.println("continue; or continue label;") ;
break;

}

System.out.println() ;

}

void showMenu ()
System.out.println("Help on:") ;
System.out.println(" 1. if");

System.out.println(" 2. switch");
System.out.println (" 3. for");
System.out.println (" 4. while") ;
System.out.println (" 5. do-while") ;
System.out.printlin (" 6. break") ;
System.out.printlin (" 7. continue\n") ;
System.out.print ("Choose one (g to quit): ") ;

boolean isValid(int ch) {
if(ch < '1' | ch > '7'" & ch != 'q') return false;
else return true;

}
}

class HelpClassDemo {
public static void main(String args/(])
throws java.io.IOException (
char choice, ignore;
Help hlpobj = new Help() ;

for(;:;) {
do
hlpobj .showMenu() ;

choice = (char) System.in.read() ;

do {
ignore = (char) System.in.read() ;
} while(ignore != '\n');

} while(!hlpobj.isValid(choice)) ;
if (choice == 'q') break;
System.out.println("\n") ;

hlpobj .helpOn (choice) ;
}

}
J

When you try the program, you will find that it is functionally the same as before.
The advantage to this approach is that you now have a help system component that
can be reused whenever it is needed.

Constructors

In the preceding examples, the instance variables of each Vehicle object had to be
set manually using a sequence of statements, such as:

minivan.passengers = 7;
minivan. fuelcap = 16;
minivan.mpg = 21;

An approach like this would never be used in professionally written Java code. Aside
from being error prone (you might forget to set one of the fields), there is simply a
better way to accomplish this task: the constructor.

A constructor initializes an object when it 1s created. It has the same name as its
class and is syntactically similar to a method. However, constructors have no explicit
return type. Typically, you will use a constructor to give initial values to the instance
variables defined by the class, or to perform any other startup procedures required to
create a fully formed object.

All classes have constructors, whether you define one or not, because Java
automatically provides a default constructor. In this case, non-initialized member
variables have their default values, which are zero, null, and false, for numeric types,
reference types, and booleans, respectively. Once you define your own constructor,
the default constructor is no longer used.

Here is a simple example that uses a constructor:

// A simple constructor.

class MyClass (
int x;

MyClass () { <= This is the constructor for MyClass.
X = 10;
}

}

class ConsDemo
public static void main(String args|[]) {
MyClass tl = new MyClass();
MyClass t2 = new MyClass();

System.out.println(tl.x + " " + t2.Xx);

}
J

In this example, the constructor for MyClass is

MyClass () {
X = 10;

}

This constructor assigns the instance variable x of MyClass the value 10. This
constructor is called by new when an object is created. For example, in the line

MyClass tl = new MyClass();

the constructor MyClass() is called on the t1 object, giving t1.x the value 10. The
same is true for t2. After construction, t2.x has the value 10. Thus, the output from
the program is

10 10

Parameterized Constructors

In the preceding example, a parameter-less constructor was used. Although this is
fine for some situations, most often you will need a constructor that accepts one or
more parameters. Parameters are added to a constructor in the same way that they are
added to a method: just declare them inside the parentheses after the constructor’s

name. For example, here, MyClass is given a parameterized constructor:

// A parameterized constructor.

class MyClass (
int x;

MyClass (int 1) { < This constructor has a parameter.
X = i;

class ParmConsDemo
public static void main (String args|[]) {
MyClass tl = new MyClass(10) ;
MyClass t2 = new MyClass(88) ;

System.out.println(tl.x + " " + t2.x);

}
J

The output from this program is shown here:

10 88

In this version of the program, the MyClass() constructor defines one parameter
called i, which is used to initialize the instance variable, X. Thus, when the line

MyClass tl = new MyClass (10);

executes, the value 10 is passed to i, which is then assigned to x.

Adding a Constructor to the Vehicle Class

We can improve the Vehicle class by adding a constructor that automatically
initializes the passengers, fuelcap, and mpg fields when an object is constructed.
Pay special attention to how Vehicle objects are created.

// Add a constructor.

class Vehicle {
int passengers; // number of passengers
int fuelcap; // fuel capacity in gallons
int mpg; // fuel consumption in miles per gallon

// This is a constructor for Vehicle.

Vehicle(int p, int £, int m) { < Constructor for Vehicle
passengers = p;
fuelcap = £;
mpg = m;

}

// Return the range.
int range() {
return mpg * fuelcap;

}

// Compute fuel needed for a given distance.
double fuelneeded(int miles) {
return (double) miles / mpg;

}
}

class VehConsDemo {
public static void main(String args[])

// construct complete vehicles

Vehicle minivan = new Vehicle(7, 16, 21);
Vehicle sportscar = new Vehicle(2, 14, 12);
double gallons;

int dist = 252;

gallons = minivan.fuelneeded (dist) ;

System.out.println("To go " + dist + " miles minivan needs " +
gallons + " gallons of fuel.");

gallons = sportscar.fuelneeded (dist) ;

System.out.println("To go " + dist + " miles sportscar needs " +
gallons + " gallons of fuel.");

Both minivan and sportscar are initialized by the Vehicle() constructor when

they are created. Each object is initialized as specified in the parameters to its
constructor. For example, in the following line,

Vehicle minivan = new Vehicle (7, 16, 21);

the values 7, 16, and 21 are passed to the Vehicle() constructor when new creates
the object. Thus, minivan’s copy of passengers, fuelcap, and mpg will contain the
values 7, 16, and 21, respectively. The output from this program is the same as the
previous version.

The new Operator Revisited

Now that you know more about classes and their constructors, let’s take a closer look
at the new operator. In the context of an assignment, the new operator has this
general form:

class-var = new class-name(arg-list);

Here, class-var is a variable of the class type being created. The class-name is the
name of the class that is being instantiated. The class name followed by a
parenthesized argument list (which can be empty) specifies the constructor for the
class. If a class does not define its own constructor, new will use the default
constructor supplied by Java. Thus, new can be used to create an object of any class
type. The new operator returns a reference to the newly created object, which (in this
case) is assigned to class-var.

Since memory is finite, it is possible that new will not be able to allocate memory
for an object because insufficient memory exists. If this happens, a run-time
exception will occur. (You will learn about exceptions in Chapter 9.) For the sample
programs in this book, you won’t need to worry about running out of memory, but
you will need to consider this possibility in real-world programs that you write.

Garbage Collection

As you have seen, objects are dynamically allocated from a pool of free memory by
using the new operator. As explained, memory is not infinite, and the free memory
can be exhausted. Thus, it is possible for new to fail because there is insufficient free
memory to create the desired object. For this reason, a key component of any
dynamic allocation scheme is the recovery of free memory from unused objects,
making that memory available for subsequent reallocation. In some programming
languages, the release of previously allocated memory is handled manually.

However, Java uses a different, more trouble-free approach: garbage collection.

Java’s garbage collection system reclaims objects automatically—occurring
transparently, behind the scenes, without any programmer intervention. It works like
this: When no references to an object exist, that object is assumed to be no longer
needed, and the memory occupied by the object is released. This recycled memory
can then be used for a subsequent allocation.

Ask the Expert

Q: Why don’t I need to use new for variables of the primitive types, such
as int or float?

A: Java’s primitive types are not implemented as objects. Rather, because of
efficiency concerns, they are implemented as “normal” variables. A
variable of a primitive type actually contains the value that you have
given it. As explained, object variables are references to the object. This
layer of indirection (and other object features) adds overhead to an object
that is avoided by a primitive type.

Garbage collection occurs only sporadically during the execution of your program.
It will not occur simply because one or more objects exist that are no longer used.
For efficiency, the garbage collector will usually run only when two conditions are
met: there are objects to recycle, and there is a reason to recycle them. Remember,
garbage collection takes time, so the Java run-time system does it only when it is
appropriate. Thus, you can’t know precisely when garbage collection will take place.

The this Keyword

Before concluding this chapter, it is necessary to introduce this. When a method is
called, it is automatically passed an implicit argument that is a reference to the
invoking object (that is, the object on which the method is called). This reference is
called this. To understand this, first consider a program that creates a class called
Pwr that computes the result of a number raised to some integer power:

class Pwr
double b;
int e;
double wval;

Pwr (double base, int exp) {

b = base;

e = exp;

val = 1;

if (exp==0) return;

for(; exp>0; exp--) val = val * base;

}

double get pwr ()
returfi val;

}
J

class DemoPwr {
public static void main(String args[]) {
Pwr x = new Pwr (4.0, 2);
Pwr y = new Pwr (2.5, 1);
Pwr z = new Pwr (5.7, 0);

System.out.println(x.b + " raised to the " + x.e +
" power is " + x.get pwr());
System.out.println(y.b + " raised to the " + y.e +
" power is " + y.get pwr());
System.out.println(z.b + " raised to the " + z.e +
())

r

" power is " + z.get pwr ()

As you know, within a method, the other members of a class can be accessed
directly, without any object or class qualification. Thus, inside get_pwr(), the
statement

return val;

means that the copy of val associated with the invoking object will be returned.
However, the same statement can also be written like this:

return this.val;

Here, this refers to the object on which get pwr() was called. Thus, this.val refers
to that object’s copy of val. For example, if get pwr() had been invoked on x, then
this in the preceding statement would have been referring to x. Writing the statement
without using this is really just shorthand.

Here is the entire Pwr class written using the this reference:

class Pwr {
double b;
int e;
double val;

Pwr (double base, int exp) ({
this.b = base;
this.e = exp;

this.val = 1;
if (exp==0) return;
for(; exp>0; exp--) this.val = this.val * base;

}

double get pwr() {
return this.val;

}
}

Actually, no Java programmer would write Pwr as just shown because nothing is
gained, and the standard form is easier. However, this has some important uses. For
example, the Java syntax permits the name of a parameter or a local variable to be
the same as the name of an instance variable. When this happens, the local name
hides the instance variable. You can gain access to the hidden instance variable by
referring to it through this. For example, the following is a syntactically valid way to
write the Pwr() constructor.

Pwr (double b, int e) {
this.b = b;

this.e = &; This refers to the b instance

variable, not the parameter.

val = L;
if (e==0) return;
for(; e>0; e--) val = val * b;

}

In this version, the names of the parameters are the same as the names of the instance
variables, thus hiding them. However, this is used to “uncover” the instance
variables.

v Chapter 4 Self Test

What is the difference between a class and an object?
How is a class defined?

What does each object have its own copy of?

B W o=

Using two separate statements, show how to declare an object called counter of
a class called MyCounter.

i

Show how a method called myMeth() is declared if it has a return type of
double and has two int parameters called a and b.

How must a method return if it returns a value?
What name does a constructor have?

What does new do?

e * 2

What is garbage collection, and how does it work?
10. What is this?
11. Can a constructor have one or more parameters?

12. If a method returns no value, what must its return type be?

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 5
More Data Types and Operators

Key SKkills & Concepts

Understand and create arrays

Create multidimensional arrays

Create irregular arrays

Know the alternative array declaration syntax
Assign array references

Use the length array member

Use the for-each style for loop

Work with strings

Apply command-line arguments

Use the bitwise operators

Apply the ? operator

discusses arrays, the String type, the bitwise operators, and the ? ternary
operator. It also covers Java’s for-each style for loop. Along the way,
command-line arguments are described.

This chapter returns to the subject of Java’s data types and operators. It

Arrays

An array 1s a collection of variables of the same type, referred to by a common
name. In Java, arrays can have one or more dimensions, although the one-
dimensional array is the most common. Arrays are used for a variety of purposes

because they offer a convenient means of grouping together related variables. For
example, you might use an array to hold a record of the daily high temperature for a
month, a list of stock price averages, or a list of your collection of programming
books.

The principal advantage of an array is that it organizes data in such a way that it
can be easily manipulated. For example, if you have an array containing the incomes
for a selected group of households, it is easy to compute the average income by
cycling through the array. Also, arrays organize data in such a way that it can be
easily sorted.

Although arrays in Java can be used just like arrays in other programming
languages, they have one special attribute: they are implemented as objects. This fact
1s one reason that a discussion of arrays was deferred until objects had been
introduced. By implementing arrays as objects, several important advantages are
gained, not the least of which is that unused arrays can be garbage collected.

One-Dimensional Arrays

A one-dimensional array is a list of related variables. Such lists are common in
programming. For example, you might use a one-dimensional array to store the
account numbers of the active users on a network. Another array might be used to
store the current batting averages for a baseball team.

To declare a one-dimensional array, you can use this general form:
type array-name| | = new type[size];

Here, type declares the element type of the array. (The element type is also
commonly referred to as the base type.) The element type determines the data type of
each element contained in the array. The number of elements that the array will hold
is determined by size. Since arrays are implemented as objects, the creation of an
array is a two-step process. First, you declare an array reference variable. Second,
you allocate memory for the array, assigning a reference to that memory to the array
variable. Thus, arrays in Java are dynamically allocated using the new operator.

Here is an example. The following creates an int array of 10 elements and links it
to an array reference variable named sample:

int sample[] = new int[10];

This declaration works just like an object declaration. The sample variable holds a
reference to the memory allocated by new. This memory is large enough to hold 10
elements of type int. As with objects, it is possible to break the preceding declaration
in two. For example:

int sample[];
sample = new int[10];

In this case, when sample is first created, it refers to no physical object. It is only
after the second statement executes that sample is linked with an array.

An individual element within an array is accessed by use of an index. An index
describes the position of an element within an array. In Java, all arrays have zero as
the index of their first element. Because sample has 10 elements, it has index values
of 0 through 9. To index an array, specify the number of the element you want,
surrounded by square brackets. Thus, the first element in sample is sample[0], and
the last element is sample[9]. For example, the following program loads sample
with the numbers 0 through 9:

// Demonstrate a one-dimensional array.
class ArrayDemo {
public static void main(String args[])
int sample[] = new int [10];
int 1i;

for(i = 0; 1 < 10; 1 = i+l) -= :
sample [1] = 1i;

Arrays are indexed from zero.

for(i = 0; i < 10; i = i+1l) <= |
System.out.println("This is sample[" + 1 + "]: " +
sample [1]) ;

The output from the program is shown here:

o

This is sample[0]:
This is sample[1l]:
This is sample[2]:
This is sample[3]:
This is sample[4]:
This is sample[5]:
This is sample[6]:
This is sample[7]:
This is sample[8]:
This is sample[9]:

W O 3 0 Ul i W N

Conceptually, the sample array looks like this:

Sample [0]
Sample [1]
Sample [2]
Sample [3]
Sample [4]
Sample [S]
Sample [6]
Sample [7]
Sample [8]
Sample [9]

Arrays are common in programming because they let you deal easily with large
numbers of related variables. For example, the following program finds the
minimum and maximum values stored in the nums array by cycling through the
array using a for loop:

// Find the minimum and maximum values in an array.
class MinMax ({
public static void main(String args|[]) {
int nums([] = new int[10];
int min, max;

nums [0] = 99;

nums [1] = -10;

nums [2] = 100123;

nums [3] = 18;

nums [4] = -978;

nums [5] = 5623;

nums [6] = 463;

nums [7] = -9;

nums [8] = 287;

nums [9] = 49;

min = max = nums [0];

for(int i=1; i < 10; i++) {
if (nums[1i] < min) min = nums[i];
if (nums[i] > max) max = nums[i];

}

System.out.println("min and max: " + min + " " + max);

The output from the program is shown here:

min and max: -978 100123

In the preceding program, the nums array was given values by hand, using 10
separate assignment statements. Although perfectly correct, there is an easier way to
accomplish this. Arrays can be initialized when they are created. The general form
for initializing a one-dimensional array is shown here:

type array-name| | = { vall, val2, val3, ... , valN };

Here, the initial values are specified by vall through valN. They are assigned in
sequence, left to right, in index order. Java automatically allocates an array large
enough to hold the initializers that you specify. There is no need to explicitly use the
new operator. For example, here is a better way to write the MinMax program:

// Use array initializers.
class MinMax2 {
public static void main(String args[]) {
int nums[] = { 99, -10, 100123, 18, -978,
5623, 463, -9, 287, 49 }; <— Array inifializers

int min, max;

min = max = nums [0];
for(int i=1; i < 10; i++) {

if (nums[i] < min) min = nums[i];
if (nums[i] > max) max = nums[i];
System.out.println("Min and max: " + min + " " 4+ max);

Array boundaries are strictly enforced in Java; it is a run-time error to overrun or
underrun the end of an array. If you want to confirm this for yourself, try the
following program that purposely overruns an array:

// Demonstrate an array overrun.
class ArrayErr (

public static void main(String args[]) {
int sample[] = new int [10];
int 1i;

// generate an array overrun
for(i = 0; i < 100; i = i+1)
sample [1] = 1;

As soon as i reaches 10, an ArrayIndexOutOfBoundsException is generated and
the program is terminated.

Try This 5-1 Sorting an Array

i Bubble.java }

Because a one-dimensional array organizes data into an indexable linear list, it is the
perfect data structure for sorting. In this project you will learn a simple way to sort
an array. As you may know, there are a number of different sorting algorithms.
There are the quick sort, the shaker sort, and the shell sort, to name just three.
However, the best known, simplest, and easiest to understand is called the Bubble
sort. Although the Bubble sort is not very efficient—in fact, its performance is
unacceptable for sorting large arrays—it may be used effectively for sorting small
arrays.

1. Create a file called Bubble.java.

2. The Bubble sort gets its name from the way it performs the sorting operation. It
uses the repeated comparison and, if necessary, exchange of adjacent elements in
the array. In this process, small values move toward one end and large ones
toward the other end. The process is conceptually similar to bubbles finding their
own level in a tank of water. The Bubble sort operates by making several passes
through the array, exchanging out-of-place elements when necessary. The
number of passes required to ensure that the array is sorted is equal to one less
than the number of elements in the array.

Here is the code that forms the core of the Bubble sort. The array being sorted is
called nums.

// This is the Bubble sort.
for(a=1l; a < size; a++)
for (b=size-1; b >= a; b--) {
if (nums [b-1] > nums[b]) { // if out of order
// exXxchange elements
t = nums [b-1];
nums [b-1] = nums [b];
nums [b] = t;

Notice that sort relies on two for loops. The inner loop checks adjacent
elements in the array, looking for out-of-order elements. When an out-of-order
element pair is found, the two elements are exchanged. With each pass, the
smallest of the remaining elements moves into its proper location. The outer
loop causes this process to repeat until the entire array has been sorted.

3. Here is the entire Bubble program:

/*
Try This 5-1

Demonstrate the Bubble sort.

|

class Bubble
public static void main(String args[]) {
int nums|[] = { 98, =10, 100123, 18, =978,
5623, 463, -9, 287, 49 };
it a, 5, L;
int size;

size = 10; // number of elements to sort

// display original array
System.out.print ("Original array is:");
for(int i=0; i < size; i++)

System.out.print (" " + nums[i]);
System.out .println() ;

// This is the Bubble sort.
for(a=1l; a < size; a++)
for(b=size-1; b >= a; b--) {
if (nums [b-1] > nums [b]) { // 1f out of order
// exchange elements
t = nums [b-1];
nums [b-1] = nums [b] ;
nums [b] = t;

}

// display sorted array
System.out.print ("Sorted array is:");
for(int i=0; i < size; i++)
System.out.print (" " + nums([i]);
System.out.println() ;

J
}

The output from the program is shown here:

Original array is: 99 -10 100123 18 -978 5623 463 -9 287 49
Sorted array is: -978 -10 -9 18 49 99 287 463 5623 100123

4. Although the Bubble sort is good for small arrays, it is not efficient when used on
larger ones. The best general-purpose sorting algorithm is the Quicksort. The
Quicksort, however, relies on features of Java that you have not yet learned
about.

Multidimensional Arrays

Although the one-dimensional array is the most commonly used array in
programming, multidimensional arrays (arrays of two or more dimensions) are
certainly not rare. In Java, a multidimensional array is an array of arrays.

Two-Dimensional Arrays

The simplest form of the multidimensional array is the two-dimensional array. A
two-dimensional array is, in essence, a list of one-dimensional arrays. To declare a
two-dimensional integer array table of size 10, 20 you would write

int table[][] = new int[10][20];

Pay careful attention to the declaration. Unlike some other computer languages,
which use commas to separate the array dimensions, Java places each dimension in
its own set of brackets. Similarly, to access point 3, 5 of array table, you would use
table[3][5].

In the next example, a two-dimensional array is loaded with the numbers 1
through 12.

// Demonstrate a two-dimensional array.
class TwoD ({

public static void main(String args[]) {
int t; 13
int table[] [] = new int[3] [4];

for (t=0; t < 3; ++t) {
for(i=0; i < 4; ++1) {
table[t] [1] = (E*4)+i+1;
System.out .print (table[t] [i] + " ");

}

System.out .println() ;

}
}
}

In this example, table[0][0] will have the value 1, table[0][1] the value 2, table[0]
[2] the value 3, and so on. The value of table[2][3] will be 12. Conceptually, the
array will look like that shown in Figure 5-1.

0] 2 34— right index
0 1 2) 4
1| 5 6 @ 8
2 9 10 11 12
left index
table[1][2]

!
Figure 5-1 Conceptual view of the table array by the TwoD program

Irregular Arrays

When you allocate memory for a multidimensional array, you need to specify only
the memory for the first (leftmost) dimension. You can allocate the remaining
dimensions separately. For example, the following code allocates memory for the
first dimension of table when it is declared. It allocates the second dimension
manually.

int table[] [] = new int [3] [];
table [0] = new int [4];
table[1l] = new int[4];
table[2] = new int [4];

Although there is no advantage to individually allocating the second dimension
arrays in this situation, there may be in others. For example, when you allocate
dimensions separately, you do not need to allocate the same number of elements for
each index. Since multidimensional arrays are implemented as arrays of arrays, the
length of each array is under your control. For example, assume you are writing a
program that stores the number of passengers that ride an airport shuttle. If the
shuttle runs 10 times a day during the week and twice a day on Saturday and Sunday,
you could use the riders array shown in the following program to store the
information. Notice that the length of the second dimension for the first five indices
1s 10 and the length of the second dimension for the last two indices is 2.

// Manually allocate differing size second dimensions.
class Ragged {

public static void main(String args[])
int riders|[] [] = new int[7] [];
riders [0] = new int[10];
riders[l] = new int[10];
riders[2] = new int[10]; Here, the second dimensions
riders[3] = new int [10]; are 10 elements long.
riders (4] = new int[10];
riders [5] = new int[2]; | But here, ihey —
riders[6] = new int[2]; 2 elements long.

int i, J;

// fabricate some fake data
for(i=0; i < 5; i++)
for(j=0; j < 10; J++)
riders[i] [j] =1 +] + 10;
for(i=5; i < 7; i++)
for(j=0; 3§ < 2; J++)
riders[i] [j] = 1 +] + 10;

System.out .println ("Riders per trip during the week:");
for(i=0; i < 5; i++) {
for(j=0; j < 10; J++)
System.out.print (riders[i] [J] + " ") ;
System.out .println() ;

)

System.out.println() ;

System.out.println("Riders per trip on the weekend:") ;
for(i=5; i < 7; i++) {
for (j=0; j < 2; Jj++)
System.out.print (riders[i] [§J] + " ") ;
System.out.println();

}
}
}

The use of irregular (or ragged) multidimensional arrays is not recommended for
most applications, because it runs contrary to what people expect to find when a

multidimensional array is encountered. However, irregular arrays can be used
effectively in some situations. For example, if you need a very large two-
dimensional array that is sparsely populated (that is, one in which not all of the
elements will be used), an irregular array might be a perfect solution.

Arrays of Three or More Dimensions

Java allows arrays with more than two dimensions. Here is the general form of a
multidimensional array declaration:

type name[][]...[] = new type[sizel][size2]...[sizeN];

For example, the following declaration creates a 4 x 10 x 3 three-dimensional
integer array.

int multidim[][][] = new int[4][10][31]1:

Initializing Multidimensional Arrays

A multidimensional array can be initialized by enclosing each dimension’s initializer
list within its own set of curly braces. For example, the general form of array
initialization for a two-dimensional array is shown here:

type-specifier array_name| 1 [] = {
{ val, val, val, ..., val },
{ val, val, val, ..., val },

{ val, val, val, ..., val }
£

Here, val indicates an initialization value. Each inner block designates a row. Within
each row, the first value will be stored in the first position of the subarray, the second
value in the second position, and so on. Notice that commas separate the initializer
blocks and that a semicolon follows the closing }.

For example, the following program initializes an array called sqrs with the
numbers 1 through 10 and their squares:

// Initialize a two-dimensional array.
class Squares {
public static void main(String args[]) {
int sqrs([] [] = {

{1, 1}, —

{ 2, 4 },

{ 3, 9},

{ 4, 16 },

{ 5, 25 }, | Notice how each row has
{ 6, 36 }, its own set of initializers.
{ 7, 49 },

{ 8, 64 },

| 9, 81 },

{ 10, 100 } —

¥

int i, 7;
for(i=0; 1 < 10; i++) {
for(j=0; j < 2; Jj++)

System.out .print (sqrs[i] [j] + " ");
System.out .println() ;

}
}

Here is the output from the program:

Alternative Array Declaration Syntax

There is a second form that can be used to declare an array:

type| | var-name;

Here, the square brackets follow the type specifier, not the name of the array
variable. For example, the following two declarations are equivalent:

int counter[] = new int[3];
int[] counter = new int[3];

The following declarations are also equivalent:

char table[][] = new char[3][4];
char[][] table = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays
at the same time. For example,

int[] nums, nums2, nums3; // create three arrays

This creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // also, create three arrays

The alternative declaration form is also useful when specifying an array as a return
type for a method. For example,

int[] someMeth() {

This declares that someMeth() returns an array of type int.

Because both forms of array declarations are in widespread use, both are used in
this book.

Assigning Array References

As with other objects, when you assign one array reference variable to another, you
are simply changing what object that variable refers to. You are not causing a copy
of the array to be made, nor are you causing the contents of one array to be copied to
the other. For example, consider this program:

// Assigning array reference variables.
class AssignARef
public static void main(String args([])
int i;

new int [10] ;
new int [10] ;

int numsl []
int nums2 []

for(i=0; i < 10; i++)
numsl [i] i;

I

for (i=0; i < 10; i++)
nums2 [1] = -1i;
System.out.print ("Here is numsl: ");

for(i=0; i < 10; i++)
System.out.print (numsl[i] + " ");
System.out.println();

System.out.print ("Here is nums2: ");

for (i=0; 1 < 10; i++)
System.out.print (nums2[i] + " ");

System.out.println() ;

nums2 = numsl; // now nums2 refers to numsl <—— Assign an array reference.

System.out.print ("Here 1s nums2 after assignment: ");
for(i=0; 1 < 10; i++)

System.out.print (nums2 [1] + " ");
System.out.println();

// now operate on numsl array through nums2
nums2 [3] = 99;

System.out.print ("Here is numsl after change through nums2: ");
for (i=0; i < 10; i++)

System.out.print (numsl [i] + " ");
System.out.println() ;

The output from the program is shown here:

Here
Here
Here
Here

is numsl: 0 1 2 3 456 7 89

is nums2: 0 -1 -2 -3 -4 -5 -6 -7 -8 -9

is nums2 after assignment: 0 1 2 3 4 5 6 7 8 9

is numsl after change through nums2: 0 1 2 99 4 5 6 7 8 9

As the output shows, after the assignment of nums1 to nums2, both array reference
variables refer to the same object.

Using the length Member

Because arrays are implemented as objects, each array has associated with it a length
instance variable that contains the number of elements that the array can hold. (In
other words, length contains the size of the array.) Here 1s a program that
demonstrates this property:

// Use the length array member.
class LengthDemo {
public static void main(String args[]) {

int list[] = new int[10];
int nums[] = { 1, 2, 3 };
int table[]l[] = { // a variable-length table

{1, 2, 3},

System.
System.
System.
System.
System.
System.
System.

// use

for(int i=0; 1 < list.length; i++) <

out
out
out
out
out
out
out

.println("length
.println("length
.println("length
.println("length
.println("length
.println("length
.println() ;

of
of
of
of
of
of

list is " + list.length);

nums is " + nums.length) ;

table is " + table.length);
table[0] is " + table[0].length);
table[1] is " + table[l].length);
table[2] is " + table[2].length);

length to initialize list

list [1]

1 * 1;

| Use length to

System.out.print ("Here is list: "); control a for loop.

// now use length to display list
for(int i=0; i < list.length; i++) <«
A n

System.out .print (list [i]
System.out.println() ;

£) 3

This program displays the following output:

length of
length of
length of
length of
length of
length of

Here is list:

list is 10
nums is 3
table is 3
table [0] is 3
table[1] is 2
table[2] is 4

01 4 9 16 25 36 49 64 81

Pay special attention to the way length is used with the two-dimensional array table.
As explained, a two-dimensional array is an array of arrays. Thus, when the

expression

table.length

1s used, it obtains the number of arrays stored in table, which is 3 in this case. To

obtain the length of any individual array in table, you will use an expression such as
this,

table[0].length

which, in this case, obtains the length of the first array.

One other thing to notice in LengthDemo is the way that list.length is used by the
for loops to govern the number of iterations that take place. Since each array carries
with it its own length, you can use this information rather than manually keeping
track of an array’s size. Keep in mind that the value of length has nothing to do with
the number of elements that are actually in use. It contains the number of elements
that the array is capable of holding.

The inclusion of the length member simplifies many algorithms by making certain
types of array operations easier—and safer—to perform. For example, the following
program uses length to copy one array to another while preventing an array overrun
and its attendant run-time exception.

// Use length variable to help copy an array.
class ACopy ({
public static void main(String args[]) {
ink i
int numsl []
int nums2 []

new int [10] ;
new int [10] ;

I

for(i=0; 1 < numsl.length; i++)
numsl [i] = 1;

// copy numsl to nums2
if (nums2.length >= numsl.length) <«————Uselength to compare array sizes.
for(i = 0; 1 < numsl.length; i++)
nums2 [i] = numsl[i];

for(i=0; i < nums2.length; i++)
System.out.print (nums2 [1i] + " ");

}
}

Here, length helps perform two important functions. First, it is used to confirm that
the target array is large enough to hold the contents of the source array. Second, it
provides the termination condition of the for loop that performs the copy. Of course,
in this simple example, the sizes of the arrays are easily known, but this same
approach can be applied to a wide range of more challenging situations.

NN ICREYE A Queue Class

.................................
.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

As you may know, a data structure is a means of organizing data. The simplest data
structure 1s the array, which is a linear list that supports random access to its
elements. Arrays are often used as the underpinning for more sophisticated data
structures, such as stacks and queues. A stack is a list in which elements can be
accessed in first-in, last-out (FILO) order only. A gueue is a list in which elements
can be accessed in first-in, first-out (FIFO) order only. Thus, a stack is like a stack of
plates on a table—the first down is the last to be used. A queue is like a line at a
bank—the first in line 1s the first served.

What makes data structures such as stacks and queues interesting is that they
combine storage for information with the methods that access that information. Thus,
stacks and queues are data engines in which storage and retrieval are provided by the
data structure itself, not manually by your program. Such a combination is,
obviously, an excellent choice for a class, and in this project you will create a simple
queue class.

In general, queues support two basic operations: put and get. Each put operation
places a new element on the end of the queue. Each get operation retrieves the next
element from the front of the queue. Queue operations are consumptive: once an
element has been retrieved, it cannot be retrieved again. The queue can also become
full, if there is no space available to store an item, and it can become empty, if all of
the elements have been removed.

One last point: There are two basic types of queues—circular and noncircular. A
circular queue reuses locations in the underlying array when elements are removed.
A noncircular queue does not reuse locations and eventually becomes exhausted. For
the sake of simplicity, this example creates a noncircular queue, but with a little
thought and effort, you can easily transform it into a circular queue.

1. Create a file called QDemo.java.

2. Although there are other ways to support a queue, the method we will use is
based upon an array. That is, an array will provide the storage for the items put
into the queue. This array will be accessed through two indices. The put index
determines where the next element of data will be stored. The get index indicates
at what location the next element of data will be obtained. Keep in mind that the
get operation is consumptive, and it is not possible to retrieve the same element

twice. Although the queue that we will be creating stores characters, the same
logic can be used to store any type of object. Begin creating the Queue class with
these lines:

class Queue
char gl[]l; // this array holds the queue
int putloc, getloc; // the put and get indices

3. The constructor for the Queue class creates a queue of a given size. Here is the
Queue constructor:

Queue (int size)
q = new char[size]; // allocate memory for queue
putloc = getloc = 0;

}

Notice that the put and get indices are initially set to zero.

4. The put() method, which stores elements, is shown next:

// put a character into the queue
void put (char ch)
if (putloc==qg.length) {
System.out.println(" - Queue is full.");
return;

}

gl[putloc++] = ch;
}

The method begins by checking for a queue-full condition. If putloc is equal to
one past the last location in the q array, there is no more room in which to store
elements. Otherwise, the new element is stored at that location and putloc is
incremented. Thus, putloc is always the index where the next element will be
stored.

5. To retrieve elements, use the get() method, shown next:

// get a character from the queue

char get () {
if (getloc == putloc) {
System.out.println(" - Queue is empty.");
return (char) 0;

}

return glgetloc++];

}

Notice first the check for queue-empty. If getloc and putloc both index the
same element, the queue is assumed to be empty. This is why getloc and putloc
were both initialized to zero by the Queue constructor. Then, the next element
1s returned. In the process, getloc is incremented. Thus, getloc always indicates
the location of the next element to be retrieved.

6. Here is the entire QDemo.java program:

/*
Try This 5-2

A queue class for characters.

®f

class Queue {
char g[]; // this array holds the queue

int putloc, getloc; // the put and get indices

Queue (int size) {
g = new char|[size];
putloec = getloe = 0;

}

// put a character into the queue
void put (char ch) {
if (putloc==qg.length) ({
System.out.println(" - Queue is full.");
return;

// allocate memory for queue

}

g [putloc++] = ch;

}

// get a character from the gqueue
char get () {
if (getloc == putloc) {
System.out.println(" - Queue is empty.");
return (char) 0;

}

return gl[getloc++] ;

}
}

// Demonstrate the Queue class.
class QDemo {

public static void main (String args|[])

Queue bigQ = new Queue (100) ;
Queue smallQ = new Queue(4) ;
char ch;

int i;

System.out.println("Using bigQ to store the alphabet.");
// put some numbers into bigQ
for(i=0; i < 26; i++)

bigQ.put ((char) ('A' + 1i));

// retrieve and display elements from bigQ
System.out.print ("Contents of bigQ: ");
for(i=0; i < 26; i++) {

c¢h = bigD.get () ;

if(ch != (char) 0) System.out.print (ch) ;

}

System.out.println("\n") ;

System.out.println("Using smallQ to generate errors.") ;
// Now, use smallQ to generate some errors
for (i=0; i < 5; i++) {
System.out.print ("Attempting to store " +
(char) ('Z2' - 1i));

smallQ.put ((char) ('Z' - 1i));
System.out.println() ;

}

System.out.println() ;

// more errors on smallQ
System.out .print ("Contents of smallQ: ");
for(i=0; i < 5; i++) {

ch = smallQ.get () ;

if (ch != (char) 0) System.out.print (ch);

}
}
}

7. The output produced by the program is shown here:

Using bigQ to store the alphabet.
Contents of bigQ: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Using smallQ to generate errors.

Attempting to store
Attempting to store
Attempting to store
Attempting to store
Attempting to store

< = XK KN

- Queue 1s full.

Contents of smallQ: ZYXW - Queue is empty.

8. On your own, try modifying Queue so that it stores other types of objects. For
example, have it store ints or doubles.

The For-Each Style for Loop

When working with arrays, it is common to encounter situations in which each
element in an array must be examined, from start to finish. For example, to compute
the sum of the values held in an array, each element in the array must be examined.
The same situation occurs when computing an average, searching for a value,
copying an array, and so on. Because such “start to finish” operations are so
common, Java defines a second form of the for loop that streamlines this operation.
The second form of the for implements a “for-each” style loop. A for-each loop
cycles through a collection of objects, such as an array, in strictly sequential fashion,
from start to finish. In recent years, for-each style loops have gained popularity

among both computer language designers and programmers. Originally, Java did not
offer a for-each style loop. However, with the release of JDK 5, the for loop was
enhanced to provide this option. The for-each style of for is also referred to as the
enhanced for loop. Both terms are used in this book.

The general form of the for-each style for is shown here.
for(¢ype itr-var : collection) statement-block

Here, type specifies the type, and itr-var specifies the name of an iteration variable
that will receive the elements from a collection, one at a time, from beginning to end.
The collection being cycled through is specified by collection. There are various
types of collections that can be used with the for, but the only type used in this book
1s the array. With each iteration of the loop, the next element in the collection is
retrieved and stored in itr-var. The loop repeats until all elements in the collection
have been obtained. Thus, when iterating over an array of size N, the enhanced for
obtains the elements in the array in index order, from 0 to N—1.

Because the iteration variable receives values from the collection, fype must be the
same as (or compatible with) the elements stored in the collection. Thus, when
iterating over arrays, fype must be compatible with the element type of the array.

To understand the motivation behind a for-each style loop, consider the type of for
loop that it is designed to replace. The following fragment uses a traditional for loop
to compute the sum of the values in an array:

int nums(] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int i=0; i1 < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish.
Thus, the entire array is read in strictly sequential order. This is accomplished by
manually indexing the nums array by i, the loop control variable. Furthermore, the
starting and ending value for the loop control variable, and its increment, must be
explicitly specified.

Ask the Expert

Q: Aside from arrays, what other types of collections can the for-each
style for loop cycle through?

A: One of the most important uses of the for-each style for is to cycle
through the contents of a collection defined by the Collections
Framework. The Collections Framework is a set of classes that
implement various data structures, such as lists, vectors, sets, and maps.
A discussion of the Collections Framework is beyond the scope of this
book, but detailed coverage of the Collections Framework can be found
in my book Java: The Complete Reference, Tenth Edition (Oracle
Press/McGraw-Hill Education, 2018).

The for-each style for automates the preceding loop. Specifically, it eliminates the
need to establish a loop counter, specify a starting and ending value, and manually
index the array. Instead, it automatically cycles through the entire array, obtaining
one element at a time, in sequence, from beginning to end. For example, here is the
preceding fragment rewritten using a for-each version of the for:

int nums(] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int x: nums) sum += X;

With each pass through the loop, x is automatically given a value equal to the next
element in nums. Thus, on the first iteration, x contains 1, on the second iteration, x
contains 2, and so on. Not only is the syntax streamlined, it also prevents boundary
errors.

Here is an entire program that demonstrates the for-each version of the for just
described:

// Use a for-each style for loop.
class ForEach ({
public static void main(String args|[]) {
int vums[] = { 1, 2; 3, &, 5; 6, T, 8; 9 10 };
int sum = 0;

// Use for-each style for to display and sum the values.
for (int x : nums) { <«——— A for-each style for loop

System.out.println("Value is: " + X);
sum += X;

}

System.out.println("Summation: " + sum);

}
}

The output from the program is shown here:

Value is:
is:
is:
is:
is:
is:
is:
is:
is:
is:
Summation:

Value
Value
Value
Value
Value
Value
Value
Value
Value

R WO 0o J0 U+ WK

0
55

As this output shows, the for-each style for automatically cycles through an array in
sequence from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been
examined, it is possible to terminate the loop early by using a break statement. For
example, this loop sums only the first five elements of nums:

// Sum only the first 5 elements.

for (int x

nums) {

System.out.println("Value is: " + X);
sum += X;
if(x == 5) break; // stop the loop when 5 is obtained

}

There is one important point to understand about the for-each style for loop. Its
iteration variable is “read-only” as it relates to the underlying array. An assignment
to the iteration variable has no effect on the underlying array. In other words, you
can’t change the contents of the array by assigning the iteration variable a new value.
For example, consider this program:

// The for-each loop is essentially read-only.
class NoChange {
public static void main(String args[]) {
int nmume[] = { 1, 2, 3, 4, 5, 6, T+ 8; 9 18 };

for(int x : nums) {
System.out.print(x + " ");
X =X * 10; // no effect on nums <«———This does notchange nums.

}

System.out .println() ;

for(int x : nums)
System.out.print(x + " ");

System.out .println() ;

}
}

The first for loop increases the value of the iteration variable by a factor of 10.
However, this assignment has no effect on the underlying array nums, as the second
for loop illustrates. The output, shown here, proves this point:

456 78 910
456789 10

12 3
123

Iterating Over Multidimensional Arrays

The enhanced for also works on multidimensional arrays. Remember, however, that
in Java, multidimensional arrays consist of arrays of arrays. (For example, a two-
dimensional array is an array of one-dimensional arrays.) This is important when
iterating over a multidimensional array because each iteration obtains the next array,
not an individual element. Furthermore, the iteration variable in the for loop must be
compatible with the type of array being obtained. For example, in the case of a two-
dimensional array, the iteration variable must be a reference to a one-dimensional
array. In general, when using the for-each for to iterate over an array of N

dimensions, the objects obtained will be arrays of N—1 dimensions. To understand
the implications of this, consider the following program. It uses nested for loops to
obtain the elements of a two-dimensional array in row order, from first to last.

// Use for-each style for on a two-dimensional array.
class ForEach2 {

J

}

public static void main(String args[]) {

int sum = 0;
int nums[] [] = new int[3] [5];

// give nums some values
for(int 1 = 0; 1 < 3; 1i++)
feri{int j < b j++)
]

0
0
nums [1] [] (1+1)*(J+1);

I -

[3]

// Use for-each for loop to display and sum the values.

for (int x[] : nums) { <———Notice how x is declared.
for(int vy : x) {
System.out.println("Value is: " + Vy);
sum += y;
}
}
System.out.println("Summation: " + sum) ;

The output from this program is shown here:

Value
Value
Value
Value
Value
Value
Value
Value
Value
Value
Value
Value
Value
Value
Value

is:
is:
is:
is:
is:
is:
is:
is:
is:
is:
is:
is:
is:
is:
is:
Summation:

g W EHE oGNP WD

= D
N

1.5
90

In the program, pay special attention to this line:

for(int xI[]

: nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers.
This 1s necessary because each iteration of the for obtains the next array in nums,
beginning with the array specified by nums[0]. The inner for loop then cycles
through each of these arrays, displaying the values of each element.

Applying the Enhanced for

Since the for-each style for can only cycle through an array sequentially, from start
to finish, you might think that its use is limited. However, this is not true. A large
number of algorithms require exactly this mechanism. One of the most common is
searching. For example, the following program uses a for loop to search an unsorted
array for a value. It stops if the value is found.

// Search an array using for-each style for.
class Search {

public static void main(String args[])
int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
int val = 5;
boolean found = false;

// Use for-each style for to search nums for val.
for (int x : nums) {

if (x == val) {
found = true;
break;
}
}
if (found)

System.out .println ("Value found!") ;

The for-each style for is an excellent choice in this application because searching
an unsorted array involves examining each element in sequence. (Of course, if the
array were sorted, a binary search could be used, which would require a different
style loop.) Other types of applications that benefit from for-each style loops include
computing an average, finding the minimum or maximum of a set, looking for
duplicates, and so on.

Now that the for-each style for has been introduced, it will be used where
appropriate throughout the remainder of this book.

Strings
From a day-to-day programming standpoint, one of the most important of Java’s data
types is String. String defines and supports character strings. In some other
programming languages, a string is an array of characters. This is not the case with
Java. In Java, strings are objects.

Actually, you have been using the String class since Chapter 1, but you did not
know it. When you create a string literal, you are actually creating a String object.
For example, in the statement

System.out.println("In Java, strings are objects.");

the string "In Java, strings are objects." is automatically made into a String object by
Java. Thus, the use of the String class has been “below the surface” in the preceding
programs. In the following sections, you will learn to handle it explicitly. Be aware,
however, that the String class is quite large, and we will only scratch its surface
here. It is a class that you will want to explore on its own.

Constructing Strings

You can construct a String just like you construct any other type of object: by using
new and calling the String constructor. For example:

String str = new String("Hello");

This creates a String object called str that contains the character string "Hello". You
can also construct a String from another String. For example:

String str = new String("Hello");
String str2 = new String(str);

After this sequence executes, str2 will also contain the character string "Hello".
Another easy way to create a String is shown here:

String str = "Java strings are powerful.";

In this case, str is initialized to the character sequence "Java strings are powerful."

Once you have created a String object, you can use it anywhere that a quoted
string is allowed. For example, you can use a String object as an argument to
printin(), as shown in this example:

// Introduce String.
class StringDemo
public static void main(String args[]) {
// declare strings in various ways
String strl = new String("Java strings are objects.");
String str2 = "They are constructed various ways.";
String str3 = new String(str2);

System.out .println(strl) ;

System.out .println(str2) ;
System.out .println(str3) ;

The output from the program is shown here:

Java strings are objects.
They are constructed various ways.
They are constructed various ways.

Operating on Strings
The String class contains several methods that operate on strings. Here are the
general forms for a few:

boolean equals(str] Returns true if the invoking string contains the same character
sequence as str.

int lengthf) Obtains the length of a string.

char charAt{index) Obtains the character at the index specified by index.

int compareTo(str] Returns less than zero if the mvokmg stri n?]ls less than str greoter
than zero if the invoking string is greater than sfr, and zero if the

strings are equal,

int indexOffstr) Searches the invoking string for the substring specified by str. Returns
the index of the first match or -1 on failure.

int lastindexOffstr] Searches the invoking string for the substring specified by str. Refurns
the index of the last match or -1 on failure.

Here is a program that demonstrates these methods:

// Some String operations.
class StrOps {
public static void main(String args[]) {
String strl =
"When it comes to Web programming, Java is #1.";
String str2 = new String(strl) ;

String str3 = "Java strings are powerful.";
int result, 1dx;

char ch;

System.out.println("Length of strl: " +

strl.length());

// display strl, one char at a time.
for (int i1=0; 1 < strl.length(); i++)
System.out .print (strl.charAt (i)) ;

System.out.println () ;

if (strl.equals(str2))

System.out.println("strl equals str2");
else

System.out.println("strl does not equal str2");

if(strl.equals(str3))
System.out.println("strl equals str3");
else
System.out.println("strl does not equal str3");

result = strl.compareTo(str3);
if (result == 0)

System.out.println("strl and str3 are equal");
else if (result < 0)

System.out.println("strl is less than str3");
else

System.out.println("strl is greater than str3");

// assign a new string to str2
str2 = "One Two Three One'";

idx = str2.indexOf ("One") ;

System.out.println("Index of first occurrence of One: " + idx);
idx = str2.lastIndexOf("One") ;
System.out.println("Index of last occurrence of One: " + 1idx);

This program generates the following output:

Length of strl: 45

When it comes to Web programming, Java is #1.
strl equals str2

strl does not equal str3

strl is greater than str3

Index of first occurrence of One: 0

Index of last occurrence of One: 14

You can concatenate (join together) two strings using the + operator. For
example, this statement

String strl = "One";

String str2 = "Two";

String str3 = "Three";

String str4 = strl + str2 + str3;

initializes str4 with the string "OneTwoThree".

Ask the Expert

Q: Why does String define the equals() method? Can’t I just use ==

A: The equals() method compares the character sequences of two String
objects for equality. Applying the == to two String references simply
determines whether the two references refer to the same object.

Arrays of Strings

Like any other data type, strings can be assembled into arrays. For example:

// Demonstrate String arrays.
class StringArrays {
public static void main(String args[]) ({
String strs[]l] = { "This", "is", "a", "test." };

System.out.println("Original array: ");
for(String s : strs)

System.out.print(s + " ");
System.out.println("\n") ;

// change a string
strs[1l] = "was";
gtre[3] = "test, tool";

System.out.println("Modified array: ");
for (String s : strs)
System.out.print(s + " ") ;

Here is the output from this program:

Original array:
This is a test.

Modified array:
This was a test, too!

Strings Are Immutable

The contents of a String object are immutable. That is, once created, the character
sequence that makes up the string cannot be altered. This restriction allows Java to
implement strings more efficiently. Even though this probably sounds like a serious
drawback, it isn’t. When you need a string that is a variation on one that already
exists, simply create a new string that contains the desired changes. Since unused
String objects are automatically garbage collected, you don’t even need to worry
about what happens to the discarded strings. It must be made clear, however, that
String reference variables may, of course, change the object to which they refer. It is
just that the contents of a specific String object cannot be changed after it is created.

Ask the Expert

Q: You say that once created, String objects are immutable. 1
understand that, from a practical point of view, this is not a serious
restriction, but what if I want to create a string that can be changed?

A: You’re in luck. Java offers a class called StringBuffer, which creates
string objects that can be changed. For example, in addition to the
charAt() method, which obtains the character at a specific location,
StringBuffer defines setCharAt(), which sets a character within the
string. Java also supplies StringBuilder, which is related to
StringBuffer, and also supports strings that can be changed. However,
for most purposes you will want to use String, not StringBuffer or
StringBuilder.

To fully understand why immutable strings are not a hindrance, we will use
another of String’s methods: substring(). The substring() method returns a new
string that contains a specified portion of the invoking string. Because a new String

object 1s manufactured that contains the substring, the original string is unaltered,
and the rule of immutability remains intact. The form of substring() that we will be
using is shown here:

String substring(int startIndex, int endIndex)

Here, startindex specifies the beginning index, and endIndex specifies the stopping
point. Here 1s a program that demonstrates substring() and the principle of
immutable strings:

// Use substring() .
class SubStr {

public static void main(String args/(]) {
String orgstr = "Java makes the Web move.";
// construct a substring This creates

n@wshmﬁtht
contains the
desired substring.

String substr = orgstr.substring (5, 18);

System.out .println("orgstr: " + orgstr);
System.out .println("substr: " + substr);

Here is the output from the program:

orgstr: Java makes the Web move.
substr: makes the Web

As you can see, the original string orgstr is unchanged, and substr contains the
substring.

Using a String to Control a switch Statement

As explained in Chapter 3, prior to JDK 7, a switch had to be controlled by an
integer type, such as int or char. This precluded the use of a switch in situations in
which one of several actions is selected based on the contents of a string. Instead, an
if-else-if ladder was the typical solution. Although an if-else-if ladder is semantically
correct, a switch statement would be the more natural idiom for such a selection.
Fortunately, this situation has been remedied. Today, you can use a String to control
a switch. This results in more readable, streamlined code in many situations.

Here is an example that demonstrates controlling a switch with a String:

// Use a string to control a switch statement.

class StringSwitch {
public static void main (String args|[]) {

String command = "cancel";

switch (command) {

cage "connect":
System.out .println("Connecting") ;
break;

case "cancel":
System.out .println("Canceling") ;
break;

case "disconnect":
System.out .println("Disconnecting") ;
break;

default:
System.out .println ("Command Error!") ;
break;

As you would expect, the output from the program is

Canceling

The string contained in command (which is "cancel" in this program) is tested
against the case constants. When a match is found (as it is in the second case), the
code sequence associated with that sequence is executed.

Being able to use strings in a switch statement can be very convenient and can
improve the readability of some code. For example, using a string-based switch is an
improvement over using the equivalent sequence of if/else statements. However,
switching on strings can be less efficient than switching on integers. Therefore, it is
best to switch on strings only in cases in which the controlling data is already in
string form. In other words, don’t use strings in a switch unnecessarily.

Using Command-Line Arguments

Now that you know about the String class, you can understand the args parameter to

main() that has been in every program shown so far. Many programs accept what
are called command-line arguments. A command-line argument is the information
that directly follows the program’s name on the command line when it is executed.
To access the command-line arguments inside a Java program is quite easy—they
are stored as strings in the String array passed to main(). For example, the
following program displays all of the command-line arguments that it is called with:

// Display all command-line information.
class CLDemo {
public static void main(String args[]) {
System.out .println ("There are " + args.length +
" command-line arguments.");

System.out .println ("They are: ") ;
for(int i=0; i<args.length; i++)
System.out .println("arg([" + 1 + "]: " + args[i]);

If CLDemo 1s executed like this,

java CLDemo one two three

you will see the following output:

There are 3 command-line arguments.

They are:
arg[0] : one
arg[l]: two

arg[2] : three

Notice that the first argument is stored at index 0, the second argument is stored at
index 1, and so on.

To get a taste of the way command-line arguments can be used, consider the next
program. It takes one command-line argument that specifies a person’s name. It then
searches through a two-dimensional array of strings for that name. If it finds a match,
it displays that person’s telephone number.

// A simple automated telephone directory.
class Phone ({
public static void main(String args|[]) {
String numbers[] [] = {

{ "Tom", "555-3322" },
{ "Mary", "555-8976" },
{ "Jon", "555-1037" },
{ "Rachel", "555-1400" }
di
LG 1.3

if (args.length != 1) =

System.out.println("Usage: java Phone <name>");

else
for (i=0; i<numbers.length; i++)
if (numbers [i] [0] .equals (args [0]))
System.out.println (numbers[i] [0] + ": " +
numbers (1] [1]) ;
break;

}
}

if (1 == numbers.length)
System.out.println("Name not found.");

Here is a sample run:

java Phone Mary
Mary: 555-8976

The Bitwise Operators

To use the program,
one command-|ine
argument must be
present.

In Chapter 2 you learned about Java’s arithmetic, relational, and logical operators.
Although these are the most commonly used, Java provides additional operators that
expand the set of problems to which Java can be applied: the bitwise operators. The
bitwise operators can be used on values of type long, int, short, char, or byte.
Bitwise operations cannot be used on boolean, float, or double, or class types. They
are called the bitwise operators because they are used to test, set, or shift the
individual bits that make up a value. Bitwise operations are important to a wide

variety of systems-level programming tasks in which status information from a
device must be interrogated or constructed. Table 5-1 lists the bitwise operators.

Operator Result

& Bitwise AND

| Bifwise OR

A Bitwise exclusive OR

>> Shift right

>>> Unsigned shift right

<< Shift left

~ One's complement (unary NOT)

!
Table 5-1 The Bitwise Operators

The Bitwise AND, OR, XOR, and NOT Operators

The bitwise operators AND, OR, XOR, and NOT are &, |, *, and ~. They perform
the same operations as their Boolean logical equivalents described in Chapter 2. The
difference is that the bitwise operators work on a bit-by-bit basis. The following
table shows the outcome of each operation using 1’s and 0’s:

q p&q Plg pq ~p
0 0 0 0 0]
1 0 0 1 1 0
0] 0]]]
1 1] 1 0 0

In terms of its most common usage, you can think of the bitwise AND as a way to
turn bits off. That is, any bit that is 0 in either operand will cause the corresponding
bit in the outcome to be set to 0. For example:

1101 0011
& 10101010
10000010

The following program demonstrates the & by turning any lowercase letter into
uppercase by resetting the 6th bit to 0. As the Unicode/ASCII character set is
defined, the lowercase letters are the same as the uppercase ones except that the
lowercase ones are greater in value by exactly 32. Therefore, to transform a
lowercase letter to uppercase, just turn off the 6th bit, as this program illustrates:

// Uppercase letters.
class UpCase {
public static void main(String args[]) {
char ch;

for (int i=0; i < 10; i++) {
ch = (char) ('a' + 1i);
System.out.print (ch) ;

// This statement turns off the é6th bit.
ch = (char) ((int) ch & 65503); // ch is now uppercase

System.out.print(ch + " ");

The output from this program is shown here:

aA bB cC dD eE fF gG hH iI jJ

The value 65,503 used in the AND statement is the decimal representation of 1111
1111 1101 1111. Thus, the AND operation leaves all bits in ch unchanged except for
the 6th one, which i1s set to 0.

The AND operator is also useful when you want to determine whether a bit is on
or off. For example, this statement determines whether bit 4 in status is set:

if((status & 8)!= 0) System.out.println("bit 4 is on");

The number 8 is used because it translates into a binary value that has only the 4th
bit set. Therefore, the if statement can succeed only when bit 4 of status is also on.
An interesting use of this concept is to show the bits of a byte value in binary format.

// Display the bits within a byte.
class ShowBits {
public static void main(String args[]) {

int t;

byte wval;

val = 123;

for(t=128; t > 0; t = t/2) {
if((val & £t) != 0) System.out.print ("1 ");
else System.out.print ("0 ");

}

}
J

The output is shown here:
01111011

The for loop successively tests each bit in val, using the bitwise AND, to determine
whether it is on or off. If the bit is on, the digit 1 is displayed; otherwise, 0 1s
displayed. In Try This 5-3, you will see how this basic concept can be expanded to
create a class that will display the bits in any type of integer.

The bitwise OR, as the reverse of AND, can be used to turn bits on. Any bit that is
set to 1 in either operand will cause the corresponding bit in the result to be set to 1.

For example:

1101 0011
| 10101010
1111 1011

We can make use of the OR to change the uppercasing program into a lowercasing
program, as shown here:

// Lowercase letters.
class LowCase {
public static void main(String args([])
char ch;

for (int i=0; i < 10; i++) {
ch = (char) ('A' + 1i);
System.out.print (ch) ;

// This statement turns on the 6éth bit.
ch = (char) ((int) ch | 32); // ch is now lowercase

System.out.print(ch + " ");

The output from this program is shown here:

Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj

The program works by ORing each character with the value 32, which is 0000 0000
0010 0000 in binary. Thus, 32 is the value that produces a value in binary in which
only the 6th bit is set. When this value is ORed with any other value, it produces a
result in which the 6th bit is set and all other bits remain unchanged. As explained,
for characters this means that each uppercase letter is transformed into its lowercase
equivalent.

An exclusive OR, usually abbreviated XOR, will result in a set bit if, and only if,
the bits being compared are different, as illustrated here:
0
1
I

N

I [1
0 00
I 11

DI—-.—-

1
1
0
The XOR operator has an interesting property that makes it a simple way to

encode a message. When some value X is XORed with another value Y, and then
that result is XORed with Y again, X is produced. That is, given the sequence

O | —
o -

Rl =X * ¥; B2 = R1 * ¥;

then R2 is the same value as X. Thus, the outcome of a sequence of two XORs can
produce the original value.

You can use this principle to create a simple cipher program in which some

integer is the key that is used to both encode and decode a message by XORing the
characters in that message. To encode, the XOR operation is applied the first time,
yielding the cipher text. To decode, the XOR is applied a second time, yielding the
plain text. Of course, such a cipher has no practical value, being trivially easy to
break. It does, however, provide an interesting way to demonstrate the XOR. Here is
a program that uses this approach to encode and decode a short message:

// Use XOR to encode and decode a message.
class Encode {
public static void main(String args[]) (
String msg = "This is a test";
String encmsg = "";
String decmsg = "";
int key = 88;

System.out.print ("Original message: ");
System.out.println(msgq) ;

// encode the message This constructs the encoded string.
for(int i=0; 1 < msg.length(); i++) £
encmsg = encmsg + (char) (msg.charAt(i) * key);

System.out.print ("Encoded message: ");
System.out.println(encmsg) ;

// decode the message
for(int i=0; 1 < msg.length(); i++)

decmsg = decmsg + (char) (encmsg.charAt (i) * key);
System.out.print ("Decoded message: ") ; This constructs the decoded string.
System.out.println(decmsg) ;

Here is the output:

Original message: This is a test
Encoded message: 01+x1+X9X,=+,
Decoded message: This is a test

As you can see, the result of two XORs using the same key produces the decoded
message.

The unary one’s complement (NOT) operator reverses the state of all the bits of
the operand. For example, if some integer called A has the bit pattern 1001 0110,
then ~A produces a result with the bit pattern 0110 1001.

The following program demonstrates the NOT operator by displaying a number
and its complement in binary:

// Demonstrate the bitwise NOT.
class NotDemo {
public static void main (String args[]) {
byte b = -34;
for(int t=128; t > 0; t = t/2) {
if((b & t) != 0) System.out.print ("1 ");
else System.out.print ("0 ") ;

}

System.out.println() ;

// reverse all bits
b = (byte) ~b;

for(int t=128; t > 0; t = t/2) {
if((b & t) != 0) System.out.print ("1 ");
else System.out.print ("0 ") ;

}
}
}

Here is the output:
11011110
001000O0O01
The Shift Operators

In Java it 1s possible to shift the bits that make up a value to the left or to the right by
a specified amount. Java defines the three bit-shift operators shown here:

<< Left shift

>> Right shift

>>> Unsigned right shif

The general forms for these operators are shown here:

value << num-bits
value >> num-bits
value >>> num-bits

Here, value is the value being shifted by the number of bit positions specified by
num-bits.

Each left shift causes all bits within the specified value to be shifted left one
position and a 0 bit to be brought in on the right. Each right shift shifts all bits to the
right one position and preserves the sign bit. As you may know, negative numbers
are usually represented by setting the high-order bit of an integer value to 1, and this
1s the approach used by Java. Thus, if the value being shifted is negative, each right
shift brings in a 1 on the left. If the value is positive, each right shift brings in a 0 on
the left.

In addition to the sign bit, there is something else to be aware of when right
shifting. Java uses two s complement to represent negative values. In this approach
negative values are stored by first reversing the bits in the value and then adding 1.
Thus, the byte value for —1 in binary is 1111 1111. Right shifting this value will
always produce —1!

If you don’t want to preserve the sign bit when shifting right, you can use an
unsigned right shift (>>>), which always brings in a 0 on the left. For this reason, the
>>> is also called the zero-fill right shift. You will use the unsigned right shift when
shifting bit patterns, such as status codes, that do not represent integers.

For all of the shifts, the bits shifted out are lost. Thus, a shift is not a rotate, and
there 1s no way to retrieve a bit that has been shifted out.

Shown next is a program that graphically illustrates the effect of a left and right
shift. Here, an integer is given an initial value of 1, which means that its low-order
bit is set. Then, a series of eight shifts are performed on the integer. After each shift,
the lower 8 bits of the value are shown. The process is then repeated, except that a 1
is put in the 8th bit position, and right shifts are performed.

// Demonstrate the shift << and >> operators.
class ShiftDemo ({
public static void main(String args[]) {

int val = 1;
for(int 1 = 0; i < 8; i++) {
for (int t=128; t > 0; t = t/2) {
if((val & t) != 0) System.out.print ("1l ");
else System.out.print ("0 ");
}

System.out .println() ;
val = val << 1; // left shift

}

System.out .println() ;

val = 128;
for(int i = 0; 1 < 8; i++) {
for (int t=128; t > 0; t = t/2) {
if((val & £) != 0) System.out.print("1l1 ");

else System.out.print ("0 ");

}

System.out .println() ;
val = val >> 1; // right shift

The output from the program is shown here:

000O0O0O0O01
000O0O0OT1D0
0 00O0OO0O1O00

000O01O0O00O0
0 0010O0O00O
0O 0100O0O0DO
01 00O0O0O0DO
1 0000O0O0DO
1 00000O00O
01 00O0O0O0DO
0 0100O0O0DO
00010000
00001000
00000100
0O 0O0O0O0OO0O10
0 0O00O0OO0OOOT1

You need to be careful when shifting byte and short values because Java will
automatically promote these types to int when evaluating an expression. For
example, if you right shift a byte value, it will first be promoted to int and then
shifted. The result of the shift will also be of type int. Often this conversion is of no
consequence. However, if you shift a negative byte or short value, it will be sign-
extended when it is promoted to int. Thus, the high-order bits of the resulting integer
value will be filled with ones. This is fine when performing a normal right shift. But
when you perform a zero-fill right shift, there are 24 ones to be shifted before the
byte value begins to see zeros.

Bitwise Shorthand Assignments

All of the binary bitwise operators have a shorthand form that combines an
assignment with the bitwise operation. For example, the following two statements
both assign to x the outcome of an XOR of x with the value 127.

x = x - 127%;

x = 127;

Ask the Expert

Q: Since binary is based on powers of two, can the shift operators be
used as a shortcut for multiplying or dividing an integer by two?

A: Yes. The bitwise shift operators can be used to perform very fast

multiplication or division by two. A shift left doubles a value. A shift
right halves it.

INANIORERE A ShowBits Class

.

This project creates a class called ShowBits that enables you to display in binary the
bit pattern for any integer value. Such a class can be quite useful in programming.
For example, if you are debugging device-driver code, then being able to monitor the
data stream in binary is often a benefit.

1. Create a file called ShowBitsDemo.java.

2. Begin the ShowBits class as shown here:

class ShowBits {
int numbits;

ShowBits (int n) {
numbits = n;

}

ShowBits creates objects that display a specified number of bits. For example,
to create an object that will display the low-order 8 bits of some value, use

ShowBits byteval = new ShowBits (8)
The number of bits to display is stored in numbits.

3. To actually display the bit pattern, ShowBits provides the method show(), which
is shown here:

void show(long val) {

}

long mask = 1;

// left-shift a 1 into the proper position
mask <<= numbits-1;

int spacer = 0;
for(; mask != 0; mask >>>= 1) {
if ((val & mask) != 0) System.out.print ("1");
else System.out.print ("0");
spacer++;
if ((spacer % 8) == 0) {
System.out .print (" ") ;
spacer = 0;
}

}

System.out.println() ;

Notice that show() specifies one long parameter. This does not mean that you
always have to pass show() a long value, however. Because of Java’s
automatic type promotions, any integer type can be passed to show(). The
number of bits displayed is determined by the value stored in numbits. After
each group of 8 bits, show() outputs a space. This makes it easier to read the
binary values of long bit patterns.

4. The ShowBitsDemo program is shown here:

/*
Try This 5-3
A class that displays the binary representation of a value.

o

class ShowBits
int numbits;

ShowBits (int n) {
numbits = n;

}

void show(long val) {
long mask = 1;

// left-shift a 1 into the proper position
mask <<= numbits-1;

int spacer = 0;

for(; mask != 0; mask >>>= 1) {
if((val & mask) != 0) System.out.print("1l");
else System.out.print("0");
spacer++;
if ((spacer % 8) == 0) {

System.out.print (" ");
gspacer = 0;
}
)
System.out.println() ;
}
}

// Demonstrate ShowBits.
class ShowBitsDemo
public static void main(String args(]) {
ShowBits b = new ShowBits(8) ;
ShowBits 1 = new ShowBits(32);
ShowBits 1i = new ShowBits (64) ;

System.out.println("123 in binary: ");
b.show(123);

System.out.println("\n87987 in binary: ");
i.show (87987) ;

System.out.println("\n237658768 in binary: ");
1i.show(237658768) ;

// you can also show low-order bits of any integer
System.out.println("\nLow order 8 bits of 87987 in binary: ");
b.show (87987) ;

}
}

5. The output from ShowBitsDemo is shown here:

123 in binary:
01111011

87987 in binary:
00000000 00000001 01010111 10110011

237658768 in binary:
00000000 0O0OOOO0O0CO OOCOOOOOO QOOOOOOO 00001110 00101010 01100010
10010000

Low order 8 bits of 87987 in binary:
10110011

The ? Operator

One of Java’s most fascinating operators is the ?. The ? operator is often used to
replace if-else statements of this general form:

if (condition)

var = expressionl;
else

var = expression2,

Here, the value assigned to var depends upon the outcome of the condition
controlling the if.

The ? is called a ternary operator because it requires three operands. It takes the
general form

Expl ? Exp2 : Exp3;

where Expl is a boolean expression, and Exp2 and Exp3 are expressions of any type
other than void. The type of Exp2 and Exp3 must be the same (or compatible),
though. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp/ is evaluated. If it is true,
then Exp?2 is evaluated and becomes the value of the entire ? expression. If Exp/ is
false, then Exp3 is evaluated and its value becomes the value of the expression.
Consider this example, which assigns absval the absolute value of val:

absval = val < 0 ? -val : val; // get absolute value of val

Here, absval will be assigned the value of val if val is zero or greater. If val is
negative, then absval will be assigned the negative of that value (which yields a
positive value). The same code written using the if-else structure would look like
this:

if(val < 0) absval = -val;
else absval = val;

Here is another example of the ? operator. This program divides two numbers, but
will not allow a division by zero.

// Prevent a division by zero using the ?.
class NoZeroDiv
public static void main(String args[]) ({
int result;

for(int 1 = -5; i < 6; i++) {
result = 1 != 0 ? 100 / i : 0; <«————This prevents a divide-by-zero.
1E(i 1= 0)
System.out.println("100 / " + i + " is " + result);
}

The output from the program is shown here:

100 / -5 is -20
100 / -4 is -25
106 J =3 4w =33
100 / -2 is -50
100 / -1 is -100
100 / 1 is 100
100 / 2 is 50
100 / 3 is 33
100 / 4 is 25
100 / 5 is 20

Pay special attention to this line from the program:

result = 1 != 0 2 100 / 1 : 0;

Here, result is assigned the outcome of the division of 100 by i. However, this
division takes place only ifi is not zero. When i is zero, a placeholder value of zero
1s assigned to result.

You don’t actually have to assign the value produced by the ? to some variable.
For example, you could use the value as an argument in a call to a method. Or, if the
expressions are all of type boolean, the ? can be used as the conditional expression
in a loop or if statement. For example, here is the preceding program rewritten a bit
more efficiently. It produces the same output as before.

// Prevent a division by zero using the ?.
class NoZeroDiv2 ({
public static void main(String args|[]) {

for(int 1 = -5; 1 < 6; 1i++)
if(i !'= 0 ? true : false)
System.out.println("100 / " + 1 +
" is " 4+ 100 / 1i);
}
}

Notice the if statement. If i is zero, then the outcome of the if is false, the division by
zero is prevented, and no result is displayed. Otherwise, the division takes place.

v Chapter 5 Self Test

10.

11.

12.
13.

14.

15.

Show two ways to declare a one-dimensional array of 12 doubles.

Show how to initialize a one-dimensional array of integers to the values 1
through 5.

Write a program that uses an array to find the average of 10 double values. Use
any 10 values you like.

Change the sort in Try This 5-1 so that it sorts an array of strings. Demonstrate
that it works.

What is the difference between the String methods indexOf() and lastIndexOf(
)?

Since all strings are objects of type String, show how you can call the length()
and charAt() methods on this string literal: "I like Java".

Expanding on the Encode cipher class, modify it so that it uses an eight-
character string as the key.

Can the bitwise operators be applied to the double type?

Show how this sequence can be rewritten using the ? operator.

if(x < 0) y = 10;
else y = 20;

In the following fragment, is the & a bitwise or logical operator? Why?

boolean a, b;

/] -

if (a & b)

Is it an error to overrun the end of an array? Is it an error to index an array with
a negative value?

What is the unsigned right-shift operator?

Rewrite the MinMax class shown earlier in this chapter so that it uses a for-
each style for loop.

Can the for loops that perform sorting in the Bubble class shown in Try This 5-
1 be converted into for-each style loops? If not, why not?

Can a String control a switch statement?

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 6
A Closer Look at Methods and Classes

Key SKkills & Concepts

Control access to members
Pass objects to a method
Return objects from a method
Overload methods

Overload constructors

Use recursion

Apply static

Use inner classes

Use varargs

explaining how to control access to the members of a class. It then discusses

the passing and returning of objects, method overloading, recursion, and the
use of the keyword static. Also described are nested classes and variable-length
arguments.

This chapter resumes our examination of classes and methods. It begins by

Controlling Access to Class Members

In its support for encapsulation, the class provides two major benefits. First, it links
data with the code that manipulates it. You have been taking advantage of this aspect
of the class since Chapter 4. Second, it provides the means by which access to
members can be controlled. It is this feature that is examined here.

Although Java’s approach is a bit more sophisticated, in essence, there are two

basic types of class members: public and private. A public member can be freely
accessed by code defined outside of its class. A private member can be accessed only
by other methods defined by its class. It is through the use of private members that
access 1s controlled.

Restricting access to a class’ members is a fundamental part of object-oriented
programming because it helps prevent the misuse of an object. By allowing access to
private data only through a well-defined set of methods, you can prevent improper
values from being assigned to that data—by performing a range check, for example.
It is not possible for code outside the class to set the value of a private member
directly. You can also control precisely how and when the data within an object is
used. Thus, when correctly implemented, a class creates a “black box™ that can be
used, but the inner workings of which are not open to tampering.

Up to this point, you haven’t had to worry about access control because Java
provides a default access setting in which, for the types of programs shown earlier,
the members of a class are freely available to the other code in the program. (Thus,
for the preceding examples, the default access setting is essentially public.) Although
convenient for simple classes (and example programs in books such as this one), this
default setting is inadequate for many real-world situations. Here we introduce
Java’s other access control features.

Java’s Access Modifiers

Member access control is achieved through the use of three access modifiers: public,
private, and protected. As explained, if no access modifier is used, the default
access setting is assumed. In this chapter, we will be concerned with public and
private. The protected modifier applies only when inheritance is involved and is
described in Chapter 8.

When a member of a class is modified by the public specifier, that member can be
accessed by any other code in your program. This includes by methods defined
inside other classes.

When a member of a class is specified as private, that member can be accessed
only by other members of its class. Thus, methods in other classes cannot access a
private member of another class.

The default access setting (in which no access modifier is used) is the same as
public unless your program is broken down into packages. A package is, essentially,
a grouping of classes. Packages are both an organizational and an access control
feature, but a discussion of packages must wait until Chapter 8. For the types of
programs shown in this and the preceding chapters, public access is the same as
default access.

An access modifier precedes the rest of a member’s type specification. That is, it

must begin a member’s declaration statement. Here are some examples:

public String errMsg;
private accountBalance bal;

private boolean isError (byte status) { //

To understand the effects of public and private, consider the following program:

// Public vs private access.

class MyClass {
private int alpha; // private access
public int beta; // public access
int gamma; // default access

/* Methods to access alpha. It is OK for a

member of a class to access a private member
of the same class.

'

void setAlpha(int a) {
alpha = a;

}

int getAlpha()
return alpha;
}

}

class AccessDemo {
public static void main(String args[]) ({
MyClass ob = new MyClass();

/* Access to alpha is allowed only through
its accessor methods. */
ob.setAlpha (-99) ;
System.out.println("ob.alpha is " + ob.getAlpha()) ;

// You cannot access alpha like this:
// ob.alpha = 10; // Wrong! alpha is private! <«———Wrong—alpha is private!

// These are OK because beta and gamma are public.

ob.beta = 88; «————— OK because these are public.
ob.gamma = 99;

As you can see, inside the MyClass class, alpha is specified as private, beta is
explicitly specified as public, and gamma uses the default access, which for this
example is the same as specifying public. Because alpha is private, it cannot be
accessed by code outside of its class. Therefore, inside the AccessDemo class, alpha
cannot be used directly. It must be accessed through its public accessor methods:
setAlpha() and getAlpha(). If you were to remove the comment symbol from the
beginning of the following line,

// ob.alpha = 10; // Wrong! alpha is private!

you would not be able to compile this program because of the access violation.
Although access to alpha by code outside of MyClass is not allowed, methods
defined within MyClass can freely access it, as the setAlpha() and getAlpha()
methods show.

The key point is this: A private member can be used freely by other members of
its class, but it cannot be accessed by code outside its class.

To see how access control can be applied to a more practical example, consider
the following program that implements a “fail-soft” int array, in which boundary

errors are prevented, thus avoiding a run-time exception from being generated. This
1s accomplished by encapsulating the array as a private member of a class, allowing
access to the array only through member methods. With this approach, any attempt
to access the array beyond its boundaries can be prevented, with such an attempt
failing gracefully (resulting in a “soft” landing rather than a “crash”). The fail-soft
array is implemented by the FailSoftArray class, shown here:

/* This class implements a "fail-soft" array which prevents
runtime errors.

2

class FailSoftArray ({
private int a[]; // reference to array
private int errval; // value to return if get () fails
public int length; // length is public

/* Construct array given its size and the value to
return if get () fails. */
public FailSoftArray(int size, int errv) {
a = new int[size];
errval = errv;
length = size;

}

// Return value at given index.
public int get (int index) {
if (indexOK (index)) return al[index]; <«———Trap on out-of-bounds index.
return erxrval;

}

// Put a value at an index. Return false on failure.
public boolean put (int index, int val) {
if (indexOK (index)) { =
alindex] = wval;
return true;

}

return false;

}

// Return true if index is within bounds.
private boolean indexOK (int index)
if (index >= 0 & index < length) return true;
return false;

}
}

// Demonstrate the fail-soft array.
class FSDemo {
public static void main(String args[]) {
FailSoftArray fs = new FailSoftArray(5, -1);
int %;

// show quiet failures
System.out.println("Fail quietly.");
for(int i=0; i < (fs.length * 2); i++)

fs.put (i, 1i*10); e———— Access to array must be through its accessor methods.

for(int i=0; i < (fs.length * 2); i++) {
X = fs.get(i);‘

if(x != -1) System.out.print(x + " ");

}

System.out.println("");

// now, handle failures
System.out.println("\nFail with error reports.");
for(int i=0; i < (fs.length * 2); i++)
1E(Ifs.put {1, 1%10))
System.out.println("Index " + i1 + " out-of-bounds") ;

for (int i=0; i < (fs.length * 2); i++) {
x = fs.get (1) ;
if(x != -1) System.out.print(x + " ");
else
System.out.println("Index " + 1 + " out-of-bounds") ;

The output from the program is shown here:

Fail quietly.
O 10 20 30 40

Fail with error reports.

Index
Index
Index
Index
Index

5

O 0 J O

0 10 20

Index
Index
Index
Index

6
7
8
9

out -of-bounds
out-of-bounds
out -of-bounds
out-of-bounds
out -of-bounds
30 40 Index 5
out-of-bounds
out -of-bounds
out -of-bounds
out -of-bounds

out -of-bounds

Let’s look closely at this example. Inside FailSoftArray are defined three private
members. The first is a, which stores a reference to the array that will actually hold
information. The second is errval, which is the value that will be returned when a
call to get() fails. The third is the private method indexOK(), which determines
whether an index is within bounds. Thus, these three members can be used only by
other members of the FailSoftArray class. Specifically, a and errval can be used

only by other methods in the class, and indexOK() can be called only by other
members of FailSoftArray. The rest of the class members are public and can be
called by any other code in a program that uses FailSoftArray.

When a FailSoftArray object is constructed, you must specify the size of the
array and the value that you want to return if a call to get() fails. The error value
must be a value that would otherwise not be stored in the array. Once constructed,
the actual array referred to by a and the error value stored in errval cannot be
accessed by users of the FailSoftArray object. Thus, they are not open to misuse.
For example, the user cannot try to index a directly, possibly exceeding its bounds.
Access is available only through the get() and put() methods.

The indexOK() method is private mostly for the sake of illustration. It would be
harmless to make it public because it does not modify the object. However, since it
1s used internally by the FailSoftArray class, it can be private.

Notice that the length instance variable is public. This is in keeping with the way
Java implements arrays. To obtain the length of a FailSoftArray, simply use its
length member.

To use a FailSoftArray array, call put() to store a value at the specified index.
Call get() to retrieve a value from a specified index. If the index is out-of-bounds,
put() returns false and get() returns errval.

For the sake of convenience, the majority of the examples in this book will
continue to use default access for most members. Remember, however, that in the
real world, restricting access to members—especially instance variables—is an
important part of successful object-oriented programming. As you will see in
Chapter 7, access control is even more vital when inheritance is involved.

NOTE

The new modules feature added by JDK 9 can also play a role in accessibility.
Modules are discussed in Chapter 15.

ISANICN DIl Improving the Queue Class

s

You can use the private modifier to make a rather important improvement to the
Queue class developed in Chapter 5, Try This 5-2. In that version, all members of
the Queue class use the default access. This means that it would be possible for a
program that uses a Queue to directly access the underlying array, possibly

accessing its elements out of turn. Since the entire point of a queue is to provide a
first-in, first-out list, allowing out-of-order access is not desirable. It would also be
possible for a malicious programmer to alter the values stored in the putloc and
getloc indices, thus corrupting the queue. Fortunately, these types of problems are
easy to prevent by applying the private specifier.

1. Copy the original Queue class in Try This 5-2 to a new file called Queue.java.

2. In the Queue class, add the private modifier to the q array, and the indices
putloc and getloc, as shown here:

// An improved queue class for characters.

class Queue {
// these members are now private
private char gll; // this array holds the queue
private int putloc, getloc; // the put and get indices

Queue (int size)
g = new char([sizel; // allocate memory for queue
putloc = getloc = 0;

}

// Put a character into the queue.
void put (char ch)
if (putloc==qg.length) {

System.out.println(" - Queue is full.");
return;

)

g[putloc++] = ch;

}

// Get a character from the queue.
char get () {
if (getloc == putloc)
System.out.println(" - Queue 1s empty.");
return (char) O0;

}

return gl[getloc++];

}
}

3. Changing q, putloc, and getloc from default access to private access has no effect
on a program that properly uses Queue. For example, it still works fine with the
QDemo class from Try This 5-2. However, it prevents the improper use of a
Queue. For example, the following types of statements are illegal:

Queue test = new Queue(10) ;

test.q[0] = 99; // wrong!
test.putloc = -100; // won't work!

4. Now that q, putloc, and getloc are private, the Queue class strictly enforces the
first-in, first-out attribute of a queue.

Pass Objects to Methods

Up to this point, the examples in this book have been using simple types as
parameters to methods. However, it is both correct and common to pass objects to
methods. For example, the following program defines a class called Block that stores
the dimensions of a three-dimensional block:

// Objects can be passed to methods.
class Block ({

it a, b, e;

int volume;

Block (int i, int j, int k) {

da = 1;
b=
¢ = K;

volume = a * b * ¢;

}

// Return true if ob defines same block.

boolean sameBlock (Block ob) { < Use object type for parameter.
if((ob.a == a) & (ob.b == b) & (ob.c == ¢)) return true;
else return false;

}

// Return true if ob has same volume.

boolean sameVolume (Block ob) { <
if(ob.volume == volume) return true;
else return false;

}

}

class PassOb {
public static void main(String args([]) {

Block obl = new Block (10, 2, 5);

Block ob2 = new Block(10, 2, 5);

Block ob3 = new Block(4, 5, 5);

System.out.println("obl same dimensions as ob2: " +
obl.sameBlock (ob2)); = Paiss an obiecf_

System.out.println("obl same dimensions as ob3: " +
obl.sameBlock (ob3)) ; -

System.out.println("obl same volume as ob3: " +

obl.sameVolume (ob3)) ; «

This program generates the following output:

obl same dimensions as ob2: true
obl same dimensions as ob3: false
obl same volume as ob3: true

The sameBlock() and sameVolume() methods compare the Block object passed

as a parameter to the invoking object. For sameBlock(), the dimensions of the
objects are compared and true is returned only if the two blocks are the same. For
sameVolume(), the two blocks are compared only to determine whether they have
the same volume. In both cases, notice that the parameter ob specifies Block as its
type. Although Block is a class type created by the program, it is used in the same
way as Java’s built-in types.

How Arguments Are Passed

As the preceding example demonstrated, passing an object to a method is a
straightforward task. However, there are some nuances of passing an object that are
not shown in the example. In certain cases, the effects of passing an object will be
different from those experienced when passing non-object arguments. To see why,
you need to understand in a general sense the two ways in which an argument can be
passed to a subroutine.

The first way is call-by-value. This approach copies the value of an argument into
the formal parameter of the subroutine. Therefore, changes made to the parameter of
the subroutine have no effect on the argument in the call. The second way an
argument can be passed is call-by-reference. In this approach, a reference to an
argument (not the value of the argument) is passed to the parameter. Inside the
subroutine, this reference is used to access the actual argument specified in the call.
This means that changes made to the parameter wil/ affect the argument used to call
the subroutine. As you will see, although Java uses call-by-value to pass arguments,
the precise effect differs between whether a primitive type or a reference type is
passed.

When you pass a primitive type, such as int or double, to a method, it is passed by
value. Thus, a copy of the argument is made, and what occurs to the parameter that
receives the argument has no effect outside the method. For example, consider the
following program:

// Primitive types are passed by value.
class Test {
/* This method causes no change to the arguments
used in the call. */
void noChange (int i, int j) {
i =14+ 3;
}j=—j:
}

class CallByValue ({
public static void main (String args[]) {
Test ob = new Test () ;

int a = 15, b = 20;

System.out.println("a and b before call: " +
a+ " " + b);

ob.noChange (a, b);

System.out.println("a and b after call: " +
a+ " " + b);

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside noChange() have no effect on the
values of a and b used in the call.

When you pass an object to a method, the situation changes dramatically, because
objects are implicitly passed by reference. Keep in mind that when you create a
variable of a class type, you are creating a reference to an object. It is the reference,
not the object itself, that is actually passed to the method. As a result, when you pass
this reference to a method, the parameter that receives it will refer to the same object
as that referred to by the argument. This effectively means that objects are passed to
methods by use of call-by-reference. Changes to the object inside the method do
affect the object used as an argument. For example, consider the following program:

// Objects are passed through their references.
class Test {
int a, b;

Test (int i, int j) {
a = iz
b = 3;
}
/* Pass an object. Now, ob.a and ob.b in object
used in the call will be changed. */
void change (Test ob) {
ob.a = ob.a + ob.b;
ob.b = -6b.b;

}
}

class PassObRef (
public static void main(String args([])
Test ob = new Test (15, 20);

System.out.println("ob.a and ob.b before call: " +
ob.a + " " 4+ ob.b);

ob.change (ob) ;

System.out.println("ob.a and ob.b after call: " +
ob.a + " " 4+ ob.b);

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 35 -20

As you can see, in this case, the actions inside change() have affected the object
used as an argument.

Ask the Expert

Q: Is there any way that I can pass a primitive type by reference?

A: Not directly. However, Java defines a set of classes that wrap the
primitive types in objects. These are Double, Float, Byte, Short,
Integer, Long, and Character. In addition to allowing a primitive type to
be passed by reference, these wrapper classes define several methods that
enable you to manipulate their values. For example, the numeric type
wrappers include methods that convert a numeric value from its binary
form into its human-readable String form, and vice versa.

Remember, when an object reference is passed to a method, the reference itself is
passed by use of call-by-value. However, since the value being passed refers to an

object, the copy of that value will still refer to the same object referred to by its
corresponding argument.

Returning Objects

A method can return any type of data, including class types. For example, the class
ErrorMsg shown here could be used to report errors. Its method, getErrorMsg(),

returns a String object that contains a description of an error based upon the error
code that it 1s passed.

// Return a String object.
class ErrorMsg {
String msgs[] = {
"Output Error",
"Input Error",
"Digk Full",
"Index Out-Of-Bounds"

}i

// Return the error message.
String getErrorMsg(int i) { <— Return an object of type String.
if(i >=0 & 1 < msgs.length)
return msgs [i];
else
return "Invalid Error Code";
}

}

class ErrMsg ({
public static void main(String args|[]) {

ErrorMsg err = new ErrorMsg() ;
System.out.println(err.getExrrorMsg(2)) ;

System.out.println(err.getErrorMsg(19)) ;

}
}

Its output is shown here:

Disk Full
Invalid Error Code

You can, of course, also return objects of classes that you create. For example,
here is a reworked version of the preceding program that creates two error classes.
One is called Err, and it encapsulates an error message along with a severity code.
The second is called ErrorInfo. It defines a method called getErrorInfo(), which
returns an Err object.

// Return a programmer-defined object.
class Err {

String msg; // error message
int severity; // code indicating severity of error

Err (String m, int s)
msg = m;
severity = s;

class ErrorInfo (

String msgs[] =
routput Erroxr",
"Input Error",

“Disk Full",
"Index Out-Of-Bounds"

Vi

int howbad([] = { 3, 3, 2, 4 };

Err getErrorInfo(int i) { <«———Returnan object of type Err.
if(i >= 0 & 1 < msgs.length)
return new Err (msgs[i], howbad[i]) ;

else
return new Err("Invalid Error Code", 0);

}
}

class ErrInfo ({
public static void main(String args/|[]) {
ErrorInfo err = new ErrorInfol() ;

Err e;
e = err.getErrorInfo(2);
System.out.println(e.msg + " severity: " + e.severity);

e = err.getErrorInfo(1l9);
System.out.println(e.msg + " severity: " + e.severity);

Here is the output:

Disk Full severity: 2
Invalid Error Code severity: O

Each time getErrorInfo() is invoked, a new Err object 1s created, and a reference
to it is returned to the calling routine. This object is then used within main() to
display the error message and severity code.

When an object is returned by a method, it remains in existence until there are no
more references to it. At that point, it is subject to garbage collection. Thus, an object
won’t be destroyed just because the method that created it terminates.

Method Overloading

In this section, you will learn about one of Java’s most exciting features: method
overloading. In Java, two or more methods within the same class can share the same
name, as long as their parameter declarations are different. When this is the case, the
methods are said to be overloaded, and the process is referred to as method
overloading. Method overloading is one of the ways that Java implements
polymorphism.

In general, to overload a method, simply declare different versions of it. The
compiler takes care of the rest. You must observe one important restriction: the type
and/or number of the parameters of each overloaded method must differ. It is not
sufficient for two methods to differ only in their return types. (Return types do not
provide sufficient information in all cases for Java to decide which method to use.)
Of course, overloaded methods may differ in their return types, too. When an
overloaded method is called, the version of the method whose parameters match the
arguments is executed.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class Overload {

void ovlDemo () { = First version
System.out.println ("No parameters") ;

// Overload ovlDemo for one integer parameter.

void ovlDemo (int a) { <« Second version
System.out.println("One parameter: " + a);

}

// Overload ovlDemo for two integer parameters.

int ovlDemo (int a, int b) { < Third version
System.out.println("Two parameters: " + a + " " + b);
return a + b;

)

// Overload ovlDemo for two double parameters.

double ovlDemo (double a, double b) { < Fourth version
System.out.println("Two double parameters: " +
a + n n + b} :

return a + b;

}
}

class OverloadDemo {
public static void main(String args([]) {
Overload ob = new Overload();
int resI;
double resD;

// call all versions of ovlDemo ()
ob.ovlDemo() ;
System.out.println() ;

ob.ovlDemo(2) ;
System.out.println();

resl = ob.ovlDemo (4, 6);

System.out.println("Result of ob.ovlDemo(4, 6): " +
resI);

System.out.println() ;

resD = ob.ovlDemo(1l.1, 2.32);

System.out.println("Result of ob.ovlDemo(1l.1l, 2.32): " +
resD) ;

This program generates the following output:

No parameters
One parameter: 2

Two parameters: 4 6
Result of ob.ovlDemo(4, 6): 10

Two double parameters: 1.1 2.32
Result of ob.ovlDemo (1.1, 2.32): 3.42

As you can see, oviDemo() is overloaded four times. The first version takes no
parameters, the second takes one integer parameter, the third takes two integer
parameters, and the fourth takes two double parameters. Notice that the first two
versions of oviDemo() return void, and the second two return a value. This is
perfectly valid, but as explained, overloading is not affected one way or the other by
the return type of a method. Thus, attempting to use the following two versions of
oviDemo() will cause an error:

// One ovlDemo (int) is OK.

void ovlDemo(int a) { < Return types cannot be used to
System.out.println("One parameter: " + a); differentiate overloaded methods.

/* Error! Two ovlDemo (int)s are not OK even though
return types differ.
)
int ovlDemo (int a) { <«
System.out.println("One parameter: " + a);
return a * a;

}

As the comments suggest, the difference in their return types is insufficient for the
purposes of overloading.

As you will recall from Chapter 2, Java provides certain automatic type
conversions. These conversions also apply to parameters of overloaded methods. For
example, consider the following:

/* Automatic type conversions can affect
overloaded method resolution.
%
class Overload2
void f(int x) {
System.out.println("Inside f(int): " + X);

}

void f (double x) {
System.out.println("Inside f (double): " + X);

}
}

class TypeConv
public static void main(String args[]) ({
Overload2 ob = new Overload2() ;

iBng 1 = 10;
double 4 = 10.1;

byte b = 99;
short s = 10;

float £ = 11.5F;
ob.f(i); // calls ob.f(int)

ob.f(d); // calls ob.f (double)

ob.f(b); // calls ob.f(int) - type conversion
ob.f(s); // calls ob.f(int) - type conversion
ob.f(f); // calls ob.f(double) - type conversion

The output from the program is shown here:

Inside f£(int): 10

(
Inside f (double) 10.1
Inside f£(int): 99
Inside f(int): 10
Inside f (double) 1L::5

In this example, only two versions of f() are defined: one that has an int parameter
and one that has a double parameter. However, it is possible to pass f() a byte,

short, or float value. In the case of byte and short, Java automatically converts them
to int. Thus, f(int) is invoked. In the case of float, the value is converted to double
and f(double) is called.

It is important to understand, however, that the automatic conversions apply only
if there is no direct match between a parameter and an argument. For example, here
is the preceding program with the addition of a version of f() that specifies a byte
parameter:

// Add f (byte).
class Overload2 {
void f (byte x) { <
System.out.println("Inside f (byte): " + X);

}

void f(int x) {
System.out.println("Inside f£(int): " + Xx);

}

void f (double x) {
System.out.println("Inside f (double): " + Xx);

}

This version specifies
a byte parameter.

)

class TypeConv {
public static void main(String args([]) {
Overload2 ob = new Overload2();

int i = 10;
double d = 10.1;

byte b = 99;
short s = 10;
tloat £ = 11.5¥F;

ob.f(i); // calls ob.f (int)
ob.f(d); // calls ob.f (double)

ob.f(b); // calls ob.f(byte) - now, no type conversion

ob.f(s); // calls ob.f(int) - type conversion
ob.f(f); // calls ob.f(double) - type conversion

Now when the program is run, the following output is produced:

int) 10
double): 10,1

Inside £ (
(
(byte) : 99
(
(

Inside f
Inside £
Inside £
Inside £

1nt) 10
double) : 11.5

In this version, since there is a version of f() that takes a byte argument, when f() is
called with a byte argument, f(byte) is invoked and the automatic conversion to int
does not occur.

Method overloading supports polymorphism because it is one way that Java
implements the “one interface, multiple methods™ paradigm. To understand how,
consider the following: In languages that do not support method overloading, each
method must be given a unique name. However, frequently you will want to
implement essentially the same method for different types of data. Consider the
absolute value function. In languages that do not support overloading, there are
usually three or more versions of this function, each with a slightly different name.
For instance, in C, the function abs() returns the absolute value of an integer, labs()
returns the absolute value of a long integer, and fabs() returns the absolute value of
a floating-point value. Since C does not support overloading, each function has to
have its own name, even though all three functions do essentially the same thing.
This makes the situation more complex, conceptually, than it actually is. Although
the underlying concept of each function is the same, you still have three names to
remember. This situation does not occur in Java, because each absolute value method
can use the same name. Indeed, Java’s standard class library includes an absolute
value method, called abs(). This method is overloaded by Java’s Math class to
handle all of the numeric types. Java determines which version of abs() to call based
upon the type of argument.

The value of overloading is that it allows related methods to be accessed by use of
a common name. Thus, the name abs represents the general action that is being

performed. It is left to the compiler to choose the correct specific version for a
particular circumstance. You, the programmer, need only remember the general
operation being performed. Through the application of polymorphism, several names
have been reduced to one. Although this example is fairly simple, if you expand the
concept, you can see how overloading can help manage greater complexity.

When you overload a method, each version of that method can perform any
activity you desire. There is no rule stating that overloaded methods must relate to
one another. However, from a stylistic point of view, method overloading implies a
relationship. Thus, while you can use the same name to overload unrelated methods,
you should not. For example, you could use the name sqr to create methods that
return the square of an integer and the square root of a floating-point value. But
these two operations are fundamentally different. Applying method overloading in
this manner defeats its original purpose. In practice, you should overload only
closely related operations.

Ask the Expert

Q: I’ve heard the term signature used by Java programmers. What is it?

A: As it applies to Java, a signature is the name of a method plus its
parameter list. Thus, for the purposes of overloading, no two methods
within the same class can have the same signature. Notice that a signature

does not include the return type, since it is not used by Java for overload
resolution.

Overloading Constructors

Like methods, constructors can also be overloaded. Doing so allows you to construct
objects in a variety of ways. For example, consider the following program:

// Demonstrate an overloaded constructor.
class MyClass {

}

int. xi

MyClass() { <

System.out.println("Inside
X% = Qs

}

MyClass () .");

Construct objects in a variety of ways.

MyClass (int i) { <
System.out.println("Inside
X=i;

}

MyClass (int) .");

MyClass (double d) { <
System.out.println("Inside

x = (int) d;

}

MyClass (double) .") ;

MyClass (int i, int j) { <
System.out.println("Inside
X=1%];

}

class OverloadConsDemo {
public static void main(String args|[])
MyClass tl = new MyClass () ;
MyClass t2 = new MyClass (88) ;
MyClass t3 = new MyClass (17.23);
MyClass t4 = new MyClass (2,

System.out .println("tl.
System.out.println("t2.
System.out .println("t3.
System.out .println("t4.

The output from the program is shown here:

MyClass (int, int).");

X
® -
X
X

4) ;

+ + + +

£l
t2.
3.
£4.

KoX XX

— e e

- - -

-

{

Inside MyClass() .

Inside MyClass(int) .
Inside MyClass (double) .
Inside MyClass(int, int).

El.x+: @
£E2.X: 88
e3.x: 17
t4.x: 8

MyClass() is overloaded four ways, each constructing an object differently. The
proper constructor is called based upon the parameters specified when new is
executed. By overloading a class’ constructor, you give the user of your class
flexibility in the way objects are constructed.

One of the most common reasons that constructors are overloaded is to allow one

object to initialize another. For example, consider this program that uses the
Summation class to compute the summation of an integer value:

// Initialize one object with another.
class Summation {

}

int sum;

// Construct from an int.
Summation (int num) {
sum = 0;
for(int i=1; i <= num; i++)
sum += 1i;
}

// Construct from another object.

Summation (Summation ob) { <«———— Construct one object from another.
sum = ob.sum;

}

class SumDemo {
public static void main(String args[]) {
Summation sl = new Summation(5) ;
Summation s2 = new Summation(sl) ;

System.out.println("sl.sum: " + sl.sum);
System.out.println("s2.sum: " + s2.sum);

The output is shown here:

sl.sum: 15
s2.sum: 15

The output 1s shown here:

sl.sum: 15s
2.sum: 15

Often, as this example shows, an advantage of providing a constructor that uses one
object to initialize another is efficiency. In this case, when s2 is constructed, it is not
necessary to recompute the summation. Of course, even in cases when efficiency is
not an issue, it is often useful to provide a constructor that makes a copy of an object.

N MAICN Y Overloading the Queue Constructor

.

.

In this project, you will enhance the Queue class by giving it two additional
constructors. The first will construct a new queue from another queue. The second
will construct a queue, giving it initial values. As you will see, adding these
constructors enhances the usability of Queue substantially.

1. Create a file called QDemo2.java and copy the updated Queue class from Try
This 6-1 into it.

2. First, add the following constructor, which constructs a queue from a queue.

// Construct a Queue from a Queue.
Queue (Queue ob) {

putloc = ob.putloc;

getloc = ob.getloc;

g = new char|[ob.qg.length] ;

// copy elements
for (int i=getloc; i < putloc; i++)
g[i] = obuglli);
}

Look closely at this constructor. It initializes putloc and getloc to the values
contained in the ob parameter. It then allocates a new array to hold the queue
and copies the elements from ob into that array. Once constructed, the new
queue will be an identical copy of the original, but both will be completely
separate objects.

3. Now add the constructor that initializes the queue from a character array, as
shown here:

// Construct a Queue with initial values.
Queue (char all]) {

putloc 0;

getloc 0;

g = new char[a.length];

for(int 1 = 0; 1 < a.length; i++) put(alil);
}

This constructor creates a queue large enough to hold the characters in a and
then stores those characters in the queue.

4. Here is the complete updated Queue class along with the QDemo2 class, which
demonstrates it:

// A queue class for characters.

class Queue ({
private char gl[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty Queue given its size.

Queue (int size) {
g = new char[size]l; // allocate memory for queue
putloec = getloe = 0Q;

}

// Construct a Queue from a Queue.
Queue (Queue ob) {

piutlocé = ob.putloc;

getloc = ob.getloc;

g = new char[ob.qg.length] ;

// copy elements

for (int i=getloc; i < putloc; i++)
gli] = ob.gl[i];
}

// Construct a Queue with initial wvalues.

Queue (char al[]) {
putloc = 0;
getloc = 0;

g = new char[a.length];

for(int i = 0; 1 < a.length; i++) put(ali]);

}

// Put a character into the queue.
void put (char ch) {
if (putloc==qg.length) {
System.out.println(" - Queue is full.");
return;

}

g [putloc++] = ch;

}

// Get a character from the queue.
char get () {
if (getloe == putloec) {
System.out.println(" - Queue is empty.");
return (char) O0;

}

return glgetloc++] ;

}
}

// Demonstrate the Queue class.
class QDemo2
public static void main(String args([]) {
// construct 1l0-element empty gqueue

Queue gl = new Queue (10) ;

char name([] = {'T', ‘o', 'm'};
// construct queue from array
Queue g2 = new Queue (name) ;
char ch;

int i;

// put some characters into gl
for(i=0; i < 10; i++)
gl.put((char) ('A' + 1i));

// construct queue from another queue
Queue g3 = new Queue (gl) ;

// Show the queues.
System.out.print ("Contents of gl: ");
for (i=0; i < 10; i++) {

ch = gl.get();

System.out .print (ch) ;

}

System.out.println("\n") ;

System.out .print ("Contents of g2: ") ;
for(i=0; 1 < 3; 1++) {

ch = g2.get();

System.out .print (ch) ;

}

System.out.println("\n") ;

System.out .print ("Contents of g3: ") ;
for(i=0; i < 10; i++) {

ch = g3.get();

System.out .print (ch) ;

}
}
}

The output from the program is shown here:

Contents of gl: ABCDEFGHIJ
Contents of g2: Tom

Contents of g3: ABCDEFGHIJ

Recursion

In Java, a method can call itself. This process is called recursion, and a method that
calls itself is said to be recursive. In general, recursion is the process of defining
something in terms of itself and is somewhat similar to a circular definition. The key
component of a recursive method is a statement that executes a call to itself.
Recursion is a powerful control mechanism.

The classic example of recursion is the computation of the factorial of a number.
The factorial of a number N is the product of all the whole numbers between 1 and

N. For example, 3 factorial is 1 < 2 x 3, or 6. The following program shows a
recursive way to compute the factorial of a number. For comparison purposes, a
nonrecursive equivalent is also included.

// A simple example of recursion.
class Factorial {
// This is a recursive function.
int factR(int n) {

int result;
if(n==1) return 1;

result = factR(n-1) * n;

return result; t

} Execute the recursive call fo factR().

// This is an iterative equivalent.
int factI(int n)
int t, result;

result = 1;
for(t=1; t <= n; t++) result *= t;
return result;

class Recursion {
public static void main(String args|[]) {
Factorial f = new Factorial() ;

System.out.println("Factorials using recursive method.");
System.out.println("Factorial of 3 is " + f.factR(3));
System.out.println("Factorial of 4 is " + f£.factR(4));
System.out.println("Factorial of 5 is " + f.factR(5));
System.out.println() ;

System.out.println("Factorials using iterative method.") ;
System.out.println("Factorial of 3 is " + f.factI(3));
System.out.println("Factorial of 4 is " + f.factI(4));
System.out.println("Factorial of 5 is " + f£.factI(5));

The output from this program is shown here:

Factorials using recursive method.
Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

Factorials using iterative method.
Factorial of 3 is 6

Factorial of 4 is 24

Factorial of 5 is 120

The operation of the nonrecursive method factl() should be clear. It uses a loop
starting at 1 and progressively multiplies each number by the moving product.

The operation of the recursive factR() is a bit more complex. When factR() is
called with an argument of 1, the method returns 1; otherwise, it returns the product
of factR(n—1)*n. To evaluate this expression, factR() is called with n—1. This
process repeats until n equals 1 and the calls to the method begin returning. For
example, when the factorial of 2 is calculated, the first call to factR() will cause a
second call to be made with an argument of 1. This call will return 1, which is then
multiplied by 2 (the original value of n). The answer is then 2. You might find it
interesting to insert println() statements into factR() that show at what level each
call 1s, and what the intermediate results are.

When a method calls itself, new local variables and parameters are allocated
storage on the stack, and the method code is executed with these new variables from
the start. A recursive call does not make a new copy of the method. Only the
arguments are new. As each recursive call returns, the old local variables and
parameters are removed from the stack, and execution resumes at the point of the
call inside the method. Recursive methods could be said to “telescope’ out and back.

Recursive versions of many routines may execute a bit more slowly than their
iterative equivalents because of the added overhead of the additional method calls.
Too many recursive calls to a method could cause a stack overrun. Because storage
for parameters and local variables is on the stack and each new call creates a new
copy of these variables, it is possible that the stack could be exhausted. If this occurs,
the Java run-time system will cause an exception. However, you probably will not
have to worry about this unless a recursive routine runs wild. The main advantage to
recursion is that some types of algorithms can be implemented more clearly and
simply recursively than they can be iteratively. For example, the Quicksort sorting
algorithm is quite difficult to implement in an iterative way. Also, some problems,
especially Al-related ones, seem to lend themselves to recursive solutions. When
writing recursive methods, you must have a conditional statement, such as an if,

somewhere to force the method to return without the recursive call being executed. If
you don’t do this, once you call the method, it will never return. This type of error is
very common when working with recursion. Use println() statements liberally so
that you can watch what is going on and abort execution if you see that you have
made a mistake.

Understanding static

There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally a class member must be accessed
through an object of its class, but it is possible to create a member that can be used
by itself, without reference to a specific instance. To create such a member, precede
its declaration with the keyword static. When a member is declared static, it can be
accessed before any objects of its class are created, and without reference to any
object. You can declare both methods and variables to be static. The most common
example of a static member is main(). main() is declared as static because it must
be called by the JVM when your program begins. Outside the class, to use a static
member, you need only specify the name of its class followed by the dot operator.
No object needs to be created. For example, if you want to assign the value 10 to a
static variable called count that is part of the Timer class, use this line:

Timer.count = 10;

This format is similar to that used to access normal instance variables through an
object, except that the class name 1s used. A static method can be called in the same
way—by use of the dot operator on the name of the class.

Variables declared as static are, essentially, global variables. When an object is
declared, no copy of a static variable is made. Instead, all instances of the class share
the same static variable. Here is an example that shows the differences between a
static variable and an instance variable:

// Use a static variable.
class StaticDemo {
int x; // a normal instance variable
static int y; // a static variable <«————There s one copy ofy
for all objects to share.
// Return the sum of the instance variable x
// and the static variable y.
int sum() {
return X + y;

}
}

class SDemo {
public static void main(String args[]) {
StaticDemo obl = new StaticDemo () ;
StaticDemo ob2 = new StaticDemo () ;

// Each object has its own copy of an instance variable.
obl.x = 10;
obh2.X = 20;
System.out.println("Of course, obl.x and ob2.x " +
"are independent.") ;
System.out.println("obl.x: " + obl.x +
"\nob2.x: " 4+ ob2.X);
System.out.println() ;

// Each object shares one copy of a static wvariable.
System.out.println("The static variable y is shared.");
StaticDemo.y = 19;

System.out.println("Set StaticDemo.y to 19.");

System.out.println("obl.sum(): " + obl.sum()) ;
System.out.println("ob2.sum(): " + ob2.sum()) ;
System.out.println() ;

StaticDemo.y = 100;
System.out.println("Change StaticDemo.y to 100") ;

System.out.println("obl.sum(): " + obl.sum()) ;
System.out.println("ob2.sum(): " + ob2.sum()) ;
System.out.println(); }

The output from the program is shown here:

Of course, obl.x and ob2.x are independent.
obl.x: 10
eb2 .%: 20

The static variable y is shared.
Set StaticDemo.y to 19.
obl.sum(): 29

ob2.sum(): 39

Change StaticDemo.y to 100
obl.sum(): 110
ob2.sum(): 120

As you can see, the static variable y is shared by both ob1 and ob2. Changing it
affects the entire class, not just an instance.

The difference between a static method and a normal method is that the static
method is called through its class name, without any object of that class being
created. You have seen an example of this already: the sqrt() method, which is a
static method within Java’s standard Math class. Here is an example that creates a
static method:

// Use a static method.
class StaticMeth ({
static int val = 1024; // a static variable

// a static method
static int valDiv2() {
return val/2;

}
}

class SDemo2 (
public static void main(String args|[]) {

System.out .println("val is " + StaticMeth.val);
System.out .println("StaticMeth.valDiv2 () : '
StaticMeth.valDiv2()) ;

+

StaticMeth.val = 4;

System.out .println("val is " + StaticMeth.val);

System.out .println("StaticMeth.valDiv2 () : '
StaticMeth.valDiv2()) ;

+

The output 1s shown here:

val is 1024

StaticMeth.valDiv2 () : 512
val is 4
StaticMeth.valDiv2 () : 2

Methods declared as static have several restrictions:

They can directly call only other static methods in their class.
They can directly access only static variables in their class.

They do not have a this reference.

For example, in the following class, the static method valDivDenom() is illegal:

class StaticError {
int denom = 3; // a normal instance variable
static int val = 1024; // a static variable

/* Error! Can't access a non-static variable
from within a static method. */
static int valDivDenom() {
return val/denom; // won't compile!

}
J

Here, denom is a normal instance variable that cannot be accessed within a static
method.

Static Blocks

Sometimes a class will require some type of initialization before it is ready to create
objects. For example, it might need to establish a connection to a remote site. It also
might need to initialize certain static variables before any of the class’ static
methods are used. To handle these types of situations, Java allows you to declare a
static block. A static block is executed when the class is first loaded. Thus, it is
executed before the class can be used for any other purpose. Here is an example of a
static block:

// Use a static block

class StaticBlock {
static double rootOf2;
static double rootOf3;

static { < This block is executed
System.out.println("Inside static block."); when the dlass is loaded.
rootOf2 = Math.sqrt (2.0);
rootOf3 = Math.sqgrt (3.0);

}

StaticBlock (String msg) {
System.out .println (msg) ;

}
}

class SDemo3 {
public static void main(String args([]) {
StaticBlock ob = new StaticBlock ("Inside Constructor") ;

System.out.println("Square root of 2 is " +
StaticBlock.rootOf2) ;
System.out .println ("Square root of 3 is " +

StaticBlock.rootQ£f3) ;

}
}

The output is shown here:

Inside static block.

Inside Constructor

Square root of 2 is 1.4142135623730951
Square root of 3 is 1.7320508075688772

As you can see, the static block 1s executed before any objects are constructed.

Try This 6-3 The Quicksort

In Chapter 5 you were shown a simple sorting method called the Bubble sort. It was
mentioned at the time that substantially better sorts exist. Here you will develop a
version of one of the best: the Quicksort. The Quicksort, invented and named by
C.A.R. Hoare, is arguably the best general-purpose sorting algorithm currently
available. The reason it could not be shown in Chapter 5 is that the best
implementations of the Quicksort rely on recursion. The version we will develop
sorts a character array, but the logic can be adapted to sort any type of object you
like.

The Quicksort is built on the idea of partitions. The general procedure is to select a

value, called the comparand, and then to partition the array into two sections. All
elements greater than or equal to the partition value are put on one side, and those
less than the value are put on the other. This process is then repeated for each
remaining section until the array is sorted. For example, given the array fedacb and
using the value d as the comparand, the first pass of the Quicksort would rearrange
the array as follows:

Initial fedach
Pass] bcadef

This process is then repeated for each section—that is, bca and def. As you can
see, the process is essentially recursive in nature, and indeed, the cleanest
implementation of Quicksort is recursive.

You can select the comparand value in two ways. You can either choose it at
random, or you can select it by averaging a small set of values taken from the array.
For optimal sorting, you should select a value that is precisely in the middle of the
range of values. However, this is not easy to do for most sets of data. In the worst
case, the value chosen is at one extremity. Even in this case, however, Quicksort still
performs correctly. The version of Quicksort that we will develop selects the middle
element of the array as the comparand.

1. Create a file called QSDemo.java.

2. First, create the Quicksort class shown here:

// Try This 6-3: A simple version of the Quicksort.
class Quicksort (

// Set up a call to the actual Quicksort method.
static void gsort (char items[]) {
gs(items, 0, items.length-1);

}

// A recursive version of Quicksort for characters.
private static void gs(char items[], int left, int right)
ink 1, 13
ehar x, ¥;

lefty 7 = right;
items [(left+right) /2] ;

Mo
1l

Il

do {
while((items[i] < X) && (i < right)) i++;
while((x < items[]j]) && (j > left)) j--;

I£(1 <= 4) {
y = items [i];

items[i] = items[]j];
items [j] = vy;
lad J==i

}

} while(i <= j);

if(left < j) gs(items, left, j);
if(i < right) gs(items, i, right);
}
}

To keep the interface to the Quicksort simple, the Quicksort class provides the
qsort() method, which sets up a call to the actual Quicksort method, qs(). This
enables the Quicksort to be called with just the name of the array to be sorted,
without having to provide an initial partition. Since qs() is only used internally,
it 1s specified as private.

3. To use the Quicksort, simply call Quicksort.qsort(). Since qsort() is specified

as static, it can be called through its class rather than on an object. Thus, there is
no need to create a Quicksort object. After the call returns, the array will be
sorted. Remember, this version works only for character arrays, but you can
adapt the logic to sort any type of arrays you want.

4. Here is a program that demonstrates Quicksort:

// Try This 6-3: A simple version of the Quicksort.
class Quicksort

// Set up a call to the actual Quicksort method.
static void gsort (char items|[]) {
gs(items, 0, items.length-1);

}

// A recursive version of Quicksort for characters.
private static void gs(char items[], int left, int right)
int i, 3;
c¢hay %, ¥;

1 = left; § = right;
x = items[(left+right) /2] ;
do

while ((items[i] < x) && (i < right)) i++;
while ((x < items[j]) && (j > left)) j--;

if(i <= §) |
y = items[i];

items [i] = items[]j];
items [j] = y:
iy Jo=jp

}

} While(i e — j),

if(left < j) gs(items, left, 3j);
if(i < right) gs(items, i, right);

}
J

class QSDemo

public static void main (String args[])
char a[] = { ldl; gt . Mgy g rplII le! R };
it 4:

System.out.print ("Original array: ");
for(i=0; i < a.length; i++)
System.out.print (a[i]) ;

System.out.println() ;

// now, sort the array
Quicksort .gsort (a) ;

System.out.print ("Sorted array: ");
for(i=0; i < a.length; i++)
System.out.print (a[i]) ;

Introducing Nested and Inner Classes

In Java, you can define a nested class. This is a class that is declared within another
class. Frankly, the nested class is a somewhat advanced topic. In fact, nested classes
were not even allowed in the first version of Java. It was not until Java 1.1 that they
were added. However, it is important that you know what they are and the mechanics
of how they are used because they play an important role in many real-world
programes.

A nested class does not exist independently of its enclosing class. Thus, the scope
of a nested class is bounded by its outer class. A nested class that is declared directly
within its enclosing class scope is a member of its enclosing class. It is also possible
to declare a nested class that is local to a block.

There are two general types of nested classes: those that are preceded by the static
modifier and those that are not. The only type that we are concerned about in this
book is the non-static variety. This type of nested class is also called an inner class.
It has access to all of the variables and methods of its outer class and may refer to
them directly in the same way that other non-static members of the outer class do.

Sometimes an inner class is used to provide a set of services that is used only by
its enclosing class. Here is an example that uses an inner class to compute various

values for its enclosing class:

// Use an inner class.
class Outer {
int nums|[] ;

Outer (int n/[]
nums n;

void analyze (
Inner inOb

System.out
System.out.
System.out.

}

// This is an
class Inner (
int min() {
int m n

for(int i
if (nums

return m;

}

int max() {
int m n
for(iht 1
if (nums

return m;

}

int avg()

{

int a =
for(int i
a += nu

return a

}
}
}

class NestedCla
public static
int =[] {
OCuter outOb

outOb.analy

}
}

.println("Minimum:

0-

4

)

{

new Inner () ;

println("Maximum: "

println ("Average: "

inner class.
<«——— An inner class

ums [0] ;

=1; 1 < nums.length; i++)
[1] <= m) m = nums[i];

ums [0] ;

=1; 1 < nums.length; i++)
[1i] > m) m = nums[i] ;

=0; 1 < nums.length; i++)
ms [i];

/ nums.length;

ssDemo {

void main (String args|[])
B, 2y 1: 0 8; 6: 9. VT, 8)i
= new Outer (x) ;

ze () ;

+ inOb.min()) ;
+ inOb.max()) ;
+ inOb.avg()) ;

{

The output from the program is shown here:

Minimum: 1
Maximum: 9
Average: 5

In this example, the inner class Inner computes various values from the array
nums, which is a member of Outer. As explained, an inner class has access to the
members of its enclosing class, so it is perfectly acceptable for Inner to access the
nums array directly. Of course, the opposite is not true. For example, it would not be
possible for analyze() to invoke the min() method directly, without creating an
Inner object.

As mentioned, it is possible to nest a class within a block scope. Doing so simply
creates a localized class that is not known outside its block. The following example
adapts the ShowBits class developed in Try This 5-3 for use as a local class.

// Use ShowBits as a local class.
class LocalClassDemo ({
public static void main(String args[]) {

// An inner class version of ShowBits.
class ShowBits { A local class nested within a method
int numbits;

ShowBits (int n) {
numbits = n;

}

void show(long val) {
long mask = 1;

// left-shift a 1 into the proper position
mask <<= numbits-1;

int spacer = 0;
for(; mask != 0; mask >>>= 1) {
if ((val & mask) != 0) System.out.print("1");
else System.out.print("0");
spacer++;
if ((spacer % 8) == 0) {
System.out.print (" ");
spacer = 0;
}
}
System.out.println() ;
}
}

for (byte b = 0; b < 10; b++) {

ShowBits byteval = new ShowBits(8);
System.out.print(b + " in binary: ");

byteval.show (b) ;

}
}
}

The output from this version of the program is shown here:

in binary: 00000000
in binary: 00000001
in binary: 00000010
in binary: 00000011
in binary: 00000100
in binary: 00000101
in binary: 00000110
in binary: 00000111
in binary: 00001000
in binary: 00001001

W o 0 U & whhpEeE o

In this example, the ShowBits class is not known outside of main(), and any
attempt to access it by any method other than main() will result in an error.

One last point: You can create an inner class that does not have a name. This is
called an anonymous inner class. An object of an anonymous inner class is
instantiated when the class i1s declared, using new. Anonymous inner classes are
discussed further in Chapter 16.

Varargs: Variable-Length Arguments

Sometimes you will want to create a method that takes a variable number of
arguments, based on its precise usage. For example, a method that opens an Internet
connection might take a user name, password, file name, protocol, and so on, but
supply defaults if some of this information is not provided. In this situation, it would
be convenient to pass only the arguments to which the defaults did not apply. To
create such a method implies that there must be some way to create a list of
arguments that is variable in length, rather than fixed.

In the past, methods that required a variable-length argument list could be handled
two ways, neither of which was particularly pleasing. First, if the maximum number
of arguments was small and known, then you could create overloaded versions of the
method, one for each way the method could be called. Although this works and is
suitable for some situations, it applies to only a narrow class of situations. In cases
where the maximum number of potential arguments is larger, or unknowable, a
second approach was used in which the arguments were put into an array, and then
the array was passed to the method. Frankly, both of these approaches often resulted
in clumsy solutions, and it was widely acknowledged that a better approach was
needed.

Ask the Expert

Q: What makes a static nested class different from a non-static one?

A: A static nested class is one that has the static modifier applied. Because it
is static, it can access only other static members of the enclosing class
directly. It must access other members of its outer class through an object
reference.

Beginning with JDK 5, this need was addressed by the inclusion of a feature that
simplified the creation of methods that require a variable number of arguments. This
feature is called varargs, which is short for variable-length arguments. A method that
takes a variable number of arguments is called a variable-arity method, or simply a
varargs method. The parameter list for a varargs method is not fixed, but rather
variable in length. Thus, a varargs method can take a variable number of arguments.

Varargs Basics

A variable-length argument is specified by three periods (...). For example, here is
how to write a method called vaTest() that takes a variable number of arguments:

// vaTest () uses a vararg. Declare a variable-length argument |ist.
static void vaTest (int ... v) { = I
System.out .println ("Number of args: " + v.length);

System.out.println("Contents: ") ;

for(int i1=0; i < v.length; i++)
System.out.println(" arg " + 1 + ": " + v[1i]);

System.out.println() ;

}

Notice that v is declared as shown here:

int ... v

This syntax tells the compiler that vaTest() can be called with zero or more
arguments. Furthermore, it causes v to be implicitly declared as an array of type int|
]. Thus, inside vaTest(), v is accessed using the normal array syntax.

Here is a complete program that demonstrates vaTest():

// Demonstrate variable-length arguments.
class VarArgs ({

// vaTest () uses a vararg.

static void vaTest (int ... v) {
System.out.println ("Number of args: " + v.length);
System.out.println ("Contents: ") ;

for(int i=0; i < v.length; i++)

System.out.println(" arg " + 1 + ": " + v[i]);
System.out.println() ;
}
public static void main(String args|[])
{
// Notice how vaTest () can be called with a
// variable number of arguments.
vaTest (10) ; I/ 3 arg = |
vaTest (1, 2, 3); // 3 args Call with different numbers
vaTest () ; // no args of arguments.
| =

}

The output from the program is shown here:

Number of args: 1
Contents:
arg 0: 10

Number of args: 3

Contents:
arg 0: 1
arg l: 2
arg 2: 3

Number of args: 0
Contents:

There are two important things to notice about this program. First, as explained,

inside vaTest(), v is operated on as an array. This is because v is an array. The ...
syntax simply tells the compiler that a variable number of arguments will be used,
and that these arguments will be stored in the array referred to by v. Second, in
main(), vaTest() is called with different numbers of arguments, including no
arguments at all. The arguments are automatically put in an array and passed to v. In
the case of no arguments, the length of the array is zero.

A method can have “normal” parameters along with a variable-length parameter.
However, the variable-length parameter must be the last parameter declared by the
method. For example, this method declaration is perfectly acceptable:

int doIt(int a, int b, double ¢, int ... wvals) {

In this case, the first three arguments used in a call to dolt() are matched to the first
three parameters. Then, any remaining arguments are assumed to belong to vals.

Here is a reworked version of the vaTest() method that takes a regular argument
and a variable-length argument:

// Use varargs with standard arguments.
class VarArgs2 ({
// Here, msg is a normal parameter and v is a

// varargs parameter.

static void vaTest (String msg, int ... v) { <«———A “normal” and
System.out.println(msg + v.length); vararg parameter
System.out.println("Contents: ");

for (int i=0; i < v.length; i++)
System.out.println(" arg " + i + ": " + v[i]);

System.out.println();

}

public static void main(String args/|[])
vaTest ("One vararg: ", 10);
vaTest ("Three varargs: ", 1, 2, 3);
vaTest ("No varargs: ");

J
}

The output from this program is shown here:

One vararg: 1
Contents:
arg 0: 10

Three varargs: 3

Contents:
arg 0: 1
arg 1l: 2
arg 2: 3

No varargs: 0
Contents:

Remember, the varargs parameter must be last. For example, the following
declaration is incorrect:

int dolIt(int a, int b, double ¢, int ... vals, boolean stopFlag) { //
Error!

Here, there 1s an attempt to declare a regular parameter after the varargs parameter,
which is illegal. There is one more restriction to be aware of: there must be only one
varargs parameter. For example, this declaration is also invalid:

int doIt(int a, int b, double ¢, int ... wvals, double ... morevals) {
// Error!

The attempt to declare the second varargs parameter is illegal.

Overloading Varargs Methods

You can overload a method that takes a variable-length argument. For example, the
following program overloads vaTest() three times:

// Varargs and overloading.

class VarArgs3
{ First version of vaTest{)

static void vaTest (int ... v) { 4_|

System.out.println("vaTest (int ...): " +
"Number of args: " + v.length);

System.out.println ("Contents: ");

for(int i=0; i < v.length; i++)
System.out.println(" arg " + 1 + ": " + v[i]);

System.out.println() ;

}

Second version of vaTest()

static void vaTest (booclean ... V) { 4—‘
System.out.println("vaTest (boolean ...): " +
"Number of args: " + v.length);

System.out.println ("Contents: ");

for(int i=0; i < v.length; i++)
System.out .println(" arg " + i + ": " + v[i]);

System.out .println() ;

} Third version of vaTest()
static void vaTest (String msg, int ... v) { 4h———J
System.out .println ("vaTest (String, int ...): " +
msg + Vv.length);
System.out.println("Contents: ") ;

for(int i=0; i < v.length; i++)
System.out.println(" arg " + i + ": " + v[i]);

System.out.println() ;

}

public static void main(String args([])
vaTest (1, 2, 3);
vaTest ("Testing: ", 10, 20);
vaTest (true, false, false);

}
}

The output produced by this program is shown here:

vaTest (int ...): Number of args: 3
Contents:

arg 0: 1

arg 1: 2

arg 2: 3

vaTest (String, int ...): Testing: 2
Contents:

arg 0: 10

arg 1l: 20

vaTest (boolean ...): Number of args: 3
Contents:

arg 0: true

arg 1: false

arg 2: false

This program illustrates both ways that a varargs method can be overloaded. First,
the types of its vararg parameter can differ. This is the case for vaTest(int ...) and
vaTest(boolean ...). Remember, the ... causes the parameter to be treated as an array
of the specified type. Therefore, just as you can overload methods by using different
types of array parameters, you can overload varargs methods by using different types
of varargs. In this case, Java uses the type difference to determine which overloaded
method to call.

The second way to overload a varargs method is to add one or more normal
parameters. This is what was done with vaTest(String, int ...). In this case, Java uses
both the number of arguments and the type of the arguments to determine which
method to call.

Varargs and Ambiguity

Somewhat unexpected errors can result when overloading a method that takes a
variable-length argument. These errors involve ambiguity because it is possible to
create an ambiguous call to an overloaded varargs method. For example, consider the
following program:

// Varargs, overloading, and ambiguity.

i

// This program contains an error and will
// not compile!
class VarArgs4d {

// Use an int vararg parameter.
static void vaTest (int ... v) { <«——— Anintvararg

£
}

// Use a boolean vararg parameter.
static void vaTest (boolean ... V) { <«——— A boolean vararg

fd
}

public static void main(String args|[])

{

vaTest (1, 2, 3); // OK
vaTest (true, false, false); // OK

vaTest () ; // Error: Ambiguous! <«——— Ambiguous!

}
}

In this program, the overloading of vaTest() is perfectly correct. However, this
program will not compile because of the following call:

vaTest (); // Error: Ambiguous!

Because the vararg parameter can be empty, this call could be translated into a call to
vaTest(int ...) or to vaTest(boolean ...). Both are equally valid. Thus, the call is
inherently ambiguous.

Here is another example of ambiguity. The following overloaded versions of
vaTest() are inherently ambiguous even though one takes a normal parameter:

static void vaTest(int ... v) { //

static void vaTest(int n, int ... v) { //

Although the parameter lists of vaTest() differ, there is no way for the compiler to
resolve the following call:

vaTest(1)

Does this translate into a call to vaTest(int ...), with one varargs argument, or into a
call to vaTest(int, int ...) with no varargs arguments? There is no way for the
compiler to answer this question. Thus, the situation is ambiguous.

Because of ambiguity errors like those just shown, sometimes you will need to
forego overloading and simply use two different method names. Also, in some cases,
ambiguity errors expose a conceptual flaw in your code, which you can remedy by
more carefully crafting a solution.

v Chapter 6 Self Test

1. Given this fragment,

class X {
private int count;

is the following fragment correct?

class Y {
public static void main(String args[]) {
X ob = new X () ;

ochi.count = 10;
2. An access modifier must a member’s declaration.

3. The complement of a queue is a stack. It uses first-in, last-out accessing and is
often likened to a stack of plates. The first plate put on the table is the last plate
used. Create a stack class called Stack that can hold characters. Call the
methods that access the stack push() and pop(). Allow the user to specify the
size of the stack when it is created. Keep all other members of the Stack class
private. (Hint: You can use the Queue class as a model; just change the way the
data 1s accessed.)

4. Given this class,

class Test {
int a;
Test (int i) { a = i; }

}

write a method called swap() that exchanges the contents of the objects

10.

11.

12.
13.

14.
15.

referred to by two Test object references.

Is the following fragment correct?

class X {
int meth(int a, int b) { ... }
String meth (int a, int b) { ... }

Write a recursive method that displays the contents of a string backwards.

If all objects of a class need to share the same variable, how must you declare
that variable?

Why might you need to use a static block?
What is an inner class?

To make a member accessible by only other members of its class, what access
modifier must be used?

The name of a method plus its parameter list constitutes the method’s

An int argument is passed to a method by using call-by-

Create a varargs method called sum() that sums the int values passed to it.
Have it return the result. Demonstrate its use.

Can a varargs method be overloaded?

Show an example of an overloaded varargs method that is ambiguous.

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 7

Inheritance

Key SKkills & Concepts

Understand inheritance basics

Call superclass constructors

Use super to access superclass members

Create a multilevel class hierarchy

Know when constructors are called

Understand superclass references to subclass objects
Override methods

Use overridden methods to achieve dynamic method dispatch
Use abstract classes

Use final

Know the Object class

programming because it allows the creation of hierarchical classifications. Using

inheritance, you can create a general class that defines traits common to a set of
related items. This class can then be inherited by other, more specific classes, each
adding those things that are unique to it.

In the language of Java, a class that is inherited is called a superclass. The class
that does the inheriting is called a subclass. Therefore, a subclass is a specialized
version of a superclass. It inherits all of the variables and methods defined by the
superclass and adds its own, unique elements.

Inheritance 1s one of the three foundation principles of object-oriented

Inheritance Basics

Java supports inheritance by allowing one class to incorporate another class into its
declaration. This is done by using the extends keyword. Thus, the subclass adds to
(extends) the superclass.

Let’s begin with a short example that illustrates several of the key features of
inheritance. The following program creates a superclass called TwoDShape, which
stores the width and height of a two-dimensional object, and a subclass called
Triangle. Notice how the keyword extends is used to create a subclass.

// A simple class hierarchy.

// A class for two-dimensional objects.
class TwoDShape

double width;
double height;

void showDim() ({
System.out.println("Width and height are " +

}
}

width + " and " + height) ;

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape ({
String style;

Triangle inherits TwoDShape.

double area()
return width * height / 2; «———Triangle can refer to the members of TwoDShape

}

as if they were part of Triangle.

void showStyle () {
System.out.println("Triangle is " + style);

}
}

class Shapes {
public static void main(String args[]) {

Triangle tl = new Triangle() ;

Triangle t2 = new Triangle();

tl.width = 4.0;

tl.height = 4.0; <«——— All members of Triunfe are available to Triangle
tl.style = "filled"; objects, even those inherited from TwoDShape.
t2.width = 8.0;

t2.height = 12.0;

t2.style = "outlined";

System.out.println("Info for tl: ");

tl.showStyle() ;
tl.showDim() ;
System.out.println("Area is " + tl.areal());

System.out.println() ;

System.out.println("Info for t2: ");
t2.showStyle () ;

t2.showDim() ;

System.out.println("Area is " + t2.areal());

The output from this program is shown here:

Info for tl:

Triangle is filled

Width and height are 4.0 and 4.0
Area is 8.0

Itifo Iar T£2:

Triangle is outlined

Width and height are 8.0 and 12.0
Area is 48.0

Here, TwoDShape defines the attributes of a “generic” two-dimensional shape,
such as a square, rectangle, triangle, and so on. The Triangle class creates a specific
type of TwoDShape, in this case, a triangle. The Triangle class includes all of
TwoDODbject and adds the field style, the method area(), and the method
showStyle(). The triangle’s style is stored in style. This can be any string that
describes the triangle, such as "filled", "outlined", "transparent", or even something
like "warning symbol", "isosceles", or "rounded". The area() method computes and
returns the area of the triangle, and showStyle() displays the triangle style.

Because Triangle includes all of the members of its superclass, TwoDShape, it
can access width and height inside area(). Also, inside main(), objects t1 and t2
can refer to width and height directly, as if they were part of Triangle. Figure 7-1
depicts conceptually how TwoDShape is incorporated into Triangle.

width |)
TwoDShape height

showDim()

>Triangle
style

area()

showStyle() y,

!
Figure 7-1 A conceptual depiction of the Triangle class

Even though TwoDShape is a superclass for Triangle, it is also a completely
independent, stand-alone class. Being a superclass for a subclass does not mean that

the superclass cannot be used by itself. For example, the following is perfectly valid:

TwoDShape shape = new TwoDShape () ;

shape.width = 10;
shape.height = 20;

shape .showDim() ;

Of course, an object of TwoDShape has no knowledge of or access to any
subclasses of TwoDShape.

The general form of a class declaration that inherits a superclass is shown here:

class subclass-name extends superclass-name {
// body of class

You can specify only one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. (This differs
from C++, in which you can inherit multiple base classes. Be aware of this when
converting C++ code to Java.) You can, however, create a hierarchy of inheritance in
which a subclass becomes a superclass of another subclass. Of course, no class can
be a superclass of itself.

A major advantage of inheritance is that once you have created a superclass that
defines the attributes common to a set of objects, it can be used to create any number
of more specific subclasses. Each subclass can precisely tailor its own classification.
For example, here is another subclass of TwoDShape that encapsulates rectangles:

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
boolean isSquare ()
if (width == height) return true;
return false;

}

double area() {
return width * height;

}
J

The Rectangle class includes TwoDShape and adds the methods isSquare(), which
determines if the rectangle is square, and area(), which computes the area of a

rectangle.

Member Access and Inheritance

As you learned in Chapter 6, often an instance variable of a class will be declared
private to prevent its unauthorized use or tampering. Inheriting a class does not
overrule the private access restriction. Thus, even though a subclass includes all of
the members of its superclass, it cannot access those members of the superclass that
have been declared private. For example, if, as shown here, width and height are
made private in TwoDShape, then Triangle will not be able to access them:

// Private members are not inherited.
// This example will not compile.

// A class for two-dimensional objects.
class TwoDShape
private double width; // these are
private double height; // now private

void showDim() {
System.out.println("Width and height are " +
width + " and " + height) ;
}

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
String style;

Can't access a private member
of a superclass.

double area () {
return width * height / 2; // Error! can't access
}
void showStyle () {
System.out.println("Triangle is " + style);
}

}

The Triangle class will not compile because the reference to width and height
inside the area() method causes an access violation. Since width and height are

declared private, they are accessible only by other members of their own class.
Subclasses have no access to them.

Remember that a class member that has been declared private will remain private
to its class. It is not accessible by any code outside its class, including subclasses.

At first, you might think that the fact that subclasses do not have access to the
private members of superclasses is a serious restriction that would prevent the use of
private members in many situations. However, this is not true. As explained in
Chapter 6, Java programmers typically use accessor methods to provide access to the
private members of a class. Here is a rewrite of the TwoDShape and Triangle
classes that uses methods to access the private instance variables width and height:

// Use accessor methods to set and get private members.

// A class for two-dimensional objects.
class TwoDShape
private double width; // these are
private double height; // now private

// Accessor methods for width and height.

double getWidth() { return width; }

double getHeight () { return height; } <«———— Accessor methods for
void setWidth(double w) { width = w; } width and height
void setHeight (double h) { height = h; }

void showDim()
System.out ..println ("Width and height are " +
width + " and " + height) ;

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {

String style;
& & Use accessor methods
provided by superclass.

double area() {
return getWidth() * getHeight() / 2;

}
void showStyle () {

System.out .println("Triangle is " + style) ;
}

}

class Shapes2 {
public static void main(String args([]) {
Triangle tl new Triangle () ;
Triangle t2 new Triangle () ;

tl.setWidth(4.0) ;
tl.setHeight (4.0) ;
tl.ekyle = “"Eilled";

t2.setWidth(8.0) ;
t2.setHeight (12.0) ;
t2.style = "outlined";

System.out .println("Info for ti: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.areaf());

System.out .println() ;

System.out .println("Info for t2: ") ;
t2.showStyle() ;

t2.showDim() ;

System.out .println("Area is " + t2.areal());

Ask the Expert

Q: When should I make an instance variable private?

A: There are no hard and fast rules, but here are two general principles. If an
instance variable is to be used only by methods defined within its class,
then it should be made private. If an instance variable must be within
certain bounds, then it should be private and made available only through
accessor methods. This way, you can prevent invalid values from being
assigned.

Constructors and Inheritance

In a hierarchy, it is possible for both superclasses and subclasses to have their own
constructors. This raises an important question: What constructor is responsible for
building an object of the subclass—the one in the superclass, the one in the subclass,
or both? The answer is this: The constructor for the superclass constructs the
superclass portion of the object, and the constructor for the subclass constructs the
subclass part. This makes sense because the superclass has no knowledge of or
access to any element in a subclass. Thus, their construction must be separate. The
preceding examples have relied upon the default constructors created automatically
by Java, so this was not an issue. However, in practice, most classes will have
explicit constructors. Here you will see how to handle this situation.

When only the subclass defines a constructor, the process is straightforward:
simply construct the subclass object. The superclass portion of the object is
constructed automatically using its default constructor. For example, here is a
reworked version of Triangle that defines a constructor. It also makes style private,
since it is now set by the constructor.

// Add a constructor to Triangle.

// A class for two-dimensional objects.
class TwoDShape {
private double width; // these are
private double height; // now private

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

void showDim() {
System.out.println ("Width and height are " +
width + " and " + height) ;

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {

private String style;

// Constructor

Triangle (String s, double w, double h) {

setWidth (w) ;

setHeight(h);‘

style =

}

double area()
return getWidth()

}

void showStyle() {

S

Initialize TwoDShape
portion of object.

* getHeight () / 2;

System.out.println("Triangle is " + style);

}
}

class Shapes3

public static void main(String args[]) {

Triangle tl =
Triangle t2 =

System.out .println("Info
tl.showStyle() ;
tl.showDim() ;

System.out .println ("Area

System.out.println() ;

System.out .println ("Info
t2.showStyle() ;
t2.showDim() ;

System.out .println ("Area

}
}

new Triangle ("filled", 4
new Triangle ("outlined",

.0, 4.0);
8.0, 12.0):;

for tl: *);

is " 4+ tl.area()):;

for t2: “)g

is " 4+ t2.areal());

Here, Triangle’s constructor initializes the members of TwoDClass that it inherits

along with its own style field.

When both the superclass and the subclass define constructors, the process is a bit
more complicated because both the superclass and subclass constructors must be
executed. In this case, you must use another of Java’s keywords, super, which has
two general forms. The first calls a superclass constructor. The second is used to
access a member of the superclass that has been hidden by a member of a subclass.
Here, we will look at its first use.

Using super to Call Superclass Constructors

A subclass can call a constructor defined by its superclass by use of the following
form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in the
superclass. super() must always be the first statement executed inside a subclass
constructor. To see how super() is used, consider the version of TwoDShape in the
following program. It defines a constructor that initializes width and height.

// Add constructors to TwoDShape.
class TwoDShape {

private double width;

private double height;

// Parameterized constructor.

TwoDShape (double w, double h) { <«——— A constructor for TwoDShape
width = w;
height = h;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

void showDim() {
System.out .println("Width and height are " +
width + " and " + height) ;
}

J

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

Triangle (String s, double w, double h) ({
super (w, h); // call superclass constructor

style = s8; [
} Use super() to execute the
TwoDSﬂape constructor.
double area()
return getWidth() * getHeight() / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

class Shapes4d
public static void main (String args[])
Triangle tl new Triangle("filled", 4.0, 4.0);
Triangle t2 new Triangle ("outlined", 8.0, 12.0);

Il

System.out.println("Info for til: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.areaf());

System.out.println();

System.out.println("Info for t2: ");
t2.showStyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.area());

}
J

Here, Triangle() calls super() with the parameters w and h. This causes the
TwoDShape() constructor to be called, which initializes width and height using
these values. Triangle no longer initializes these values itself. It need only initialize
the value unique to it: style. This leaves TwoDShape free to construct its subobject
in any manner that it so chooses. Furthermore, TwoDShape can add functionality
about which existing subclasses have no knowledge, thus preventing existing code
from breaking.

Any form of constructor defined by the superclass can be called by super(). The
constructor executed will be the one that matches the arguments. For example, here
are expanded versions of both TwoDShape and Triangle that include default
constructors and constructors that take one argument:

// Add more constructors to TwoDShape.
class TwoDShape {

private double width;

private double height;

// A default constructor.
TwoDShape () {

width = height = 0.0;
}

// Parameterized constructor.
TwoDShape (double w, double h) {
width = w;
height = h;

}

// Construct object with equal width and height.
TwoDShape (double x)
width = height = x;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth (double w) { width = w; }
void setHeight (double h) { height = h; }

void showDim()
System.out.println("Width and height are " +
width + " and " + height) ;
}

}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle () {

super (); -
style = "none"™;

}

// Constructor
Triangle (String s, double w, double h) {

super (w, h); // call superclass constructor «——

style = s;

} Use super() to call the
various forms of the
TwoDShape constructor.

// One argument constructor.
Triangle (double x) {

super (x); // call superclass constructor
style = "filled";

}

double area () {

return getWidth() * getHeight () / 2;

}

void showStyle() ({
System.out.println("Triangle is " + style);
}

}

class Shapes5 {
public static void main(String args([]) {
Triangle t1 new Triangle () ;
Triangle t2 new Triangle("outlined", 8.0, 12.0);
Triangle t3 new Triangle(4.0) ;

Il

Il

tl = t2;

System.out.println("Info for tl: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.area());

System.out.println() ;
System.out.println("Info for t2: ");
t2.showStyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.area());
System.out.println() ;
System.out.println("Info for t3: ");
t3.showStyle() ;

t3.showDim() ;

System.out.println("Area is " + t3.areal());

System.out.println() ;

Here is the output from this version:

Info for t1l:

Triangle is outlined

Width and height are 8.0 and 12.0
Area is 48.0

Infe fTor t2:;

Triangle is outlined

Width and height are 8.0 and 12.0
Area is 48.0

Info for £3:

Triangle is filled

Width and height are 4.0 and 4.0
Area 1is 8.0

Let’s review the key concepts behind super(). When a subclass calls super(), it
1s calling the constructor of its immediate superclass. Thus, super() always refers to
the superclass immediately above the calling class. This is true even in a multilevel
hierarchy. Also, super() must always be the first statement executed inside a
subclass constructor.

Using super to Access Superclass Members

There is a second form of super that acts somewhat like this, except that it always
refers to the superclass of the subclass in which it is used. This usage has the
following general form:

super.member

Here, member can be either a method or an instance variable.

This form of super is most applicable to situations in which member names of a
subclass hide members by the same name in the superclass. Consider this simple
class hierarchy:

// Using super to overcome name hiding.
class A
ifik 43

// Create a subclass by extending class A.
class B extends A ({
int 1; // this 1 hides the i in A

B(int a, int b) {

super.i = a; // 1 in A <————Here, super.i refers
i=Db; //iin B to the i in A.
}
void show () ({
System.out.println("i in superclass: " + super.i) ;
System.out.println("i in subclass: " + 1);
}

}

class UseSuper |
public static void main(String args|[]) {
B subOb = new B(1l, 2);

subOb.show /() ;

}
}

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i
defined in the superclass. super can also be used to call methods that are hidden by a
subclass.

b MVIWAIE Extending the Vehicle Class

To illustrate the power of inheritance, we will extend the Vehicle class first
developed in Chapter 4. As you should recall, Vehicle encapsulates information
about vehicles, including the number of passengers they can carry, their fuel
capacity, and their fuel consumption rate. We can use the Vehicle class as a starting
point from which more specialized classes are developed. For example, one type of
vehicle is a truck. An important attribute of a truck is its cargo capacity. Thus, to
create a Truck class, you can extend Vehicle, adding an instance variable that stores
the carrying capacity. Here is a version of Truck that does this. In the process, the
instance variables in Vehicle will be made private, and accessor methods are
provided to get and set their values.

1. Create a file called TruckDemo.java and copy the last implementation of
Vehicle from Chapter 4 into the file:

2. Create the Truck class as shown here:

// Extend Vehicle to create a Truck specialization.
class Truck extends Vehicle {
private int cargocap; // cargo capacity in pounds

// This is a constructor for Truck.
Truck(int p, int £, int m, 1ot o) (
/* Initialize Vehicle members using
Vehicle's constructor. */
super (p, £, m);

cargocap = C;
}
// Accessor methods for cargocap.
int getCargo() { return cargocap; }
void putCargo(int c¢) { cargocap = c; }

}

Here, Truck inherits Vehicle, adding cargocap, getCargo(), and putCargo().
Thus, Truck includes all of the general vehicle attributes defined by Vehicle. It
need add only those items that are unique to its own class.

3. Next, make the instance variables of Vehicle private, as shown here:

private int passengers; // number of passengers
private int fuelcap; // fuel capacity in gallons
private int mpg; // fuel consumption in miles per gallon

4. Here is an entire program that demonstrates the Truck class:

// Try This 7-1
//
// Build a subclass of Vehicle for trucks.

class Vehicle ({
private int passengers; // number of passengers
private int fuelcap; // fuel capacity in gallons
private int mpg; // fuel consumption in miles per gallon

// This is a constructor for Vehicle.
Vehicle(int p, int f, int m) {
passengers = p;
fuelcap = £;
mpg = m;

}

// Return the range.
int range() {

return mpg * fuelcap;
}

// Compute fuel needed for a given distance.
double fuelneeded (int miles) {

return (double) miles / mpg;
}

// Accessor methods for instance variables.
int getPassengers() { return passengers; }
void setPassengers (int p) { passengers = p; }
int getFuelcap() { return fuelcap; }

void setFuelcap(int f) { fuelcap = £; }

int getMpg() { return mpg; }

void setMpg(int m) { mpg = m; }

}

// Extend Vehicle to create a Truck specialization.
class Truck extends Vehicle
private int cargocap; // cargo capacity in pounds

// This is a constructor for Truck.
Truck(int p, int £, int m, int e¢) {
/* Initialize Vehicle members using
Vehicle's constructor. */
super(p, £, m);

cargocap = C;

}

// Accessor methods for cargocap.
int getCargo() { return cargocap; }
void putCargo(int c) { cargocap = c;

}

class TruckDemo {
public static void main(String args[])

// construct some trucks

Truck semi = new Truck(2, 200, 7, 44000);
Truck pickup = new Truck (3, 28, 15, 2000);
double gallons;

int dist = 252;

gallons = semi.fuelneeded(dist);

System.out.println("Semi can carry " + semi.getCargo() +
" pounds.") ;

System.out.println("To go " + dist + " miles semi needs " +
gallons + " gallons of fuel.\n");

gallons = pickup.fuelneeded(dist);

System.out .println("Pickup can carry " + pickup.getCargo() +
" pounds.") ;
System.out.println("To go " + dist + " miles pickup needs " +
gallons + " gallons of fuel.");
}

}

5. The output from this program is shown here:

Semi can carry 44000 pounds.
To go 252 miles semi needs 36.0 gallons of fuel.

Pickup can carry 2000 pounds.
To go 252 miles pickup needs 16.8 gallons of fuel.

6. Many other types of classes can be derived from Vehicle. For example, the
following skeleton creates an off-road class that stores the ground clearance of
the vehicle.

// Create an off-road vehicle class
class OffRoad extends Vehicle ({
private int groundClearance; // ground clearance in inches

/¢
}

The key point is that once you have created a superclass that defines the general
aspects of an object, that superclass can be inherited to form specialized classes.
Each subclass simply adds its own, unique attributes. This is the essence of
inheritance.

Creating a Multilevel Hierarchy

Up to this point, we have been using simple class hierarchies that consist of only a
superclass and a subclass. However, you can build hierarchies that contain as many
layers of inheritance as you like. As mentioned, it is perfectly acceptable to use a
subclass as a superclass of another. For example, given three classes called A, B, and
C, C can be a subclass of B, which is a subclass of A. When this type of situation
occurs, each subclass inherits all of the traits found in all of its superclasses. In this
case, C inherits all aspects of B and A.

To see how a multilevel hierarchy can be useful, consider the following program.
In it, the subclass Triangle is used as a superclass to create the subclass called
ColorTriangle. ColorTriangle inherits all of the traits of Triangle and
TwoDShape and adds a field called color, which holds the color of the triangle.

// A multilevel hierarchy.
class TwoDShape ({
private double width;
private double height;

// A default constructor.
TwoDShape () {
width = height = 0.0;

}

// Parameterized constructor.
TwoDShape (double w, double h)
width = w;
height = h;

}

// Construct object with equal width and height.
TwoDShape (double x) {
width = height = x;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth (double w) { width = w; }
void setHeight (double h) { height = h; }

void showDim() {
System.out.println("Width and height are " +
width + " and " + height);

}

// Extend TwoDShape.
class Triangle extends TwoDShape {
private String style;

// A default constructor.
Triangle ()

super () ;

style = "none";

}

Triangle (String s, double w, double h) {
super (w, h); // call superclass constructor

style = s;

}

// One argument constructor.
Triangle (double x) {
super (x); // call superclass constructor

style = "filled";

}

double area() {
return getWidth() * getHeight () / 2;

}

void showStyle () {
System.out ..println("Triangle is " + style);

}
}

// Extend Triangle.
class ColorTriangle extends Triangle {
private String color;

ColorTriangle inherits Triangle, which

ColorTriangle (String o, String s, Edeendedfom ucOshope so

double w, double h) { of Triangle and TwoDShape.
super (s, w, h);

coloxr = C;

String getColor() { return color; }

void showColor () {
System.out.println("Color is " + color) ;

}
}

class Shapesé {
public static void main(String args|[]) {
ColorTriangle tl1 =
new ColorTriangle ("Blue", "outlined", 8.0, 12.0);

ColorTriangle t2 =
new ColorTriangle ("Red", "filled", 2.0, 2.0);

System.out .println("Info for tl: ");
tl.showStyle () ;

t1l.showDim() ;

tl.showColor () ;

System.out.println("Area is " + tl.areaf());

System.out.println() ;

System.out .println("Info for t2: ");

t2.showStyle () ;

t2.showDim(); A ColorTriangle object can call methods
t£2.showColor () ; defined by itself and its superclasses.

System.out.println("Area is " + t2.area());

The output of this program is shown here:

Info for t1l:

Triangle is outlined

Width and height are 8.0 and 12.0
Color is Blue

Area ig 48.0

Info for £2:

Triangle is filled

Width and height are 2.0 and 2.0
Color is Red

Area is 2.0

Because of inheritance, ColorTriangle can make use of the previously defined
classes of Triangle and TwoDShape, adding only the extra information it needs for
its own, specific application. This is part of the value of inheritance; it allows the
reuse of code.

This example illustrates one other important point: super() always refers to the
constructor in the closest superclass. The super() in ColorTriangle calls the
constructor in Triangle. The super() in Triangle calls the constructor in
TwoDShape. In a class hierarchy, if a superclass constructor requires parameters,

then all subclasses must pass those parameters “up the line.” This is true whether or
not a subclass needs parameters of its own.

When Are Constructors Executed?

In the foregoing discussion of inheritance and class hierarchies, an important
question may have occurred to you: When a subclass object is created, whose
constructor is executed first, the one in the subclass or the one defined by the
superclass? For example, given a subclass called B and a superclass called A, i1s A’s
constructor executed before B’s, or vice versa? The answer 1s that in a class
hierarchy, constructors complete their execution in order of derivation, from
superclass to subclass. Further, since super() must be the first statement executed in
a subclass’ constructor, this order is the same whether or not super() is used. If
super() is not used, then the default (parameterless) constructor of each superclass
will be executed. The following program illustrates when constructors are executed:

// Demonstrate when constructors are executed.

// Create a super class.
class A
AQ) |
System.out .println ("Constructing A.");

}
}

// Create a subclass by extending class A.
class B extends A
B() {
System.out .println("Constructing B.");

J
}

// Create another subclass by extending B.
class C extends B {
c() {
System.out .println("Constructing C.") ;
}
}

class OrderOfConstruction
public static void main(String args|[]) {
C c = new C();

}

The output from this program is shown here:

Constructing A.
Constructing B.
Constructing C.

As you can see, the constructors are executed in order of derivation.

If you think about it, it makes sense that constructors are executed in order of
derivation. Because a superclass has no knowledge of any subclass, any initialization
it needs to perform is separate from and possibly prerequisite to any initialization
performed by the subclass. Therefore, it must complete its execution first.

Superclass References and Subclass Objects

As you know, Java is a strongly typed language. Aside from the standard
conversions and automatic promotions that apply to its primitive types, type
compatibility is strictly enforced. Therefore, a reference variable for one class type
cannot normally refer to an object of another class type. For example, consider the
following program:

// This will not compile.
class X {
ik aj

X(int i) { a = i; }

}

class Y {
int a;

Il
-

-
—

Y(int i) { a

}

class IncompatibleRef
public static void main(String args[]) {
X X = new X(10) ;
X X2
Y v = new Y(5);

X2

Xx; // OK, both of same type

X2

}

y; // Error, not of same type

}

Here, even though class X and class Y are structurally the same, it 1s not possible to
assign an X reference to a Y object because they have different types. In general, an
object reference variable can refer only to objects of its type.

There 1s, however, an important exception to Java’s strict type enforcement. A
reference variable of a superclass can be assigned a reference to an object of any
subclass derived from that superclass. In other words, a superclass reference can
refer to a subclass object. Here 1s an example:

// A superclass reference can refer to a subclass object.
class X {
int a;

X(int i) { a = i; }

}

class Y extends X {
int b;

Y(int i, int j) {
super (j) ;
b= 1;
}
}

class SupSubRef
public static void main(String args|[]) {
X X = new X(10);
X xX2;
Y y = new Y(5, 6);

x2 = X; // OK, both of same type

System.out.println("x2.a: " + x2.a); OK because Y is a subclass of X;
thus x2 can refer to y.

x2 = vy; // still Ok because Y is derived from X
System.out.println("x2.a: " + x2.a);

// X references know only about X members
x2.a = 19; // OK
// x2.b = 27; // Error, X doesn't have a b member
}
}

Here, Y is now derived from X thus, it is permissible for x2 to be assigned a
reference to a Y object.

It i1s important to understand that it is the type of the reference variable—not the
type of the object that it refers to—that determines what members can be accessed.
That 1s, when a reference to a subclass object is assigned to a superclass reference
variable, you will have access only to those parts of the object defined by the
superclass. This is why x2 can’t access b even when it refers to a Y object. If you

think about it, this makes sense, because the superclass has no knowledge of what a
subclass adds to it. This is why the last line of code in the program is commented
out.

Although the preceding discussion may seem a bit esoteric, it has some important
practical applications. One is described here. The other is discussed later in this
chapter, when method overriding is covered.

An important place where subclass references are assigned to superclass variables
1s when constructors are called in a class hierarchy. As you know, it is common for a
class to define a constructor that takes an object of the class as a parameter. This
allows the class to construct a copy of an object. Subclasses of such a class can take
advantage of this feature. For example, consider the following versions of
TwoDShape and Triangle. Both add constructors that take an object as a parameter.

class TwoDShape {
private double width;
private double height;

// A default constructor.
TwoDShape ()

width = height = 0.0;

}

// Parameterized constructor.
TwoDShape (double w, double h) {
width = w;
height = h;

}

// Construct an object with equal width and height.
TwoDShape (double x) {
width = height = x;

}

// Construct an object from an object.

TwoDShape (TwoDShape ob) { - Construct object from an object.
width = ob.width;
height = ob.height;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

void showDim()
System.out.println("Width and height are " +
width + " and " + height) ;

}
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape (
private String style;

// A default constructor.

Triangle() {
super () ;
style = "none";

}

// Constructor for Triangle.
Triangle (String s, double w, double h) {
super (w, h); // call superclass constructor

stvle = 8;

}

// One argument constructor.
Triangle (double x)
super (x); // call superclass constructor

style = "filled";

}

// Construct an object from an object.
Triangle (Triangle ob) {
super (ob) ; // pass object to TwoDShape constructor

style = ob.style;
} Pass a Triangle reference to
TwoDShape’s constructor.

double area() {
return getWidth() * getHeight() / 2;

}

void showStyle() {
System.out.println("Triangle is " + style);

}
}

class Shapes7 ({
public static void main(String args[]) ({
Triangle tl =
new Triangle ("outlined", 8.0, 12.0);

// make a copy of t1l
Triangle t2 = new Triangle(tl);

System.out.println("Info for ti: ");
tl.showStyle() ;

tl.showDim() ;

System.out.println("Area is " + tl.area()) ;

System.out.println() ;

System.out.println("Info for t2: ");
t2.showStyle() ;

t2.showDim() ;

System.out.println("Area is " + t2.areal()) ;

In this program, t2 is constructed from t1 and is, thus, identical. The output is
shown here:

Info for tl:

Triangle is outlined

Width and height are 8.0 and 12.0
Area 1is 48.0

Info for t2:

Triangle is outlined

Width and height are 8.0 and 12.0
Area 1is 48.0

Pay special attention to this Triangle constructor:

// Construct an object from an object.

Triangle (Triangle ob)
super (ob) ; // pass object to TwoDShape constructor
style = ob.style;

}

It receives an object of type Triangle and it passes that object (through super) to this
TwoDShape constructor:

// Construct an object from an object.
TwoDShape (TwoDShape ob) {

width = ob.width;

height = ob.height;

J

The key point is that TwoDshape() is expecting a TwoDShape object. However,
Triangle() passes it a Triangle object. The reason this works is because, as
explained, a superclass reference can refer to a subclass object. Thus, it is perfectly
acceptable to pass TwoDShape() a reference to an object of a class derived from
TwoDShape. Because the TwoDShape() constructor is initializing only those
portions of the subclass object that are members of TwoDShape, it doesn’t matter
that the object might also contain other members added by derived classes.

Method Overriding

In a class hierarchy, when a method in a subclass has the same return type and
signature as a method in its superclass, then the method in the subclass is said to
override the method in the superclass. When an overridden method is called from

within a subclass, it will always refer to the version of that method defined by the
subclass. The version of the method defined by the superclass will be hidden.
Consider the following:

// Method overriding.
class A {
int i, 9;
A(int a, int b) {
i =.8;
j = b;

}

// display 1 and j
void show() {

System.out.println("i and j: " + 1 + " " + j);

}
}

class B extends A {
int k;

B(int a, int b, int c)
super (a, b);
K = ¢

}

// display k - this overrides show() in A
void show() { - This show() in B overrides

System.out.println("k: " + k); the one defined by A,

}
}

class Override ({
public static void main(String args[]) {
B subOb = new B(1, 2, 3);

subOb.show(); // this calls show() in B

}
}

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined
within B is used. That is, the version of show() inside B overrides the version
declared in A.

If you want to access the superclass version of an overridden method, you can do
so by using super. For example, in this version of B, the superclass version of show(
) is invoked within the subclass’ version. This allows all instance variables to be
displayed.

class B extends A {
int k;

B(int a, int b, int c¢) {
super (a, b);
K = e

} Use super to call the version of
show() defined by superclass A.
void show() {
super.show(); // this calls A’s show()

System.out.println("k: " + k);

}
J

If you substitute this version of show() into the previous program, you will see
the following output:

iand j: 1 2
k: 3

Here, super.show() calls the superclass version of show().

Method overriding occurs only when the signatures of the two methods are
identical. If they are not, then the two methods are simply overloaded. For example,
consider this modified version of the preceding example:

/* Methods with differing signatures are
overloaded and not overridden. */

class A {
int 1, 7;
A(int a, int b) {

i = a;

j = b:

}

// display i and j
void show () {
System.out.println("i and j: " + 1 + " " + 7J);
}
}

// Create a subclass by extending class A.
class B extends A {
int k;

B(int a, int b, int c¢) {
super (a, b);
kK =@ Because signatures differ, this
} show() simply overloads show()
in superclass A.
// overload show ()
void show(String msg) { <=
System.out .println (msg + k) ;
}

}

class Overload {

public static void main(String args[])
B subOb = new B(1, 2, 3);
subOb.show("This is k: "); // this calls show() in B

subOb.show(); // this calls show() in A

}
}

The output produced by this program is shown here:

This is k: 3
iand j: 1 2

The version of show() in B takes a string parameter. This makes its signature
different from the one in A, which takes no parameters. Therefore, no overriding (or
name hiding) takes place.

Overridden Methods Support Polymorphism

While the examples in the preceding section demonstrate the mechanics of method
overriding, they do not show its power. Indeed, if there were nothing more to method
overriding than a namespace convention, then it would be, at best, an interesting
curiosity but of little real value. However, this is not the case. Method overriding
forms the basis for one of Java’s most powerful concepts: dynamic method dispatch.
Dynamic method dispatch is the mechanism by which a call to an overridden method
1s resolved at run time rather than compile time. Dynamic method dispatch is
important because this is how Java implements run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can
refer to a subclass object. Java uses this fact to resolve calls to overridden methods at
run time. Here’s how. When an overridden method is called through a superclass
reference, Java determines which version of that method to execute based upon the
type of the object being referred to at the time the call occurs. Thus, this
determination is made at run time. When different types of objects are referred to,
different versions of an overridden method will be called. In other words, it is the
type of the object being referred to (not the type of the reference variable) that
determines which version of an overridden method will be executed. Therefore, if a
superclass contains a method that is overridden by a subclass, then when different
types of objects are referred to through a superclass reference variable, different
versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Demonstrate dynamic method dispatch.

class Sup {
void who()
System.out.println("who() in Sup");

J
J

class Subl extends Sup ({
void who()
System.out.println("who() in Subl");

}
}

class Sub2 extends Sup
void who () {
System.out .println("who() in Sub2");

}
}

class DynDispDemo
public static void main(String args|[])
Sup superOb = new Sup() ;
Subl subObl = new Subl() ;
Sub2 subOb2 = new Sub2() ;

Sup supRef;

supRef = superOb;

supRef .who () ; <«——— In each case,
the version of

supRef = subObl; who() fo call

supRef_who().,*______bddmmMed
' at run time by

the type of
supRef = subOb2; object being

supRef .who () ; <€———— referred to.

}
}

The output from the program is shown here:

who () in Sup

who () in Subl
who () 1n Sub?

This program creates a superclass called Sup and two subclasses of it, called Sub1
and Sub2. Sup declares a method called who(), and the subclasses override it.
Inside the main() method, objects of type Sup, Sub1, and Sub2 are declared. Also,
a reference of type Sup, called supRef, is declared. The program then assigns a
reference to each type of object to supRef and uses that reference to call who(). As
the output shows, the version of who() executed is determined by the type of object
being referred to at the time of the call, not by the class type of supRef.

Ask the Expert

Q: Overridden methods in Java look a lot like virtual functions in C++.
Is there a similarity?

A: Yes. Readers familiar with C++ will recognize that overridden methods in
Java are equivalent in purpose and similar in operation to virtual
functions in C++.

Why Overridden Methods?

As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those
methods. Overridden methods are another way that Java implements the “one
interface, multiple methods” aspect of polymorphism. Part of the key to successfully
applying polymorphism is understanding that the superclasses and subclasses form a
hierarchy that moves from lesser to greater specialization. Used correctly, the
superclass provides all elements that a subclass can use directly. It also defines those
methods that the derived class must implement on its own. This allows the subclass
the flexibility to define its own methods, yet still enforces a consistent interface.
Thus, by combining inheritance with overridden methods, a superclass can define the
general form of the methods that will be used by all of its subclasses.

Applying Method Overriding to TwoDShape

To better understand the power of method overriding, we will apply it to the
TwoDShape class. In the preceding examples, each class derived from TwoDShape
defines a method called area(). This suggests that it might be better to make area()
part of the TwoDShape class, allowing each subclass to override it, defining how the
area 1s calculated for the type of shape that the class encapsulates. The following
program does this. For convenience, it also adds a name field to TwoDShape. (This
makes it easier to write demonstration programs.)

// Use dynamic method dispatch.
class TwoDShape
private double width;
private double height;
private String name;

// A default constructor.
TwoDShape ()
width = height = 0.0;
name = "none";

}

// Parameterized constructor.

TwoDShape (double w, double h, String n) {
width = w
height =
name = n;

}

hi;

// Construct object with equal width and height.
TwoDShape (double x, String n) {

width = height = x;

name = n;

)

// Construct an object from an object.
TwoDShape (TwoDShape ob) {

width = ob.width;

height = ob.height;

name = ob.name;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth (double w) { width = w; }
void setHeight (double h) { height = h; }

String getName() { return name; }

void showDim() {
System.out.println("Wwidth and height are

LL} +

width + " and " + height) ;
) The area() method defined by TwoDShape

double area () { = |

System.out.println("area() must be overridden") ;

return 0.0;

}
}

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape {
private String style;

// A default constructor.

Triangle () {
super () ;
style = "none";

}

// Constructor for Triangle.
Triangle (String s, double w, double h) ({
super (w, h, "triangle") ;

style = s;

}

// One argument constructor.
Triangle (double x)
super (x, "triangle"); // call superclass

style = "filled";

}

constructor

// Construct an object from an object.

Triangle (Triangle ob) {
super (ob) ; // pass object to TwoDShape constructor
style = ob.style;

}

// Override area () for Triangle.

double area() { - Override area() for Triangle
return getWidth() * getHeight () / 2;

}

void showsStyle() {
System.out .println("Triangle is " + style);

}

}

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
// A default constructor.
Rectangle () {
super () ;

}

// Constructor for Rectangle.
Rectangle (double w, double h) {
super (w, h, "rectangle"); // call superclass constructor

}

// Construct a square.
Rectangle (double x) {
super (x, "rectangle"); // call superclass constructor

}

// Construct an object from an object.
Rectangle (Rectangle ob) {

super (ob) ; // pass object to TwoDShape constructor
}
boolean isSquare ()

if (getWidth() == getHeight ()) return true;

return false;

}

// Override area () for Rectangle.
double area() { - Override areal() for Rectangle
return getWidth() * getHeight () ;

}

}

class DynShapes {
public static void main(String args[]) (
TwoDShape shapes[] = new TwoDShape [5];

shapes [0] = new Triangle("outlined", 8.0, 12.0);

shapes[1] = new Rectangle(10);
shapes[2] = new Rectangle (10, 4);
shapes[3] = new Triangle(7.0);

The proper version of area()

shapes [4] = new TwoDShape (10, 20, "generic")
pes (4] pe g is call oreqchshqpe

for (int i=0; i < shapes.length; i++) {
System.out.println("object is " + shapes[i] .getName()) ;
System.out.println("Area is " + shapes[i].area());
System.out.println() ;

}
)
}

The output from the program is shown here:

object is triangle
Area is 48.0

object is rectangle
Area is 100.0

object is rectangle
Area is 40.0

object is triangle
Area is 24.5

object is generic
area() must be overridden
Area is 0.0

Let’s examine this program closely. First, as explained, area() is now part of the
TwoDShape class and is overridden by Triangle and Rectangle. Inside
TwoDShape, area() is given a placeholder implementation that simply informs the
user that this method must be overridden by a subclass. Each override of area()
supplies an implementation that is suitable for the type of object encapsulated by the

subclass. Thus, if you were to implement an ellipse class, for example, then area()
would need to compute the area() of an ellipse.

There is one other important feature in the preceding program. Notice in main()
that shapes is declared as an array of TwoDShape objects. However, the elements of
this array are assigned Triangle, Rectangle, and TwoDShape references. This is
valid because, as explained, a superclass reference can refer to a subclass object. The
program then cycles through the array, displaying information about each object.
Although quite simple, this illustrates the power of both inheritance and method
overriding. The type of object referred to by a superclass reference variable is
determined at run time and acted on accordingly. If an object is derived from
TwoDShape, then its area can be obtained by calling area(). The interface to this
operation is the same no matter what type of shape is being used.

Using Abstract Classes

Sometimes you will want to create a superclass that defines only a generalized form
that will be shared by all of its subclasses, leaving it to each subclass to fill in the
details. Such a class determines the nature of the methods that the subclasses must
implement but does not, itself, provide an implementation of one or more of these
methods. One way this situation can occur is when a superclass is unable to create a
meaningful implementation for a method. This is the case with the version of
TwoDShape used in the preceding example. The definition of area() is simply a
placeholder. It will not compute and display the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a
method to have no meaningful definition in the context of its superclass. You can
handle this situation in two ways. One way, as shown in the previous example, is to
simply have it report a warning message. While this approach can be useful in
certain situations—such as debugging—it is not usually appropriate. You may have
methods which must be overridden by the subclass in order for the subclass to have
any meaning. Consider the class Triangle. It is incomplete if area() is not defined.
In this case, you want some way to ensure that a subclass does, indeed, override all
necessary methods. Java’s solution to this problem is the abstract method.

An abstract method is created by specifying the abstract type modifier. An
abstract method contains no body and is, therefore, not implemented by the
superclass. Thus, a subclass must override it—it cannot simply use the version
defined in the superclass. To declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present. The abstract modifier can be used only
on instance methods. It cannot be applied to static methods or to constructors.

A class that contains one or more abstract methods must also be declared as
abstract by preceding its class declaration with the abstract modifier. Since an
abstract class does not define a complete implementation, there can be no objects of
an abstract class. Thus, attempting to create an object of an abstract class by using
new will result in a compile-time error.

When a subclass inherits an abstract class, it must implement all of the abstract
methods in the superclass. If it doesn’t, then the subclass must also be specified as
abstract. Thus, the abstract attribute is inherited until such time as a complete
implementation is achieved.

Using an abstract class, you can improve the TwoDShape class. Since there is no
meaningful concept of area for an undefined two-dimensional figure, the following
version of the preceding program declares area() as abstract inside TwoDShape,
and TwoDShape as abstract. This, of course, means that all classes derived from
TwoDShape must override area().

// Create an abstract class.

abstract class TwoDShape { 4—TwoDShqpe s now gbs]‘rgd_
private double width;
private double height;
private String name;

// A default constructor.
TwoDShape () {
width = height = 0.0;
name = "none';

}

// Parameterized constructor.
TwoDShape (double w, double h, String n) {

width = w;
height = h;
name = n;

}

// Construct object with equal width and height.
TwoDShape (double x, String n) {

width = height = x;

name = n;

}

// Construct an object from an object.
TwoDShape (TwoDShape ob)

width = ob.width;

height = ob.height;

name = ob.name;

}

// Accessor methods for width and height.
double getWidth() { return width; }
double getHeight () { return height; }
void setWidth(double w) { width = w; }
void setHeight (double h) { height = h; }

String getName () { return name; }

void showDim() {
System.out.println("Width and height are " +
width + " and " + height) ;
}

// Now, area() 1s abstract.
abstract double area() ; == Make area() into an
} abstract method.

// A subclass of TwoDShape for triangles.
class Triangle extends TwoDShape ({
private String style;

// A default constructor.
Triangle () {

super () ;

style = "none";

}

// Constructor for Triangle.
Triangle (String s, double w, double h) {
super (w, h, "triangle") ;

style = s;

}

// One argument constructor.
Triangle (double x)

super (x, "triangle"); // call superclass constructor

style = "filled";

}

// Construct an object from an object.
Triangle (Triangle ob) {

super (ob) ; // pass object to TwoDShape constructor

style = ob.style;

}

double area () {
return getWidth() * getHeight () / 2;
}

void showStyle () {
System.out.println("Triangle is " + style);
}

}

// A subclass of TwoDShape for rectangles.
class Rectangle extends TwoDShape {
// A default constructor.
Rectangle () {
super () ;
}

// Constructor for Rectangle.
Rectangle (double w, double h) {

super (w, h, "rectangle"); // call superclass
}

constructor

// Construct a square.
Rectangle (double x)
super (x, "rectangle"); // call superclass constructor

}

// Construct an object from an object.
Rectangle (Rectangle ob) {
super (ob); // pass object to TwoDShape constructor

}

boolean isSquare ()
if (getWidth() ==
return false;

}

double area()
return getWidth() * getHeight () ;

}

getHeight ()) return true;

}

class AbsShape {
public static void main(String args[]) (
TwoDShape shapes[] = new TwoDShape [4];

shapes [0] = new Triangle ("outlined", 8.0, 12.0);
shapes [1] = new Rectangle(10) ;

shapes [2] = new Rectangle (10, 4);

shapes [3] = new Triangle(7.0);

for (int i=0; i < shapes.length; i++) {
System.out.println("object is " +
shapes [1] .getName ()) ;
System.out .println("Area is " + shapes|[i] .area());

System.out .println() ;

}
}
}

As the program illustrates, all subclasses of TwoDShape must override area().

To prove this to yourself, try creating a subclass that does not override area(). You
will receive a compile-time error. Of course, it is still possible to create an object
reference of type TwoDShape, which the program does. However, it is no longer
possible to declare objects of type TwoDShape. Because of this, in main() the
shapes array has been shortened to 4, and a TwoDShape object is no longer created.

One last point: Notice that TwoDShape still includes the showDim() and
getName() methods and that these are not modified by abstract. It is perfectly
acceptable—indeed, quite common—for an abstract class to contain concrete
methods which a subclass is free to use as is. Only those methods declared as
abstract need be overridden by subclasses.

Using final

As powerful and useful as method overriding and inheritance are, sometimes you
will want to prevent them. For example, you might have a class that encapsulates
control of some hardware device. Further, this class might offer the user the ability to
initialize the device, making use of private, proprietary information. In this case, you
don’t want users of your class to be able to override the initialization method.
Whatever the reason, in Java it is easy to prevent a method from being overridden or
a class from being inherited by using the keyword final.

final Prevents Overriding

To prevent a method from being overridden, specify final as a modifier at the start of
its declaration. Methods declared as final cannot be overridden. The following
fragment illustrates final:

class A {
final void meth() {
System.out.println("This is a final method.");
}

}

class B extends A {
void meth() { // ERROR! Can't override.
System.out.println("Illegal!");
}

J

Because meth() is declared as final, it cannot be overridden in B. If you attempt to
do so, a compile-time error will result.

final Prevents Inheritance

You can prevent a class from being inherited by preceding its declaration with final.
Declaring a class as final implicitly declares all of its methods as final, too. As you
might expect, it is illegal to declare a class as both abstract and final since an
abstract class is incomplete by itself and relies upon its subclasses to provide
complete implementations.

Here is an example of a final class:

final class A {
/i
}

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A

//
J

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Using final with Data Members

In addition to the uses of final just shown, final can also be applied to member
variables to create what amounts to named constants. If you precede a class
variable’s name with final, its value cannot be changed throughout the lifetime of
your program. You can, of course, give that variable an initial value. For example, in
Chapter 6 a simple error-management class called ErrorMsg was shown. That class
mapped a human-readable string to an error code. Here, that original class is
improved by the addition of final constants which stand for the errors. Now, instead
of passing getErrorMsg() a number such as 2, you can pass the named integer
constant DISKERR.

// Return a String object.
class ErrorMsg {
// Error codes.
final int OUTERR
final int INERR
final int DISKERR
final int INDEXERR

String msgs [] {
"Output Error",
"Input Error",

"Disk Full",
"Index Out-Of-Bounds"

ks

// Return the error message.
String getErrorMsg(int i)
if(i >=0 & i < msgs.length)
return msgs[i];
else
return "Invalid Error Code";
}

i <4———— Declare final constants.

-

1]
w N P o

Il

Il

}

class FinalD {
public static void main(String args/(]) {

ErrorMsg err = new ErrorMsg() ; I_——————ikeﬁmﬂcmnmnm

System.out.println(err.getErrorMsg (err.OUTERR)) ;
System.out.println(err.getErrorMsg (err.DISKERR)) ;

}
}

Notice how the final constants are used in main(). Since they are members of the
ErrorMsg class, they must be accessed via an object of that class. Of course, they
can also be inherited by subclasses and accessed directly inside those subclasses.
As a point of style, many Java programmers use uppercase identifiers for final
constants, as does the preceding example. But this is not a hard and fast rule.

Ask the Expert

Q: Can final member variables be made static? Can final be used on
method parameters and local variables?

A: The answer to both is Yes. Making a final member variable static lets
you refer to the constant through its class name rather than through an
object. For example, if the constants in ErrorMsg were modified by
static, then the println() statements in main() could look like this:

System.out.println(err.getErrorMsg (ErrorMsg.OUTERR)) ;
System.out.println(err.getErrorMsg (ErrorMsg.DISKERR)) ;

Declaring a parameter final prevents it from being changed within the
method. Declaring a local variable final prevents it from being assigned a
value more than once.

The Object Class

Java defines one special class called Object that is an implicit superclass of all other
classes. In other words, all other classes are subclasses of Object. This means that a
reference variable of type Object can refer to an object of any other class. Also,
since arrays are implemented as classes, a variable of type Object can also refer to
any array.

Object defines the following methods, which means that they are available in
every object:

Method ‘ Purpose |
Object clone() Creates a new object that is the same as the object being cloned.

boolean equals(Object object] | Determines whether one object is equal to another.

void finalize() | Colled before an unused object is recycled. (Deprecated by JDK 9.)
Class<@> getClass() ,, Obtains the class of an object run. fime. |

int hashCode() | Returns the hash code associated with the invoking object.

void notify(| Resumes execution of a thread waiting on the invoking object,
void nofifyAll() Resumes execution of all threads waiting on the invoking object,
String toString | :_Returns a string that describes the object. o

void wait(| | Wl on cricthes fesad of exscution,

void wait{long milliseconds|
void wait{long milliseconds,
int nanoseconds)

The methods getClass(), notify(), notifyAll(), and wait() are declared as final.
You can override the others. Several of these methods are described later in this
book. However, notice two methods now: equals() and toString(). The equals()
method compares two objects. It returns true if the objects are equivalent, and false
otherwise. The toString() method returns a string that contains a description of the
object on which it is called. Also, this method is automatically called when an object
1s output using println(). Many classes override this method. Doing so allows them
to tailor a description specifically for the types of objects that they create.

One last point: Notice the unusual syntax in the return type for getClass(). This
relates to Java’s generics feature. Generics allow the type of data used by a class or
method to be specified as a parameter. Generics are discussed in Chapter 13.

v Chapter 7 Self Test

1. Does a superclass have access to the members of a subclass? Does a subclass
have access to the members of a superclass?

2. Create a subclass of TwoDShape called Circle. Include an area() method that
computes the area of the circle and a constructor that uses super to initialize the
TwoDShape portion.

10.
11.

12.

. How do you prevent a subclass from having access to a member of a superclass?

. Describe the purpose and use of the two versions of super described in this

chapter.

. Given the following hierarchy:

class Alpha { ...
class Beta extends Alpha

Class Gamma extends Beta

In what order do the constructors for these classes complete their execution
when a Gamma object is instantiated?

. A superclass reference can refer to a subclass object. Explain why this is

important as it relates to method overriding.

What is an abstract class?

. How do you prevent a method from being overridden? How do you prevent a

class from being inherited?

. Explain how inheritance, method overriding, and abstract classes are used to

support polymorphism.
What class is a superclass of every other class?

A class that contains at least one abstract method must, itself, be declared
abstract. True or False?

What keyword is used to create a named constant?

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 8

Packages and Interfaces

Key SKkills & Concepts

Use packages

Understand how packages affect access
Apply the protected access modifier
Import packages

Know Java’s standard packages
Understand interface fundamentals
Implement an interface

Apply interface references

Understand interface variables

Extend interfaces

Create default, static, and private interface methods

interfaces. Packages are groups of related classes. Packages help organize

your code and provide another layer of encapsulation. As you will see in
Chapter 15, packages also play an important role in the new modules feature added
by JDK 9. An interface defines a set of methods that will be implemented by a class.
Thus, an interface gives you a way to specify what a class will do, but not how it will
do it. Packages and interfaces give you greater control over the organization of your
program.

This chapter examines two of Java’s most innovative features: packages and

Packages

In programming, it is often helpful to group related pieces of a program together. In
Java, this can be accomplished by using a package. A package serves two purposes.
First, it provides a mechanism by which related pieces of a program can be
organized as a unit. Classes defined within a package must be accessed through their
package name. Thus, a package provides a way to name a collection of classes.
Second, a package participates in Java’s access control mechanism. Classes defined
within a package can be made private to that package and not accessible by code
outside the package. Thus, the package provides a means by which classes can be
encapsulated. Let’s examine each feature a bit more closely.

In general, when you name a class, you are allocating a name from the namespace.
A namespace defines a declarative region. In Java, no two classes can use the same
name from the same namespace. Thus, within a given namespace, each class name
must be unique. The examples shown in the preceding chapters have all used the
default (global) namespace. While this is fine for short sample programs, it becomes
a problem as programs grow and the default namespace becomes crowded. In large
programs, finding unique names for each class can be difficult. Furthermore, you
must avoid name collisions with code created by other programmers working on the
same project, and with Java’s library. The solution to these problems is the package
because it gives you a way to partition the namespace. When a class is defined
within a package, the name of that package is attached to each class, thus avoiding
name collisions with other classes that have the same name, but are in other
packages.

Since a package usually contains related classes, Java defines special access rights
to code within a package. In a package, you can define code that is accessible by
other code within the same package but not by code outside the package. This
enables you to create self-contained groups of related classes that keep their
operation private.

Defining a Package

All classes in Java belong to some package. When no package statement is
specified, the default (global) package is used. Furthermore, the default package has
no name, which makes the default package transparent. This is why you haven’t had
to worry about packages before now. While the default package is fine for short,
sample programs, it is inadequate for real applications. Most of the time, you will
define one or more packages for your code.

To create a package, put a package command at the top of a Java source file. The
classes declared within that file will then belong to the specified package. Since a

package defines a namespace, the names of the classes that you put into the file
become part of that package’s namespace.

This is the general form of the package statement:
package pkg;

Here, pkg 1s the name of the package. For example, the following statement creates a
package called mypack:

package mypack;

Java uses the file system to manage packages, with each package stored in its own
directory. For example, the .class files for any classes you declare to be part of
mypack must be stored in a directory called mypack.

Like the rest of Java, package names are case sensitive. This means that the
directory in which a package is stored must be precisely the same as the package
name. If you have trouble trying the examples in this chapter, remember to check
your package and directory names carefully. Lowercase is often used for package
names.

More than one file can include the same package statement. The package
statement simply specifies to which package the classes defined in a file belong. It
does not exclude other classes in other files from being part of that same package.
Most real-world packages are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package
name from the one above it by use of a period. The general form of a multileveled
package statement is shown here:

package packl.pack2.pack3...packN;

Of course, you must create directories that support the package hierarchy that you
create. For example,

package alpha.beta.gamma;

must be stored in .../alpha/beta/gamma, where ... specifies the path to the specified
directories.

Finding Packages and CLASSPATH

As just explained, packages are mirrored by directories. This raises an important
question: How does the Java run-time system know where to look for packages that
you create? As it relates to the examples in this chapter, the answer has three parts.

First, by default, the Java run-time system uses the current working directory as its
starting point. Thus, if your package is in a subdirectory of the current directory, it
will be found. Second, you can specify a directory path or paths by setting the
CLASSPATH environmental variable. Third, you can use the -classpath option
with java and javac to specify the path to your classes. It is useful to point out that,
beginning with JDK 9, a package can be part of a module, and thus found on the
module path. However, a discussion of modules and module paths is deferred until
Chapter 15. For now, we will use only class paths.

For example, assuming the following package specification:

package mypack

In order for a program to find mypack, the program can be executed from a
directory immediately above mypack, or CLASSPATH must be set to include the
path to mypack, or the -classpath option must specify the path to mypack when the
program is run via java.

The easiest way to try the examples shown in this chapter is to simply create the
package directories below your current development directory, put the .class files
into the appropriate directories, and then execute the programs from the development
directory. This is the approach used by the following examples.

One last point: To avoid problems, it is best to keep all .java and .class files
associated with a package in that package’s directory. Also, compile each file from
the directory above the package directory.

A Short Package Example
Keeping the preceding discussion in mind, try this short package example. It creates
a simple book database that is contained within a package called bookpack.

// A short package demonstration.
package bookpack; « This file is part of the bookpack package.

class Book { = Thus, Book is part of bookpack.
private String title;
private String author;
private int pubDate;

Book (String t, String a, int d) {
Eitle = £;

author = a;
pubDate = d;

}

void show ()
System.out.println(title) ;
System.out.println (author) ;
System.out.println (pubDate) ;
System.out.println() ;

}
} BookDemo is also part of bookpack.

class BookDemo {-4———J

public static void main(String args[]) {
Book books[] = new Book|[5];

books [0] = new Book ("Java: A Beginner's Guide",
"Schildt", 2018);

books [1] = new Book ("Java: The Complete Reference",
ngennldE? . 2018) ;

books [2] = new Book ("Introducing JavaFX 8 Programming",
"Schildt", 2015);

books [3] = new Book ("Red Storm Rising",

"Clancy", 1986);
books [4] = new Book ("On the Road",
"Kerouac", 1955);

for (int i=0; i < books.length; i++) books[i].show () ;

}
J

Call this file BookDemo.java and put it in a directory called bookpack.
Next, compile the file. You can do this by specifying

javac bookpack/BookDemo. java

from the directory directly above bookpack. Then try executing the class, using the
following command line:

java bookpack.BookDemo

Remember, you will need to be in the directory above bookpack when you execute

this command. (Or, use one of the other two options described in the preceding
section to specify the path to bookpack.)

As explained, BookDemo and Book are now part of the package bookpack. This
means that BookDemo cannot be executed by itself. That is, you cannot use this
command line:

java BookDemo

Instead, BookDemo must be qualified with its package name.

Packages and Member Access

The preceding chapters have introduced the fundamentals of access control,
including the private and public modifiers, but they have not told the entire story.
One reason for this is that packages also participate in Java’s access control
mechanism, and this aspect of access control had to wait until packages were
covered. Before we continue, it is important to note that the new modules feature
added by JDK 9 also offers another dimension to accessibility, but here we focus
strictly on the interplay between packages and classes.

The visibility of an element is affected by its access specification—private,
public, protected, or default—and the package in which it resides. Thus, as it relates
to classes and packages, the visibility of an element is determined by its visibility
within a class and its visibility within a package. This multilayered approach to
access control supports a rich assortment of access privileges. Table 8-1 summarizes
the various access levels. Let’s examine each access option individually.

If a member of a class has no explicit access modifier, then it is visible within its
package but not outside its package. Therefore, you will use the default access
specification for elements that you want to keep private to a package but public
within that package.

Members explicitly declared public are the most visible, and can be accessed from
different classes and different packages. A private member is accessible only to the
other members of its class. A private member is unaffected by its membership in a
package. A member specified as protected is accessible within its package and to
subclasses in other packages.

Table 8-1 applies only to members of classes. A top-level class has only two
possible access levels: default and public. When a class is declared as public, it is
accessible outside its package. If a class has default access, it can be accessed only
by other code within its same package. Also, a class that is declared public must
reside in a file by the same name.

Private Member | Default Member | Protected Member | Public Member

Visible within Yes Yes Yes Yes
same class | | |
Visible within No Yes Yes Yes
same package

by subclass | _
Visible within No Yes Yes Yes

same package
by non-subclass

Visible within No | No | Yes | Yes

different package

by subclass | | |
Visible within No No No Yes
different package

by non-subclass

Table 8-1 Class Member Access

NOTE

Remember, the new modules feature added by JDK 9 can also affect accessibility.
Modules are discussed in Chapter 15.

A Package Access Example

In the package example shown earlier, both Book and BookDemo were in the same
package, so there was no problem with BookDemo using Book because the default
access privilege grants all members of the same package access. However, if Book
were in one package and BookDemo were in another, the situation would be
different. In this case, access to Book would be denied. To make Book available to
other packages, you must make three changes. First, Book needs to be declared
public. This makes Book visible outside of bookpack. Second, its constructor must
be made public, and finally, its show() method needs to be public. This allows them
to be visible outside of bookpack, too. Thus, to make Book usable by other
packages, it must be recoded as shown here:

// Book recoded for public access.
package bookpack;

public class Book { <«————Book and its members must be public
private String title; in order to be used by other pc:ckdges
private String author;
private int pubDate;

// Now public.

public Book (String t, String a, int d) {
title = t;
author = a;
pubDate = 4;

}

// Now public.

public void show() {
System.out.println(title);
System.out.println(author) ;
System.out.println (pubDate) ;
System.out.println();

To use Book from another package, either you must use the import statement
described in the next section, or you must fully qualify its name to include its full
package specification. For example, here is a class called UseBook, which is
contained in the bookpackext package. It fully qualifies Book in order to use it.

// This class is in package bookpackext.
package bookpackext;

// Use the Book class from bookpack. Qualify Book with its

class UseBook ({

package name: bookpack.

public static void main(String args[])

bookpack.Book books|[] = new bookpack.Book [5];

books [0] = new bookpack.Book ("Java: A Beginner's Guide",
"Schildt", 2018);

books [1] = new bookpack.Book ("Java: The Complete Reference',
"Schildt", 2018);

books [2] = new bookpack.Book ("Introducing JavaFX 8 Programming",
"Schildt"™, 2015);

books [3] = new bookpack.Book ("Red Storm Rising",
"Clancy", 1986);

books [4] = new bookpack.Book ("On the Road",

for(int 1=0; 1i
}
}

"Kerouac", 1955);

< bocks.length; i++) books[i].show() ;

Notice how every use of Book is preceded with the bookpack qualifier. Without this
specification, Book would not be found when you tried to compile UseBook.

Understanding Protected Members

Newcomers to Java are sometimes confused by the meaning and use of protected.
As explained, the protected modifier creates a member that is accessible within its
package and to subclasses in other packages. Thus, a protected member is available
for all subclasses to use but is still protected from arbitrary access by code outside its

package.

To better understand the effects of protected, let’s work through an example.
First, change the Book class so that its instance variables are protected, as shown

here:

// Make the instance variables in Book protected.
package bookpack;

public class Book {
// these are now protected
protected String title; |
protected String author; |— These are now protected.
protected int pubDate;

public Book(String t, String a, int d) {
title = t;
author = a;
pubDate = d;

}

public void show() {
System.out.println(title) ;
System.out.println (author) ;
System.out.println (pubDate) ;
System.out.println() ;

}
}

Next, create a subclass of Book, called ExtBook, and a class called ProtectDemo
that uses ExtBook. ExtBook adds a field that stores the name of the publisher and
several accessor methods. Both of these classes will be in their own package called
bookpackext. They are shown here:

// Demonstrate protected.
package bookpackext;

class ExtBook extends bookpack.Book |{
private String publisher;

public ExtBook(String t, String a, int d, String p) {
super(t, a, 4d);
publisher = p;

}

public void show() {
super .show() ;
System.out.println(publisher) ;
System.out.println();

}

public String getPublisher() { return publisher; }
public void setPublisher(String p) { publisher = p; }

/* These are OK because subclass can access
a protected member. */
public String getTitle() { return title; }
public void setTitle(String t) { title = t; }
public String getAuthor () { return author; } <——— Accessto Book's members
public void setAuthor (String a) { author = a; } is allowed for subclasses.
public int getPubDate() { return pubDate; }
public void setPubDate(int d) { pubDate = 4; }

}

class ProtectDemo {
public static void main(String args[]) {
ExtBook books[] = new ExtBook [5];

books [0] = new ExtBook("Java: A Beginner's Guide",
"Schildt", 2018, "Oracle Press");

books [1] = new ExtBook("Java: The Complete Reference",
"Schildt", 2018, "Oracle Press");
books [2] = new ExtBook ("Introducing JavaFX 8 Programming",

wSehilarT, 2015,
"Oracle Press") ;
books [3] = new ExtBook("Red Storm Rising",
nClancy", 1986; "Putham"):
new ExtBook ("On the Road",
"Kerouac", 1955, "Viking");

books [4]

for(int i=0; i < books.length; i++) books[i].show() ;

// Find books by author
System.out.println("Showing all books by Schildt.");
for (int i=0; 1 < books.length; i++)
if (books[i] .getAuthor () == "Schildt")
System.out.println(books[i] .getTitle()) ;

ff books [0] .title = "test title"; // Error - not accessible

| t
} Access to protected field not allowed by non-subclass.

Look first at the code inside ExtBook. Because ExtBook extends Book, it has
access to the protected members of Book, even though ExtBook is in a different
package. Thus, it can access title, author, and pubDate directly, as it does in the
accessor methods it creates for those variables. However, in ProtectDemo, access to
these variables is denied because ProtectDemo is not a subclass of Book. For
example, if you remove the comment symbol from the following line, the program
will not compile.

// books[0].title = "test title"; // Error - not accessible

Importing Packages

When you use a class from another package, you can fully qualify the name of the
class with the name of its package, as the preceding examples have done. However,
such an approach could easily become tiresome and awkward, especially if the
classes you are qualifying are deeply nested in a package hierarchy. Since Java was
invented by programmers for programmers—and programmers don’t like tedious

constructs—it should come as no surprise that a more convenient method exists for
using the contents of packages: the import statement. Using import you can bring
one or more members of a package into view. This allows you to use those members
directly, without explicit package qualification.

Here is the general form of the import statement:

import pkg.classname;

Here, pkg 1s the name of the package, which can include its full path, and classname
1s the name of the class being imported. If you want to import the entire contents of a
package, use an asterisk (*) for the class name. Here are examples of both forms:

import mypack.MyClass
import mypack.*;

In the first case, the MyClass class is imported from mypack. In the second, all of
the classes in mypack are imported. In a Java source file, import statements occur
immediately following the package statement (if it exists) and before any class
definitions.

You can use import to bring the bookpack package into view so that the Book
class can be used without qualification. To do so, simply add this import statement
to the top of any file that uses Book.

import bookpack.*;

For example, here is the UseBook class recoded to use import:

// Demonstrate import.
package bookpackext;
import bookpack.*; < Import bookpack.

// Use the Book class from bookpack.

class UseBook ({

public static void main(String args[])
Book books[] = new Book[5]; = dN_ow, Ui refer h:o_Boc_:k
1rect|y, without quchhcahon.
bocks [0] = new Book("Java: A Beginner's Guide",
"Schildt", 2018);
books [1] = new Book ("Java: The Complete Reference",
"Schildt®, 2018);
books [2] = new Book ("Introducing JavaFX 8 Programming",
"Schildt", 2015);
books [3] = new Book ("Red Storm Rising",
"Clancy", 1986);
bocks [4] = new Book("On the Road",

for(int i=0: i
}
}

"Kerouac", 1955);

< books.length; i++) books[i] .show() ;

Notice that you no longer need to qualify Book with its package name.

Java’s Class Library Is Contained in Packages

As explained earlier in this book, Java defines a large number of standard classes
that are available to all programs. This class library is often referred to as the Java
API (Application Programming Interface). The Java API is stored in packages. At
the top of the package hierarchy is java. Descending from java are several
subpackages. Here are a few examples:

Subpackage | Description

java.lang | Contains a large number of general-purpose classes

java.io _' Contains /O classes

java.net ' Contains dlasses that support networking

javaufi | Contains o large number of utility classes, including the Collections Framework
|ava.awt Contains classes that support the Abstract Window Toolkit

Since the beginning of this book, you have been using java.lang. It contains,
among several others, the System class, which you have been using when
performing output using println(). The java.lang package is unique because it is
imported automatically into every Java program. This is why you did not have to
import java.lang in the preceding sample programs. However, you must explicitly
import the other packages. We will be examining several packages in subsequent
chapters.

Interfaces

In object-oriented programming, it is sometimes helpful to define what a class must
do but not how it will do it. You have already seen an example of this: the abstract
method. An abstract method defines the signature for a method but provides no
implementation. A subclass must provide its own implementation of each abstract
method defined by its superclass. Thus, an abstract method specifies the interface to
the method but not the implementation. While abstract classes and methods are
useful, it is possible to take this concept a step further. In Java, you can fully separate
a class’ interface from its implementation by using the keyword interface.

An interface is syntactically similar to an abstract class, in that you can specify
one or more methods that have no body. Those methods must be implemented by a
class in order for their actions to be defined. Thus, an interface specifies what must
be done, but not how to do it. Once an interface is defined, any number of classes
can implement it. Also, one class can implement any number of interfaces.

To implement an interface, a class must provide bodies (implementations) for the
methods described by the interface. Each class is free to determine the details of its
own implementation. Two classes might implement the same interface in different
ways, but each class still supports the same set of methods. Thus, code that has
knowledge of the interface can use objects of either class since the interface to those
objects is the same. By providing the interface keyword, Java allows you to fully

utilize the “one interface, multiple methods™ aspect of polymorphism.

Before continuing an important point needs to be made. JDK 8 added a feature to
interface that made a significant change to its capabilities. Prior to JDK 8, an
interface could not define any implementation whatsoever. Thus, prior to JDK 8, an
interface could define only what, but not how, as just described. JDK 8 changed this.
Today, it is possible to add a default implementation to an interface method.
Furthermore, static interface methods are now supported, and beginning with JDK 9,
an interface can also include private methods. Thus, it is now possible for interface
to specify some behavior. However, such methods constitute what are, in essence,
special-use features, and the original intent behind interface still remains. Therefore,
as a general rule, you will still often create and use interfaces in which no use is
made of these new features. For this reason, we will begin by discussing the interface
in its traditional form. New interface features are described at the end of this chapter.

Here is a simplified general form of a traditional interface:

access interface name {

ret-type method-namel(param-l[ist);
ret-type method-name2(param-list);
type varl = value;

type var2 = value;

/...

ret-type method-nameN(param-list);
type varN = value;

j

For a top-level interface, access is either public or not used. When no access
modifier is included, then default access results, and the interface is available only to
other members of its package. When it is declared as public, the interface can be
used by any other code. (When an interface is declared public, it must be in a file of
the same name.) name is the name of the interface and can be any valid identifier.

In the traditional form of an interface, methods are declared using only their return
type and signature. They are, essentially, abstract methods. Thus, each class that
includes such an interface must implement all of its methods. In an interface,
methods are implicitly public.

Variables declared in an interface are not instance variables. Instead, they are
implicitly public, final, and static and must be initialized. Thus, they are essentially
constants.

Here is an example of an interface definition. It specifies the interface to a class
that generates a series of numbers.

public interface Series {
int getNext (); // return next number in series
void reset(); // restart
void setStart (int x); // set starting value

}

This interface is declared public so that it can be implemented by code in any
package.

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that
interface. To implement an interface, include the implements clause in a class
definition and then create the methods required by the interface. The general form of
a class that includes the implements clause looks like this:

class classname extends superclass implements interface {
// class-body

j

To implement more than one interface, the interfaces are separated with a comma.
Of course, the extends clause is optional.

The methods that implement an interface must be declared public. Also, the type
signature of the implementing method must match exactly the type signature
specified in the interface definition.

Here is an example that implements the Series interface shown earlier. It creates a
class called ByTwos, which generates a series of numbers, each two greater than the
previous one.

// Implement Series.
class ByTwos implements Series {

int start; T
int val;
Implement the Series interface.
ByTwos ()
start = 0;
val = 0;

}

public int getNext () {
val += 2;
return val;

}

public void reset () {
val = start;

}

public void setStart (int x)
start = Xx;
val = x;

}
}

Notice that the methods getNext(), reset(), and setStart() are declared using the
public access specifier. This is necessary. Whenever you implement a method
defined by an interface, it must be implemented as public because all members of an
interface are implicitly public.

Here is a class that demonstrates ByTwos:

class SeriesDemo
public static void main(String args[]) {
ByTwos ob = new ByTwos () ;

for(int 1=0; i < 5; i++)
System.out .println ("Next value is " +
ob.getNext ()) ;

System.out .println("\nResetting") ;
ob.reset () ;
for(int 1=0; i < 5; i++)

System.out .println ("Next value is " +

ob.getNext ()) ;

System.out.println("\nStarting at 100");
ob.setStart (100) ;
for(int 1=0; i < 5; i++)
System.out.println("Next value is " +
ob.getNext ()) ;

The output from this program is shown here:

Next value is
Next value is
Next value is
Next value is
Next value is

= 00 o DN

Resetting

Next value is
Next value is
Next value is
Next value is
Next value is

= 00 oy N

Starting at 100

Next value is 102
Next value is 104
Next value is 106
Next value is 108
Next value is 110

It is both permissible and common for classes that implement interfaces to define

additional members of their own. For example, the following version of ByTwos
adds the method getPrevious(), which returns the previous value:

// Implement Series and add getPrevious () .
class ByTwos implements Series {

int start;

int val;

int prev;

ByTwos () {
start =
val = 0;
prev = -2;

}

public int getNext () {
prev = val;
val += 2;

0;

return val;

}

public void reset () ({
val = start;
prev = start - 2;

}

public void setStart (int x) {
start = X;
val = X;
prev = X - 2;

}

int getPrevious() { <«——— Addamethod not defined by Series.
return prev;

}
}

Notice that the addition of getPrevious() required a change to the implementations
of the methods defined by Series. However, since the interface to those methods
stays the same, the change is seamless and does not break preexisting code. This is
one of the advantages of interfaces.

As explained, any number of classes can implement an interface. For example,
here is a class called ByThrees that generates a series that consists of multiples of
three:

// Implement Series.

class ByThrees implements Series { <————Implement Series a different way.
int start;
int val;

) A

0;

ByThrees (
start =
val = 0;

}

public int getNext () {
val += 3;
return val;

}

public void reset() {
val = start;

}

public void setStart (int x)
start = x;
val = x;

}
}

One more point: If a class includes an interface but does not fully implement the
methods defined by that interface, then that class must be declared as abstract. No
objects of such a class can be created, but it can be used as an abstract superclass,
allowing subclasses to provide the complete implementation.

Using Interface References

You might be somewhat surprised to learn that you can declare a reference variable
of an interface type. In other words, you can create an interface reference variable.
Such a variable can refer to any object that implements its interface. When you call a
method on an object through an interface reference, it is the version of the method
implemented by the object that is executed. This process is similar to using a

superclass reference to access a subclass object, as described in Chapter 7.
The following example illustrates this process. It uses the same interface reference
variable to call methods on objects of both ByTwos and ByThrees.

// Demonstrate interface references.

class ByTwos implements Series {
int start;
int wval;

ByTwos () {
start =
val = 0;

}

public int getNext () {
val += 2;
return val;

}

public void reset () {
val = start;
}

public void setStart (int x)
gstart = x;
val = X;

0;

}
}

class ByThrees implements Series ({
int start;
int wval;

ByThrees ()

start = 0;
val = 0;
}

public int getNext () ({
val += 3;
return val;

}

public void reset ()
val = start;

}

public void setStart(int x)
start = X;
val = %;

}

}

class SeriesDemo2 {
public static void main(String args(]) ({
ByTwos twoOb = new ByTwos () ;
ByThrees threeOb = new ByThrees() ;
Series ob;

for(int i=0; i < 5; i++) {
ob = twoOb;
System.out.println("Next ByTwos value is " +
ob.getNext ()) ; «
¢k = threeOb; . | Access an object via
System.out.println("Next ByThrees value is " + an interface reference.
ob.getNext ()) ;
}

}
}

In main(), ob is declared to be a reference to a Series interface. This means that it
can be used to store references to any object that implements Series. In this case, it is
used to refer to twoOb and threeOb, which are objects of type ByTwos and
ByThrees, respectively, which both implement Series. An interface reference

variable has knowledge only of the methods declared by its interface declaration.
Thus, ob could not be used to access any other variables or methods that might be
supported by the object.

Try This 8-1 Creating a Queue Interface

! ICharQ.java i

{ IQDemo. java i

To see the power of interfaces in action, we will look at a practical example. In
earlier chapters, you developed a class called Queue that implemented a simple
fixed-size queue for characters. However, there are many ways to implement a
queue. For example, the queue can be of a fixed size or it can be “growable.” The
queue can be linear, in which case it can be used up, or it can be circular, in which
case elements can be put in as long as elements are being taken off. The queue can
also be held in an array, a linked list, a binary tree, and so on. No matter how the
queue is implemented, the interface to the queue remains the same, and the methods
put() and get() define the interface to the queue independently of the details of the
implementation. Because the interface to a queue is separate from its
implementation, it is easy to define a queue interface, leaving it to each
implementation to define the specifics.

In this project, you will create an interface for a character queue and three
implementations. All three implementations will use an array to store the characters.
One queue will be the fixed-size, linear queue developed earlier. Another will be a
circular queue. In a circular queue, when the end of the underlying array is
encountered, the get and put indices automatically loop back to the start. Thus, any
number of items can be stored in a circular queue as long as items are also being
taken out. The final implementation creates a dynamic queue, which grows as
necessary when its size is exceeded.

1. Create a file called ICharQ.java and put into that file the following interface
definition:

// A character queue interface.
public interface ICharQ (
// Put a character into the queue.
void put (char ch);

// Get a character from the queue.
char get () ;

}

As you can see, this interface is very simple, consisting of only two methods.
Each class that implements ICharQ will need to implement these methods.

2. Create a file called IQDemao.java.
3. Begin creating IQDemo.java by adding the FixedQueue class shown here:

// A fixed-size queue class for characters.

class FixedQueue implements ICharQ {
private char gl[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty queue given its size.
public FixedQueue (int size) {
q = new char[size]; // allocate memory for queue

putloc = getloc = 0;

}

// Put a character into the queue.
public void put (char ch) {
if (putloc==q.length)

System.out.println(" - Queue is full.");
return;

}

g[putloc++] = ch;

}

// Get a character from the gqueue.
public char get () {
if (getloc == putloc) {
System.out.println(" - Queue is empty.");
return (char) 0;

}

return glgetloc++];

}
}

This implementation of ICharQ is adapted from the Queue class shown in
Chapter 5 and should already be familiar to you.

4. To IQDemo.java add the CircularQueue class shown here. It implements a
circular queue for characters.

// A circular gqueue.

class CircularQueue implements ICharQ {
private char qgql]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty queue given its size.

public CircularQueue (int size) {
q = new char([size+1l]; // allocate memory for queue
putloc = getloe = 0;

}

// Put a character into the queue.
public void put (char ch) {

/* Queue is full if either putloc is one less than
getloc, or if putloc is at the end of the array
and getloc is at the beginning. */

if (putloc+l==getloc |

((putloc==qg.length-1) & (getloc==0))) {
System.out .println(" - Queue is full.");
return;

}

g[putloc++] = ch;
if (putloc==q.length) putloc = 0; // loop back

}

// Get a character from the gqueue.
public char get() {
if (getloc == putloc) {
System.out .println (" - Queue is empty.");
return (char) O0;

}

char ch = gl[getloc++];
if (getloc==qg.length) getloc = 0; // loop back
return ch;

}
}

The circular queue works by reusing space in the array that is freed when

elements are retrieved. Thus, it can store an unlimited number of elements as
long as elements are also being removed. While conceptually simple—just reset
the appropriate index to zero when the end of the array is reached—the boundary
conditions are a bit confusing at first. In a circular queue, the queue is full not
when the end of the underlying array is reached, but rather when storing an item
would cause an unretrieved item to be overwritten. Thus, put() must check
several conditions in order to determine if the queue is full. As the comments
suggest, the queue is full when either putloc is one less than getloc, or if putloc
1s at the end of the array and getloc is at the beginning. As before, the queue is
empty when getloc and putloc are equal. To make these checks easier, the
underlying array is created one size larger than the queue size.

5. Put into IQDemo.java the DynQueue class shown next. It implements a
“growable” queue that expands its size when space 1s exhausted.

// A dynamic queue.

class DynQueue implements ICharQ (
private char q[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty queue given its size.

public DynQueue (int size) ({
q = new char[size]; // allocate memory for queue
putloc = getloc = 0;

}

// Put a character into the queue.
public void put (char ch) ({
if (putloc==g.length) {
// increase queue size
char t[] = new char[g.length * 2];

// copy elements into new queue
for(int 1=0; i < g.length; i++)
t[i] = glil;

gl[putloc++] = ch;

}

// Get a character from the queue.
public char get() ({
if (getloc == putloc) {
System.out .println (" - Queue is empty.");
return (char) O;

}

return gl[getloc++];

}
}

In this queue implementation, when the queue is full, an attempt to store another
element causes a new underlying array to be allocated that is twice as large as
the original, the current contents of the queue are copied into this array, and a
reference to the new array is stored in q.

6. To demonstrate the three ICharQ implementations, enter the following class into
IQDemo.java. It uses an ICharQ reference to access all three queues.

// Demonstrate the ICharQ interface.
class IQDemo
public static void main(String args[]) {
FixedQueue gl = new FixedQueue (10) ;
DynQueue g2 = new DynQueue (5) ;
CircularQueue g3 = new CircularQueue (10) ;

ICharQ iQ;

char ch;
int i;

iQ = gil;
// Put some characters into fixed queue.
for (1=0% i < 10; i+4v)

iQ.put ((char) ('A' + 1i));

// Show the gqueue.
System.out .print ("Contents of fixed queue: ") ;
for(i=0; i < 10; i++4) {

ch = iQ.get () ;

System.out .print (ch) ;

}

System.out .println() ;

iQ = g2;
// Put some characters into dynamic queue.
for(i=0; 1 < 10; i++)

ig.put((chaxr) {(*'2Zv - 1i));

// Show the queue.
System.out .print ("Contents of dynamic queue: ") ;
for(i=0; 1 < 10; i++) {

ch = iQ.get () ;

System.out .print (ch) ;

}

System.out .println () ;

iQ = g3;
// Put some characters into circular queue.
for(i=0; i < 10; i++)

ig.put((chaxr) ('HY + 1));

// Show the queue.
System.out .print ("Contents of circular queue: ") ;
for(i=0; i < 10; i++) {

ch = iQ.get () ;

System.out .print (ch) ;

}

System.out .println() ;

// Put more characters into circular queue.
for(i=10; i < 20; 1i++)
iQ.put ((char) ('A' + 1)) ;

// Show the queue.
System.out .print ("Contents of circular gqueue: ") ;
for (i=0; i < 10; i++) {

ch = iQ.get () ;
System.out.print (ch) ;

}

System.out.println("\nStore and consume from" +
" circular queue.");

// Store in and consume from circular queue.

for(i=0; i < 20; i++) {
iQ.put ((char) ('A' + 1));
ch = iQ.get () ;
System.out.print (ch) ;

}

}
}

7. The output from this program is shown here:

Contents of fixed queue: ABCDEFGHIJ
Contents of dynamic queue: ZYXWVUTSRQ
Contents of circular gueue: ABCDEFGHIJ
Contents of circular queue: KLMNOPQRST
Store and consume from circular queue.
ABCDEFGHIJKLMNOPQRST

8. Here are some things to try on your own. Create a circular version of DynQueue.
Add a reset() method to ICharQ, which resets the queue. Create a static method
that copies the contents of one type of queue into another.

Variables in Interfaces

As mentioned, variables can be declared in an interface, but they are implicitly
public, static, and final. At first glance, you might think that there would be very
limited use for such variables, but the opposite is true. Large programs typically
make use of several constant values that describe such things as array size, various
limits, special values, and the like. Since a large program is typically held in a
number of separate source files, there needs to be a convenient way to make these
constants available to each file. In Java, interface variables offer one solution.

To define a set of shared constants, create an interface that contains only these
constants, without any methods. Each file that needs access to the constants simply

“implements” the interface. This brings the constants into view. Here is an example:

// An interface that contains constants.
interface IConst {
int MIN = 0;
int MAX = 10; — These are constants.
String ERRORMSG = "Boundary Error";

}

class IConstD implements IConst {
public static void main(String args[]) ({
int nums[] = new int [MAX];

for (int i=MIN; i < 11; i++) {
if (i >= MAX) System.out.println (ERRORMSG) ;
else (
nums [1] = 1i;
System.out .print (nums[1] + " ");
}
}
}
J

NOTE

The technique of using an interface to define shared constants is controversial. It is
described here for completeness.

Interfaces Can Be Extended

One interface can inherit another by use of the keyword extends. The syntax is the
same as for inheriting classes. When a class implements an interface that inherits
another interface, it must provide implementations for all methods required by the
interface inheritance chain. Following is an example:

// One interface can extend another.
interface A {

void methl () ;

void meth2 () ;

}

// B now includes methl() and meth2() - it adds meth3 ().
interface B extends A {
void meth3 () ;

) B inherits A.

// This class must implement all of A and B
class MyClass implements B {
public void methl () {
System.out.println ("Implement methl().") ;

}

public void meth2 () {
System.out .println("Implement meth2().");

}

public void meth3 () {
System.out.println("Implement meth3().");

}
}

class IFExtend ({
public static void main(String args[]) {
MyClass ob = new MyClass() ;

ob.methl () ;
ob.meth2 () ;
ob.meth3 () ;

}
J

As an experiment, you might try removing the implementation for meth1() in
MyClass. This will cause a compile-time error. As stated earlier, any class that
implements an interface must implement all methods required by that interface,
including any that are inherited from other interfaces.

Default Interface Methods

As explained earlier, prior to JDK 8, an interface could not define any
implementation whatsoever. This meant that for all previous versions of Java, the
methods specified by an interface were abstract, containing no body. This is the
traditional form of an interface and is the type of interface that the preceding
discussions have used. The release of JDK 8 changed this by adding a new capability
to interface called the default method. A default method lets you define a default
implementation for an interface method. In other words, by use of a default method,
it is possible for an interface method to provide a body, rather than being abstract.
During its development, the default method was also referred to as an extension
method, and you will likely see both terms used.

A primary motivation for the default method was to provide a means by which
interfaces could be expanded without breaking existing code. Recall that there must
be implementations for all methods defined by an interface. In the past, if a new
method were added to a popular, widely used interface, then the addition of that
method would break existing code because no implementation would be found for
that method. The default method solves this problem by supplying an
implementation that will be used if no other implementation is explicitly provided.
Thus, the addition of a default method will not cause preexisting code to break.

Another motivation for the default method was the desire to specify methods in an
interface that are, essentially, optional, depending on how the interface is used. For
example, an interface might define a group of methods that act on a sequence of
elements. One of these methods might be called remove(), and its purpose is to
remove an element from the sequence. However, if the interface is intended to
support both modifiable and non-modifiable sequences, then remove() is essentially
optional because it won’t be used by non-modifiable sequences. In the past, a class
that implemented a non-modifiable sequence would have had to define an empty
implementation of remove(), even though it was not needed. Today, a default
implementation for remove() can be specified in the interface that either does
nothing or reports an error. Providing this default prevents a class used for non-
modifiable sequences from having to define its own, placeholder version of remove(
). Thus, by providing a default, the interface makes the implementation of remove()
by a class optional.

It i1s important to point out that the addition of default methods does not change a
key aspect of interface: an interface still cannot have instance variables. Thus, the
defining difference between an interface and a class is that a class can maintain state
information, but an interface cannot. Furthermore, it is still not possible to create an
instance of an interface by itself. It must be implemented by a class. Therefore, even
though, beginning with JDK 8, an interface can define default methods, the interface

must still be implemented by a class if an instance is to be created.

One last point: As a general rule, default methods constitute a special-purpose
feature. Interfaces that you create will still be used primarily to specify what and not
how. However, the inclusion of the default method gives you added flexibility.

Default Method Fundamentals

An interface default method is defined similar to the way a method is defined by a
class. The primary difference is that the declaration is preceded by the keyword
default. For example, consider this simple interface:

public interface MyIF {
// This is a "normal" interface method declaration.
// It does NOT define a default implementation.
int getUserID() ;

// This is a default method. Notice that it provides
// a default implementation.
default int getAdminID() ({

return 1;

}
}

MyIF declares two methods. The first, getUserID(), is a standard interface
method declaration. It defines no implementation whatsoever. The second method is
getAdminID(), and it does include a default implementation. In this case, it simply
returns 1. Pay special attention to the way getAdminID() is declared. Its declaration
1s preceded by the default modifier. This syntax can be generalized. To define a
default method, precede its declaration with default.

Because getAdminlD() includes a default implementation, it is not necessary for
an implementing class to override it. In other words, if an implementing class does
not provide its own implementation, the default is used. For example, the MyIFImp
class shown next is perfectly valid:

// Implement MyIF.
class MyIFImp implements MyIF ({
// Only getUserID() defined by MyIF needs to be implemented.
// getAdminID() can be allowed to default.
public int getUserID() {
return 100;
}

)

The following code creates an instance of MyIFImp and uses it to call both
getUserID() and getAdminID().

// Use the default method.
class DefaultMethodDemo
public static void main(String args|]) {

MyIFImp obj = new MyIFImp () ;

// Can call getUserID(), because it is explicitly
// implemented by MyIFImp:
System.out.println("User ID is " + obj.getUserID()) ;

// Can also call getAdminID(), because of default
// implementation:
System.out.println("Administrator ID is " + obj.getAdminID()) ;

}
}

The output is shown here:

User ID 1is 100
Administrator ID is 1

As you can see, the default implementation of getAdminID() was automatically
used. It was not necessary for MyIFImp to define it. Thus, for getAdminID(),
implementation by a class is optional. (Of course, its implementation by a class will
be required if the class needs to return a different ID.)

It 1s both possible and common for an implementing class to define its own
implementation of a default method. For example, MyIFImp2 overrides
getAdminID(), as shown here:

class MyIFImp2 implements MyIF
// Here, implementations for both getUserID() and getAdminID() are
// provided.
public int getUserID()
return 100;
}

public int getAdminID() {
return 42;
}

}

Now, when getAdminID() is called, a value other than its default is returned.

A More Practical Example of a Default Method

Although the preceding shows the mechanics of using default methods, it doesn’t
illustrate their usefulness in a more practical setting. To do this, let’s return to the
Series interface shown earlier in this chapter. For the sake of discussion, assume that
Series is widely used and many programs rely on it. Further assume that through an
analysis of usage patterns, it was discovered that many implementations of Series
were adding a method that returned an array that contained the next n elements in the
series. Given this situation, you decide to enhance Series so that it includes such a
method, calling the new method getNextArray() and declaring it as shown here:

int[] getNextArray(int n)

Here, n specifies the number of elements to retrieve. Prior to default methods,
adding this method to Series would have broken preexisting code because existing
implementations would not have defined the method. However, by providing a
default for this new method, it can be added to Series without causing harm. Let’s
work through the process.

In some cases, when a default method is added to an existing interface, its
implementation simply reports an error if an attempt is made to use the default. This
approach is necessary in the case of default methods for which no implementation
can be provided that will work in all cases. These types of default methods define
what is, essentially, optional code. However, in some cases, you can define a default
method that will work 1n all cases. This is the situation for getNextArray(). Because
Series already requires that a class implement getNext(), the default version of
getNextArray() can use it. Thus, here is one way to implement the new version of
Series that includes the default getNextArray() method:

// An enhanced version of Series that includes a default
// method called getNextArray ().
public interface Series

int getNext (); // return next number in series

// Return an array that contains the next n elements
// in the series beyond the current element.
default int[] getNextArray(int n) {

int [] vals = new int [n];

for (int i=0; i < n; i++) wvals[i] = getNext () ;
return vals;

}

void reset(); // restart
void setStart (int x); // set starting value

}

Pay special attention to the way that the default method getNextArray() is
implemented. Because getNext() was part of the original specification for Series,
any class that implements Series will provide that method. Thus, it can be used
inside getNextArray() to obtain the next n elements in the series. As a result, any
class that implements the enhanced version of Series will be able to use
getNextArray() as 1s, and no class is required to override it. Therefore, no
preexisting code is broken. Of course, it is still possible for a class to provide its own
implementation of getNextArray(), if you choose.

As the preceding example shows, the default method provides two major benefits:

It gives you a way to gracefully evolve interfaces over time without breaking
existing code.

It provides optional functionality without requiring that a class provide a
placeholder implementation when that functionality is not needed.

In the case of getNextArray(), the second point is especially important. If an
implementation of Series does not require the capability offered by getNextArray(
), it need not provide its own placeholder implementation. This allows cleaner code
to be created.

Multiple Inheritance Issues
As explained earlier in this book, Java does not support the multiple inheritance of

classes. Now that an interface can include default methods, you might be wondering
if an interface can provide a way around this restriction. The answer is, essentially,
no. Recall that there is still a key difference between a class and an interface: a class
can maintain state information (through the use of instance variables), but an
interface cannot.

The preceding notwithstanding, default methods do offer a bit of what one would
normally associate with the concept of multiple inheritance. For example, you might
have a class that implements two interfaces. If each of these interfaces provides
default methods, then some behavior is inherited from both. Thus, to a limited
extent, default methods do support multiple inheritance of behavior. As you might
guess, in such a situation, it is possible that a name conflict will occur.

For example, assume that two interfaces called Alpha and Beta are implemented
by a class called MyClass. What happens if both Alpha and Beta provide a method
called reset() for which both declare a default implementation? Is the version by
Alpha or the version by Beta used by MyClass? Or, consider a situation in which
Beta extends Alpha. Which version of the default method is used? Or, what if
MyClass provides its own implementation of the method? To handle these and other
similar types of situations, Java defines a set of rules that resolve such conflicts.

First, in all cases a class implementation takes priority over an interface default
implementation. Thus, if MyClass provides an override of the reset() default
method, MyClass’s version is used. This is the case even if MyClass implements
both Alpha and Beta. In this case, both defaults are overridden by MyClass’s
implementation.

Second, in cases in which a class inherits two interfaces that both have the same
default method, if the class does not override that method, then an error will result.
Continuing with the example, if MyClass inherits both Alpha and Beta, but does not
override reset(), then an error will occur.

In cases in which one interface inherits another, with both defining a common
default method, the inheriting interface’s version of the method takes precedence.
Therefore, continuing the example, if Beta extends Alpha, then Beta’s version of
reset() will be used.

It is possible to refer explicitly to a default implementation by using a new form of
super. Its general form is shown here:

InterfaceName.super.methodName()

For example, if Beta wants to refer to Alpha’s default for reset(), it can use this
statement:

Alpha.super.reset () ;

Use static Methods in an Interface

JDK 8 added another new capability to interface: the ability to define one or more
static methods. Like static methods in a class, a static method defined by an
interface can be called independently of any object. Thus, no implementation of the
interface is necessary, and no instance of the interface is required in order to call a
static method. Instead, a static method is called by specifying the interface name,
followed by a period, followed by the method name. Here is the general form:

InterfaceName.staticMethodName

Notice that this is similar to the way that a static method in a class is called.

The following shows an example of a static method in an interface by adding one
to MylIF, shown earlier. The static method is getUniversallD(). It returns zero.

public interface MyIF ({
// This is a "normal" interface method declaration.
// It does NOT define a default implementation.
int getUserID() ;

// This is a default method. Notice that it provides
// a default implementation.
default int getAdminID() {

return 1;

}

// This is a static interface method.
static int getUniversalID() ({
return O;

}
)

The getUniversallD() method can be called, as shown here:

int uID = MyIF.getUniversalID();

As mentioned, no implementation or instance of MylIF is required to call
getUniversallD() because it is static.

One last point: static interface methods are not inherited by either an
implementing class or a subinterface.

Private Interface Methods

Beginning with JDK 9, an interface can include a private method. A private interface
method can be called only by a default method or another private method defined by
the same interface. Because a private interface method is specified private, it cannot
be used by code outside the interface in which it is defined. This restriction includes
subinterfaces because a private interface method is not inherited by a subinterface.

The key benefit of a private interface method is that it lets two or more default
methods use a common piece of code, thus avoiding code duplication. For example,
here is a further enhanced version of the Series interface that adds a second default
method called skipAndGetNextArray(). It skips a specified number of elements
and then returns an array that contains the subsequent elements. It uses a private
method called getArray() to obtain an element array of a specified size.

// A further enhanced version of Series that includes two
// default methods that use a private method called getArray() ;
public interface Series ({

int getNext (); // return next number in series

// Return an array that contains the next n elements
// in the series beyond the current element.
default int[] getNextArray(int n) {

return getArray (n) ;

}

// Return an array that contains the next n elements
// in the series, after skipping elements.
default int[] skipAndGetNextArray (int skip, int n) {

// Skip the specified number of elements.
getArray (skip) ;

return getArray (n) ;

}

// A private method that returns an array containing
// the next n elements.
private int[] getArray(int n) {

int [] vals = new int[n];

for(int i=0; i < n; i++) vals[i] = getNext () ;
return vals;

void reset(); // restart
void setStart (int x); // set starting value

}

Notice that both getNextArray() and skipAndGetNextArray() use the private
getArray() method to obtain the array to return. This prevents both methods from
having to duplicate the same code sequence. Keep in mind that because getArray()
1s private, it cannot be called by code outside Series. Thus, its use is limited to the
default methods inside Series.

Although the private interface method is a feature that you will seldom need, in
those cases in which you do need it, you will find it quite useful.

Final Thoughts on Packages and Interfaces

Although the examples we’ve included in this book do not make frequent use of
packages or interfaces, both of these tools are an important part of the Java
programming environment. Virtually all real programs that you write in Java will be
contained within packages. A number will probably implement interfaces as well. As
you will see in Chapter 15, packages play an important role in the new module
feature added by JDK 9. It is important, therefore, that you be comfortable with their
usage.

v Chapter 8 Self Test

1. Using the code from Try This 8-1, put the ICharQ interface and its three
implementations into a package called qpack. Keeping the queue demonstration
class IQDemo in the default package, show how to import and use the classes in
gpack.

2. What is a namespace? Why is it important that Java allows you to partition the
namespace?

3. Packages are stored in

4. Explain the difference between protected and default access.

5. Explain the two ways that the members of a package can be used by other

packages.

. “One interface, multiple methods” is a key tenet of Java. What feature best

exemplifies it?

. How many classes can implement an interface? How many interfaces can a class

implement?

8. Can interfaces be extended?

9. Create an interface for the Vehicle class from Chapter 7. Call the interface

10.

11.
12.
13.
14.
15.

16.

IVehicle.

Variables declared in an interface are implicitly static and final. Can they be
shared with other parts of a program?

A package is, in essence, a container for classes. True or False?

What standard Java package is automatically imported into a program?

What keyword is used to declare a default interface method?

Beginning with JDK 8, 1s it possible to define a static method in an interface?

Assume that the ICharQ interface shown in Try This 8-1 has been in
widespread use for several years. Now, you want to add a method to it called
reset(), which will be used to reset the queue to its empty, starting condition.
Assuming JDK 8 or later, how can this be accomplished without breaking
preexisting code?

How is a static method in an interface called?

17. Can an interface have a private method?

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 9

Exception Handling

Key SKkills & Concepts

Know the exception hierarchy
Use try and catch

Understand the effects of an uncaught exception
Use multiple catch statements
Catch subclass exceptions

Nest try blocks

Throw an exception

Know the members of Throwable
Use finally

Use throws

Know Java’s built-in exceptions

Create custom exception classes

at run time. Using Java’s exception handling subsystem you can, in a
structured and controlled manner, handle run-time errors. Although most
modern programming languages offer some form of exception handling, Java’s
support for it is both easy-to-use and flexible.
A principal advantage of exception handling is that it automates much of the error
handling code that previously had to be entered “by hand” into any large program.
For example, in some older computer languages, error codes are returned when a

This chapter discusses exception handling. An exception is an error that occurs

method fails, and these values must be checked manually, each time the method is
called. This approach is both tedious and error-prone. Exception handling
streamlines error handling by allowing your program to define a block of code,
called an exception handler, that 1s executed automatically when an error occurs. It is
not necessary to manually check the success or failure of each specific operation or
method call. If an error occurs, it will be processed by the exception handler.

Another reason that exception handling 1s important is that Java defines standard
exceptions for common program errors, such as divide-by-zero or file-not-found. To
respond to these errors, your program must watch for and handle these exceptions.
Also, Java’s API library makes extensive use of exceptions.

In the final analysis, to be a successful Java programmer means that you are fully
capable of navigating Java’s exception handling subsystem.

The Exception Hierarchy

In Java, all exceptions are represented by classes. All exception classes are derived
from a class called Throwable. Thus, when an exception occurs in a program, an
object of some type of exception class is generated. There are two direct subclasses
of Throwable: Exception and Error. Exceptions of type Error are related to errors
that occur in the Java Virtual Machine itself, and not in your program. These types of
exceptions are beyond your control, and your program will not usually deal with
them. Thus, these types of exceptions are not described here.

Errors that result from program activity are represented by subclasses of
Exception. For example, divide-by-zero, array boundary, and file errors fall into this
category. In general, your program should handle exceptions of these types. An
important subclass of Exception is RuntimeException, which is used to represent
various common types of run-time errors.

Exception Handling Fundamentals

Java exception handling is managed via five keywords: try, catch, throw, throws,
and finally. They form an interrelated subsystem in which the use of one implies the
use of another. Throughout the course of this chapter, each keyword is examined in
detail. However, it is useful at the outset to have a general understanding of the role
each plays in exception handling. Briefly, here is how they work.

Program statements that you want to monitor for exceptions are contained within a
try block. If an exception occurs within the try block, it is thrown. Your code can
catch this exception using catch and handle it in some rational manner. System-
generated exceptions are automatically thrown by the Java run-time system. To

manually throw an exception, use the keyword throw. In some cases, an exception
that is thrown out of a method must be specified as such by a throws clause. Any
code that absolutely must be executed upon exiting from a try block is put in a
finally block.

Ask the Expert

Q: Just to be sure, could you review the conditions that cause an
exception to be generated?

A: Exceptions are generated in three different ways. First, the Java Virtual
Machine can generate an exception in response to some internal error
which is beyond your control. Normally, your program won’t handle
these types of exceptions. Second, standard exceptions, such as those
corresponding to divide-by-zero or array index out-of-bounds, are
generated by errors in program code. You need to handle these
exceptions. Third, you can manually generate an exception by using the
throw statement. No matter how an exception is generated, it is handled
in the same way.

Using try and catch

At the core of exception handling are try and catch. These keywords work together;
you can’t have a catch without a try. Here is the general form of the try/catch
exception handling blocks:

try {
/I block ot code to monitor for errors
}
catch (Exceplypel exOb) |
// handler for ExcepTypel
}
catch (ExcepType2 exOb) |
/I handler for ExcepType2
)

Here, ExcepType is the type of exception that has occurred. When an exception is

thrown, it is caught by its corresponding catch statement, which then processes the
exception. As the general form shows, there can be more than one catch statement
associated with a try. The type of the exception determines which catch statement is
executed. That is, if the exception type specified by a catch statement matches that
of the exception, then that catch statement is executed (and all others are bypassed).
When an exception is caught, exOb will receive its value.

Here is an important point: If no exception is thrown, then a try block ends
normally, and all of its catch statements are bypassed. Execution resumes with the
first statement following the last catch. Thus, catch statements are executed only if
an exception is thrown.

NOTE

There is another form of the try statement that supports automatic resource
management. This form of try is called try-with-resources. It 1s described in Chapter
10, in the context of managing I/O streams (such as those connected to a file)
because streams are some of the most commonly used resources.

A Simple Exception Example

Here is a simple example that illustrates how to watch for and catch an exception. As
you know, it is an error to attempt to index an array beyond its boundaries. When
this occurs, the JVM throws an ArraylndexOutOfBoundsException. The
following program purposely generates such an exception and then catches it:

// Demonstrate exception handling.
class ExcDemol {
public static void main(String args[]) {
int nums[] = new int[4];

try { <«———~Createa iry block.
System.out.println("Before exception is generated.");

// Generate an index out-of-bounds exception.

nums [7] = 10; < Aftempt fo index past

System.out.println("this won't be displayed"); nums boundary.
catch (ArrayIndexOutOfBoundsException exc) { <«———Catch array boundary

// catch the exception errors.

System.out.println("Index out-of-bounds!");

}

System.out.println("After catch statement.");

This program displays the following output:

Before exception is generated.
Index out-of-bounds!
After catch statement.

Although quite short, the preceding program illustrates several key points about
exception handling. First, the code that you want to monitor for errors is contained
within a try block. Second, when an exception occurs (in this case, because of the
attempt to index nums beyond its bounds), the exception is thrown out of the try
block and caught by the catch statement. At this point, control passes to the catch,
and the try block is terminated. That is, catch is not called. Rather, program
execution is transferred to it. Thus, the println() statement following the out-of-
bounds index will never execute. After the catch statement executes, program
control continues with the statements following the catch. Thus, it is the job of your
exception handler to remedy the problem that caused the exception so that program
execution can continue normally.

Remember, if no exception is thrown by a try block, no catch statements will be
executed and program control resumes after the catch statement. To confirm this, in
the preceding program, change the line

nums[7] = 10;
to
nums [0] = 10;

Now, no exception is generated, and the catch block is not executed.

It i1s important to understand that all code within a try block is monitored for
exceptions. This includes exceptions that might be generated by a method called
from within the try block. An exception thrown by a method called from within a
try block can be caught by the catch statements associated with that try block—
assuming, of course, that the method did not catch the exception itself. For example,
this is a valid program:

/* An exception can be generated by one
method and caught by another. */

class ExcTest {
// Generate an exception.
static void genException() {
int nums[] = new int [4];

System.out.println ("Before exception is generated.");

// generate an index out-of-bounds exception
nums [7] = 10; < Exception generated here.

System.out.println("this won't be displayed");

}

}

class ExcDemo2
public static void main(String args([]) {

try { . Exception caught here.
ExcTest .genException() ; |

} catch (ArrayIndexOutOfBoundsException exc) { <
// catch the exception
System.out .println("Index out-of-bounds!");

}

System.out.println ("After catch statement.");

}

}

This program produces the following output, which is the same as that produced
by the first version of the program shown earlier:

Before exception is generated.
Index out-of-bounds!
After catch statement.

Since genException() is called from within a try block, the exception that it
generates (and does not catch) is caught by the catch in main(). Understand,
however, that if genException() had caught the exception itself, it never would have
been passed back to main().

The Consequences of an Uncaught Exception

Catching one of Java’s standard exceptions, as the preceding program does, has a
side benefit: It prevents abnormal program termination. When an exception is
thrown, it must be caught by some piece of code, somewhere. In general, if your
program does not catch an exception, then it will be caught by the JVM. The trouble
is that the JVM’s default exception handler terminates execution and displays a stack
trace and error message. For example, in this version of the preceding example, the
index out-of-bounds exception is not caught by the program.

// Let JVM handle the error.
class NotHandled {
public static void main(String args[])

int nums[] = new int [4];
System.out.println("Before exception is generated.");

// generate an index out-of-bounds exception
nums [7] = 10;

}
}

When the array index error occurs, execution is halted, and the following error
message 1s displayed.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 7
at NotHandled.main(NotHandled.java:9)

While such a message 1s useful for you while debugging, it would not be
something that you would want others to see, to say the least! This is why it is
important for your program to handle exceptions itself, rather than rely upon the
JVM.

As mentioned earlier, the type of the exception must match the type specified in a
catch statement. If it doesn’t, the exception won’t be caught. For example, the
following program tries to catch an array boundary error with a catch statement for
an ArithmeticException (another of Java’s built-in exceptions). When the array

boundary is overrun, an ArraylndexOutOfBoundsException is generated, but it
won’t be caught by the catch statement. This results in abnormal program
termination.

// This won't work!
class ExcTypeMismatch {
public static void main(String args[]) {

int nums([] = new int [4]; This throws an
ArraylndexOutOfBoundsException.

try
System.out.println("Before exception is generated.");

//generate an index out-of-bounds exception
nums [7] = 10; =
System.out.println("this won't be displayed");

}

/* Can't catch an array boundary error with an
ArithmeticException. */

catch (ArithmeticException exc) { €+———
// catch the exception
System.out.println("Index out-of-bounds!");

}

System.out.println("After catch statement.");

This tries to catch it with an
ArithmeticExcepfion.

}
}

The output is shown here.

Before exception is generated.
Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 7
at ExcTypeMismatch.main (ExcTypeMismatch.java:10)

As the output demonstrates, a catch for ArithmeticException won’t catch an
ArraylndexOutOfBoundsException.

Exceptions Enable You to Handle Errors Gracefully

One of the key benefits of exception handling is that it enables your program to
respond to an error and then continue running. For example, consider the following
example that divides the elements of one array by the elements of another. If a
division by zero occurs, an ArithmeticException is generated. In the program, this

exception is handled by reporting the error and then continuing with execution. Thus,
attempting to divide by zero does not cause an abrupt run-time error resulting in the
termination of the program. Instead, it is handled gracefully, allowing program
execution to continue.

// Handle error gracefully and continue.
class ExcDemo3
public static void main(String args[]) ({
int numer[] { 4, 8, 16, 32, 64, 128 };
int denom[] { 2, 0; 4, 4, 0, 8 };

for (int i=0; i<numer.length; i++) {

try {

System.out.println (numer [i] + " / " +
denom[i] + " is " +
numer [i] /denom[i]) ;

}

catch (ArithmeticException exc) {
// catch the exception
System.out .println("Can't divide by Zero!");

}
}
)
J

The output from the program is shown here:

4 / 2 is 2

Can't divide by Zero!
16 / 4 is 4

32 / 4 is 8

Can't divide by Zero!
128 / 8 is 16

This example makes another important point: Once an exception has been
handled, it is removed from the system. Therefore, in the program, each pass through
the loop enters the try block anew; any prior exceptions have been handled. This
enables your program to handle repeated errors.

Using Multiple catch Statements

As stated earlier, you can associate more than one catch statement with a try. In fact,

it is common to do so. However, each catch must catch a different type of exception.
For example, the program shown here catches both array boundary and divide-by-
Zero errors:

// Use multiple catch statements.
class ExcDemo4
public static void main(String args[]) {
// Here, numer is longer than denom.
int numer([] = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 };

for (int i=0; i<numer.length; i++) {
try {
System.out.println (numer[i] + " / " +
denom[i] + " is " +
numer [1] /denom[i]) ;
}
catch (ArithmeticException exc) { <«——— Multiple catch statements
// catch the exception
System.out.println("Can't divide by Zero!");
}
catch (ArrayIndexOutOfBoundsException exc) { «
// catch the exception
System.out.println ("No matching element found.");

}

}
}
J

This program produces the following output:

4 / 2 is 2

Can't divide by Zero!

16 / 4 is 4

32 / 4 is 8

Can't divide by Zero!

128 / 8 is 16

No matching element found.
No matching element found.

As the output confirms, each catch statement responds only to its own type of
exception.

In general, catch expressions are checked in the order in which they occur in a
program. Only a matching statement is executed. All other catch blocks are ignored.

Catching Subclass Exceptions

There is one important point about multiple catch statements that relates to
subclasses. A catch clause for a superclass will also match any of its subclasses. For
example, since the superclass of all exceptions is Throwable, to catch all possible
exceptions, catch Throwable. If you want to catch exceptions of both a superclass
type and a subclass type, put the subclass first in the catch sequence. If you don’t,
then the superclass catch will also catch all derived classes. This rule is self-
enforcing because putting the superclass first causes unreachable code to be created,
since the subclass catch clause can never execute. In Java, unreachable code is an
error.

For example, consider the following program:

// Subclasses must precede superclasses in catch statements.
class ExcDemo5 {
public static void main(String args[]) {
// Here, numer is longer than denom.
int numer(] = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 };

for (int i=0; i<numer.length; i++) ({
try {
System.out.println (numer [i] + " / " +
denom[i] + " is " +
numer [1] /denom[1i]) ;
}
catch (ArrayIndexOutOfBoundsException exc) { <— Caich subclass
// catch the exception
System.out .println("No matching element found.");
}
catch (Throwable exc) { < Catch superclass
System.out.println("Some exception occurred.");

}
}

)
J

The output from the program is shown here:

4 / 2 is 2

Some exception occurred.
16 / 4 is 4

32 / 4 is 8

Some exception occurred.
128 / 8 is 16

No matching element found.
No matching element found.

Ask the Expert

Q: Why would I want to catch superclass exceptions?

A: There are, of course, a variety of reasons. Here are a couple. First, if you
add a catch clause that catches exceptions of type Exception, then you
have effectively added a “catch all” clause to your exception handler that
deals with all program-related exceptions. Such a “catch all” clause might
be useful in a situation in which abnormal program termination must be
avoided no matter what occurs. Second, in some situations, an entire
category of exceptions can be handled by the same clause. Catching the
superclass of these exceptions allows you to handle all without duplicated
code.

In this case, catch(Throwable) catches all exceptions except for
ArraylndexOutOfBounds-Exception. The issue of catching subclass exceptions
becomes more important when you create exceptions of your own.

Try Blocks Can Be Nested

One try block can be nested within another. An exception generated within the inner
try block that is not caught by a catch associated with that try is propagated to the
outer try block. For example, here the ArraylndexOutOfBoundsException is not
caught by the inner catch, but by the outer catch:

// Use a nested try block.
class NestTrys {
public static void main(String args[]) {
// Here, numer is longer than denom.

int numer[] = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 }F
try { // outer try - Nested try blocks

for (int i=0; i<numer.length; i++) { |

try { // nested try -
System.out .println (numer[i] + " / " +
denom([i] + " is " +

numer [1] /denom[i]) ;

}

catch (ArithmeticException exc) {
// catch the exception
System.out .println("Can't divide by Zero!");

}
}
}

catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out .println ("No matching element found.");
System.out .println("Fatal error - program terminated.");

}
}
}

The output from the program is shown here:

4 / 2 is 2

Can't divide by Zero!

16 / 4 is 4

32 / 4 is 8

Can't divide by Zero!

128 / 8 is 16

No matching element found.

Fatal error - program terminated.

In this example, an exception that can be handled by the inner try—in this case, a
divide-by-zero error—allows the program to continue. However, an array boundary

error is caught by the outer try, which causes the program to terminate.

Although certainly not the only reason for nested try statements, the preceding
program makes an important point that can be generalized. Often nested try blocks
are used to allow different categories of errors to be handled in different ways. Some
types of errors are catastrophic and cannot be fixed. Some are minor and can be
handled immediately. You might use an outer try block to catch the most severe
errors, allowing inner try blocks to handle less serious ones.

Throwing an Exception

The preceding examples have been catching exceptions generated automatically by
the JVM. However, it is possible to manually throw an exception by using the throw
statement. Its general form is shown here:

throw exceptOb;

Here, exceptOb must be an object of an exception class derived from Throwable.
Here is an example that illustrates the throw statement by manually throwing an
ArithmeticException:

// Manually throw an exception.
class ThrowDemo
public static void main (String args[])

try {
System.out.println("Before throw.") ;
throw new ArithmeticException(); <————Throw an exception.

}

catch (ArithmeticException exc)
// catch the exception
System.out.println("Exception caught.") ;
System.out.println("After try/catch block.");

The output from the program is shown here:

Before throw.
Exception caught.
After try/catch block.

Notice how the ArithmeticException was created using new in the throw
statement. Remember, throw throws an object. Thus, you must create an object for it
to throw. That is, you can’t just throw a type.

Rethrowing an Exception

An exception caught by one catch statement can be rethrown so that it can be caught
by an outer catch. The most likely reason for rethrowing this way is to allow
multiple handlers access to the exception. For example, perhaps one exception
handler manages one aspect of an exception, and a second handler copes with
another aspect. Remember, when you rethrow an exception, it will not be recaught
by the same catch statement. It will propagate to the next catch statement. The
following program illustrates rethrowing an exception:

// Rethrow an exception.
class Rethrow {
public static void genException() {
// here, numer is longer than denom
int numer[] = { 4, 8, 16, 32, 64, 128, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 };

Ask the Expert

Q: Why would I want to manually throw an exception?

A: Most often, the exceptions that you will throw will be instances of
exception classes that you created. As you will see later in this chapter,
creating your own exception classes allows you to handle errors in your
code as part of your program’s overall exception handling strategy.

for (int i1=0; i<numer.length; i++)
try {
System.out.println (numer([i] + " / " +
denom[i] + " is " +
numer [i] /denom[i]) ;
}
catch (ArithmeticException exc)
// catch the exception
System.out.println("Can't divide by Zero!");
|
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("No matching element found.");
throw exc; // rethrow the exception

}

} Rethrow the excepfion.

}

}

class RethrowDemo {
public static void main(String args(]) {

try |
Rethrow.genException() ;

}

catch (ArrayIndexOutOfBoundsException exc) { <«—— Catch rethrown exception.
// recatch exception
System.out.println("Fatal error - " +
"program terminated.");

In this program, divide-by-zero errors are handled locally, by genException(),
but an array boundary error is rethrown. In this case, it is caught by main().

A Closer Look at Throwable

Up to this point, we have been catching exceptions, but we haven’t been doing
anything with the exception object itself. As the preceding examples all show, a
catch clause specifies an exception type and a parameter. The parameter receives the
exception object. Since all exceptions are subclasses of Throwable, all exceptions

support the methods defined by Throwable. Several commonly used ones are shown

in Table 9-1.

Method

Description

Throwable filllnStackTrace(|

Returns a Throwable object that contains a complefed
stack trace. This object can be rethrown.

String getlocalizedMessage(|

Returns a localized description of the exception.

String getMessagel)

Returns a description of the exception.

void printStackTrace()

Displays the stack frace.

void printStackTrace(PrintStream stream)

Sends the stack frace to the specified stream.

void printStackTrace(PrintWriter stream)

Sends the stack trace to the specified stream.

String toString()

Returns a String object containing a complete description
of the exception. This method is called by println() when

' outputting a Throwable object.

Table 9-1 Commonly Used Methods Defined by Throwable

Of the methods defined by Throwable, two of the most interesting are
printStackTrace() and toString(). You can display the standard error message
plus a record of the method calls that lead up to the exception by calling
printStackTrace(). You can use toString() to retrieve the standard error message.
The toString() method is also called when an exception is used as an argument to
println(). The following program demonstrates these methods:

// Using the Throwable methods.

class ExcTest
static void genException() {
int nums[] = new int [4];

System.out.println("Before exception is generated.") ;

// generate an index out-of-bounds exception
nums [7] = 10;
System.out.println("this won't be displayed") ;

}
J

class UseThrowableMethods {
public static void main (String args([]) {

try {
ExcTest .genException() ;

}

catch (ArrayIndexOutOfBoundsException exc) (
// catch the exception
System.out.println("Standard message is: ") ;
System.out.println (exc) ;
System.out.println("\nStack trace: ");

exc.printStackTrace () ;

}

System.out .println ("After catch statement.");

}
}

The output from this program is shown here:

Before exception is generated.
Standard message is:
java.lang.ArrayIndexOutOfBoundsException: 7

Stack trace:
java.lang.ArrayIndexOutOfBoundsException: 7

at ExcTest.genException (UseThrowableMethods.java:10)

at UseThrowableMethods.main (UseThrowableMethods.java:19)
After catch statement.

Using finally

Sometimes you will want to define a block of code that will execute when a
try/catch block is left. For example, an exception might cause an error that
terminates the current method, causing its premature return. However, that method
may have opened a file or a network connection that needs to be closed. Such types
of circumstances are common in programming, and Java provides a convenient way
to handle them: finally.

To specify a block of code to execute when a try/catch block is exited, include a
finally block at the end of a try/catch sequence. The general form of a try/catch that
includes finally is shown here.

try {
// block of code to monitor for errors
}
catch (ExcepTypel exOb) {
// handler for ExcepTypel
}
catch (ExcepType2 exOb) {
// handler for ExcepType?2
}
s
finally {
// finally code

}

The finally block will be executed whenever execution leaves a try/catch block,
no matter what conditions cause it. That is, whether the try block ends normally, or
because of an exception, the last code executed is that defined by finally. The finally
block is also executed if any code within the try block or any of its catch statements

return from the method.
Here is an example of finally:

// Use finally.
class UseFinally {
public static void genException(int what) {
int t€;
int nums[] = new int [2];

System.out.println("Receiving " + what);
try {
switch(what) {
case 0:
t = 10 / what; // generate div-by-zero error
break;
case 1:
nums [4] = 4; // generate array index error.
break;
case 2:
return; // return from try block

}
}

catch (ArithmeticException exc) {
// catch the exception
System.out.println("Can't divide by Zero!");
return; // return from catch
}
catch (ArrayIndexOutOfBoundsException exc) {
// catch the exception
System.out.println("No matching element found.");
J

finally { <«
System.out.println("Leaving try.");

}
}

This is executed on the way

out of try/catch blocks.

J

class FinallyDemo {
public static void main(String args[]) {

for (int i=0; i < 3; i++) {
UseFinally.genException (i) ;
System.out .println() ;

}
}
}

Here is the output produced by the program:

Receiving O
Can't divide by Zero!
Leaving try.

Receiving 1
No matching element found.
Leaving try.

Receiving 2
Leaving try.

As the output shows, no matter how the try block is exited, the finally block is
executed.

Using throws

In some cases, if a method generates an exception that it does not handle, it must
declare that exception in a throws clause. Here 1s the general form of a method that
includes a throws clause:

ret-type methName(param-list) throws except-list {
// body

j

Here, except-list is a comma-separated list of exceptions that the method might
throw outside of itself.

Y ou might be wondering why you did not need to specify a throws clause for
some of the preceding examples, which threw exceptions outside of methods. The
answer 1is that exceptions that are subclasses of Error or RuntimeException don’t
need to be specified in a throws list. Java simply assumes that a method may throw
one. All other types of exceptions do need to be declared. Failure to do so causes a
compile-time error.

Actually, you saw an example of a throws clause earlier in this book. As you will
recall, when performing keyboard input, you needed to add the clause

throws java.io.IOException

to main(). Now you can understand why. An input statement might generate an
IOException, and at that time, we weren’t able to handle that exception. Thus, such
an exception would be thrown out of main() and needed to be specified as such.
Now that you know about exceptions, you can easily handle IOException.

Let’s look at an example that handles IOException. It creates a method called
prompt(), which displays a prompting message and then reads a character from the
keyboard. Since input is being performed, an IOException might occur. However,
the prompt() method does not handle IOException itself. Instead, it uses a throws
clause, which means that the calling method must handle it. In this example, the
calling method is main(), and it deals with the error.

// Use throws.
class ThrowsDemo {
public static char prompt (String str)
throws java.io.IOException { < Notice the throws clause.

System.out.print (str + ": ");
return (char) System.in.read();

}

public static void main(String args[]) {

char ch;

try { Since prompt() might throw an
ch = prompt ("Enter a letter"); « exception, a call to it must be

} enclosed within a try block.

catch(java.io.IOException exc)
System.out .println("I/0O exception occurred.");
gl = XY ;

}

System.out.println("You pressed " + ch);

On a related point, notice that IOException is fully qualified by its package name
java.io. As you will learn in Chapter 10, Java’s I/O system is contained in the
java.io package. Thus, the IOException is also contained there. It would also have
been possible to import java.io and then refer to IOException directly.

Three Additional Exception Features

Beginning with JDK 7, Java's exception handling mechanism has been expanded
with the addition of three features. The first supports automatic resource
management, which automates the process of releasing a resource, such as a file,
when it is no longer needed. It is based on an expanded form of try, called the #ry-
with-resources statement, and it is described in Chapter 10, when files are discussed.
The second new feature is called multi-catch, and the third is sometimes called final
rethrow or more precise rethrow. These two features are described here.

Multi-catch allows two or more exceptions to be caught by the same catch clause.
As you learned earlier, it is possible (indeed, common) for a try to be followed by
two or more catch clauses. Although each catch clause often supplies its own unique
code sequence, it is not uncommon to have situations in which two or more catch
clauses execute the same code sequence even though they catch different exceptions.
Instead of having to catch each exception type individually, you can use a single
catch clause to handle the exceptions without code duplication.

To create a multi-catch, specify a list of exceptions within a single catch clause.
You do this by separating each exception type in the list with the OR operator. Each
multi-catch parameter is implicitly final. (You can explicitly specify final, if desired,
but it is not necessary.) Because each multi-catch parameter 1s implicitly final, it
can't be assigned a new value.

Here is how you can use the multi-catch feature to catch both
ArithmeticException and ArrayIndexOutOfBoundsException with a single catch
clause:

catch (ArithmeticException | ArrayIndexOutOfBoundsException e) {

Here is a simple program that demonstrates the use of this multi-catch:

// Use the multi-catch feature. Note: This code requires JDK 7 or
// later to compile.
class MultiCatch ({
public static void main(String args|[]) {
int a=88, b=0;
int result;
char chrs[] = { 'ar, 'B', 'C' };

for(int i=0; 1 < 2; i++) {

try {
if{i == 0)
result = a / b; // generate an ArithmeticException
else
chrs[5] = 'X'; // generate an ArrayIndexOutOfBoundsException

// This catch clause catches both exceptions.
catch (ArithmeticException | ArrayIndexOutOfBoundsException e) {
System.out.println("Exception caught: " + e);

}
}

System.out.println("After multi-catch.");

}
}

The program will generate an ArithmeticException when the division by zero is
attempted. It will generate an ArraylndexOutOfBoundsException when the
attempt is made to access outside the bounds of chrs. Both exceptions are caught by
the single catch statement.

The more precise rethrow feature restricts the type of exceptions that can be
rethrown to only those checked exceptions that the associated try block throws, that
are not handled by a preceding catch clause, and that are a subtype or supertype of
the parameter. While this capability might not be needed often, it is now available
for use. For the final rethrow feature to be in force, the catch parameter must be
effectively final. This means that it must not be assigned a new value inside the
catch block. It can also be explicitly specified as final, but this is not necessary.

Java’s Built-in Exceptions

Inside the standard package java.lang, Java defines several exception classes. A few
have been used by the preceding examples. The most general of these exceptions are
subclasses of the standard type RuntimeException. Since java.lang is implicitly
imported into all Java programs, most exceptions derived from RuntimeException
are automatically available. Furthermore, they need not be included in any method’s
throws list. In the language of Java, these are called unchecked exceptions because
the compiler does not check to see if a method handles or throws these exceptions.
The unchecked exceptions defined in java.lang are listed in Table 9-2. Table 9-3
lists those exceptions defined by java.lang that must be included in a method’s
throws list if that method can generate one of these exceptions and does not handle
it itself. These are called checked exceptions. In addition to the exceptions in
java.lang, Java defines several other types of exceptions that relate to other
packages, such as IOException mentioned earlier.

Exception

Meaning

ArithmeficException Arithmetic error, such as infeger divide-by-zero.
ArraylndexOutOfBoundsException | Array index is out-of-bounds.

ArrayStoreException Assignment fo an array element of an incompatible fype.
ClassCastException Invalid cast

EnumConstantNotPresentException

An attempt is made fo use an undefined enumeration value.

legal ArgumentException

lllegal argument used to invoke a method.

llegalCallerException

A method cannot be legally executed by the calling code.
(Added by JDK 9.)

llegalMonitorStateException

llegal monitor operation, such as waiting on an unlocked thread.

llegalStateException Environment or application is in incorrect state.
llegalThreadStateException Requested operation not compatible with current thread state.
IndexOutOfBoundsException Some fype of index is out-of-bounds.

LayerInstantiationException

A module layer cannot be created. (Added by JDK 9.

NegativeArraySizeException

Array created with a negative size.

NullPointerException

Invalid use of a null reference.

NumberFormatException

Invalid conversion of a string to @ numeric format.

SecurityException

Attempt to violate securily.

StringlndexOutOfBoundsException

Attempt to index oufside the bounds of a string.

TypeNotPresentException

Type not found.

UnsupportedOperationException

An unsupported operatfion was encountered.

Table 9-2 The Unchecked Exceptions Defined in java.lang

Exception Meaning

ClassNotFoundException Class not found.
CloneNotSupportedException Attempt to clone an object that does not implement the

| Cloneable interface.
lllegalAccessException | Access fo a class is denied.
InstanfiationException Attempt to create an object of an abstract class or interface.
InterruptedException | One thread has been interrupted by another thread.
NoSuchFieldException A requested field does not exist.
NoSuchMethodException A requested method does not exist.
ReflectiveOperationException | Superclass of reflection-related exceptions.

Table 9-3 The Checked Exceptions Defined in java.lang

Ask the Expert

Q: I have heard that Java supports something called chained exceptions.
What are they?

A: Chained exceptions were added to Java by JDK 1.4. The chained
exception feature allows you to specify one exception as the underlying
cause of another. For example, imagine a situation in which a method
throws an ArithmeticException because of an attempt to divide by zero.
However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must
certainly throw an ArithmeticException, since that is the error that
occurred, you might also want to let the calling code know that the
underlying cause was an I/O error. Chained exceptions let you handle
this, and any other situation, in which layers of exceptions exist.

To allow chained exceptions, two constructors and two methods were
added to Throwable. The constructors are shown here:

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeFExc)

In the first form, causeFExc is the exception that causes the current exception.
That is, causeExc is the underlying reason that an exception occurred. The
second form allows you to specify a description at the same time that you
specify a cause exception. These two constructors have also been added to
the Error, Exception, and RuntimeException classes.

The chained exception methods added to Throwable are getCause() and
initCause(). These methods are shown here:

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current
exception. If there is no underlying exception, null is returned. The
initCause() method associates causeExc with the invoking exception and
returns a reference to the exception. Thus, you can associate a cause with an
exception after the exception has been created. In general, initCause() is
used to set a cause for legacy exception classes that don’t support the two
additional constructors described earlier.

Chained exceptions are not something that every program will need.
However, in cases in which knowledge of an underlying cause is useful, they
offer an elegant solution.

Creating Exception Subclasses

Although Java’s built-in exceptions handle most common errors, Java’s exception
handling mechanism is not limited to these errors. In fact, part of the power of Java’s
approach to exceptions is its ability to handle exception types that you create.
Through the use of custom exceptions, you can manage errors that relate specifically
to your application. Creating an exception class is easy. Just define a subclass of
Exception (which is, of course, a subclass of Throwable). Your subclasses don’t
need to actually implement anything—it is their existence in the type system that
allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course,
inherit those methods provided by Throwable. Thus, all exceptions, including those
that you create, have the methods defined by Throwable available to them. Of
course, you can override one or more of these methods in exception subclasses that
you create.

Here is an example that creates an exception called NonIntResultException,

which is generated when the result of dividing two integer values produces a result
with a fractional component. NonIntResultException has two fields which hold the
integer values; a constructor; and an override of the toString() method, allowing the
description of the exception to be displayed using println().

// Use a custom exception.

// Create an exception.

class NonIntResultException extends Exception {
1HE N
int 4;

NonIntResultException(int i, int j)
n= 1i;
d = 3;

public String toString() {
return "Result of " + n + " / " + 4 +
" is non-integer.";

}

class CustomExceptDemo
public static void main(String args[]) {

// Here, numer contains some odd values.
int numer[] = { 4, 8, 15, 32, 64, 127, 256, 512 };
int denom[] = { 2, 0, 4, 4, 0, 8 };

for (int i=0; i<numer.length; i++) {
try {
if ((numer[i]1%2) != 0)
throw new
NonIntResultException(numer [i] , denom[i]) ;

System.out .println(numer[i] + " / " +
denom([i] + " is " +
numer [i] /denom[i]) ;
}
catch (ArithmeticException exc) {
// catch the exception
System.out.println("Can't divide by Zero!");
}
catch (ArrayIndexOutOfBoundsException exc)
// catch the exception
System.out .println ("No matching element found.") ;
}
catch (NonIntResultException exc) {
System.out .println(exc) ;
}

}
}
}

The output from the program is shown here:

4 / 2 is 2

Can't divide by Zero!

Result of 15 / 4 is non-integer.
32 / 4 is 8

Can't divide by Zero!

Result of 127 / 8 is non-integer.
No matching element found.

No matching element found.

Ask the Expert

Q: When should I use exception handling in a program? When should I
create my own custom exception classes?

A: Since the Java API makes extensive use of exceptions to report errors,
nearly all real-world programs will make use of exception handling. This
is the part of exception handling that most new Java programmers find
easy. It is harder to decide when and how to use your own custom-made
exceptions. In general, errors can be reported in two ways: return values
and exceptions. When is one approach better than the other? Simply put,
in Java, exception handling should be the norm. Certainly, returning an
error code is a valid alternative in some cases, but exceptions provide a
more powerful, structured way to handle errors. They are the way
professional Java programmers handle errors in their code.

(N MY Rl Adding Exceptions to the Queue Class

i QueueFullException.java i
EQueueEmptyException.javaE
i FixedQueue. java :
! QExcDemo. java

.
ooo

In this project, you will create two exception classes that can be used by the queue
classes developed by Project 8-1. They will indicate the queue-full and queue-empty
error conditions. These exceptions can be thrown by the put() and get() methods,

respectively. For the sake of simplicity, this project will add these exceptions to the

FixedQueue class, but you can easily incorporate them into the other queue classes
from Project 8-1.

1. You will create two files that will hold the queue exception classes. Call the first
file QueueFullException.java and enter into it the following:

// An exception for queue-full errors.

public class QueueFullException extends Exception {
int size;

QueueFullException(int s) { size = s; }
public String toString() {

return "\nQueue is full. Maximum size is "
size;

-+

}

A QueueFullException will be generated when an attempt is made to store an
item in an already full queue.

2. Create the second file QueueEmptyException.java and enter into it the
following:

// BAn exception for queue-empty errors.
public class QueueEmptyException extends Exception {

public String toString() {
return "\nQueue is empty.";

}
}

A QueueEmptyException will be generated when an attempt is made to remove
an element from an empty queue.

3. Modify the FixedQueue class so that it throws exceptions when an error occurs,
as shown here. Put it in a file called FixedQueue.java.

// A fixed-size queue class for characters that uses exceptions.
class FixedQueue implements ICharQ {
private char gq[]; // this array holds the queue
private int putloc, getloc; // the put and get indices

// Construct an empty queue given its size.

public FixedQueue (int size) {
g = new char[size]; // allocate memory for queue
putloc = getloc = 0;

}

// Put a character into the queue.
public void put (char ch)
throws QueueFullException {

if (putloc==q.length)
throw new QueueFullException(q.length);

q[putloc++] = ch;

}

// Get a character from the queue.
public char get ()
throws QueueEmptyException {

if (getloc == putloc)
throw new QueueEmptyException() ;

return glgetloc++];

}
}

Notice that two steps are required to add exceptions to FixedQueue. First, get()
and put() must have a throws clause added to their declarations. Second, when
an error occurs, these methods throw an exception. Using exceptions allows the
calling code to handle the error in a rational fashion. You might recall that the
previous versions simply reported the error. Throwing an exception is a much
better approach.

4. To try the updated FixedQueue class, use the QExcDemo class shown here. Put
it into a file called QExcDemo.java:

// Demonstrate the queue exceptions.
class QExcDemo ({
public static void main(String args[]) {
FixedQueue q = new FixedQueue (10) ;
char ch;
int i;

try {
// overrun the gqueue

for(i=0; i < 11; i++) {
System.out .print ("Attempting to store : " +
(char) ('A' + 1i));
g.put ((char) ('A' + 1i));
System.out.println(" - OK");

}

System.out .println() ;

}

catch (QueueFullException exc) {
System.out .println (exc) ;

)

System.out .println() ;

try {
// over-empty the queue
for(i=0; i < 11; i++) {
System.out.print ("Getting next char: ");
ch = g.get() ;
System.out .println(ch) ;
}
}
catch (QueueEmptyException exc) {
System.out.println (exc) ;
}

}
J

5. Since FixedQueue implements the ICharQ interface, which defines the two
queue methods get() and put(), ICharQ will need to be changed to reflect the
throws clause. Here is the updated ICharQ interface. Remember, this must be in
a file by itself called ICharQ.java.

// A character queue interface that throws exceptions.
public interface ICharQ (

// Put a character into the queue.

void put (char ch) throws QueueFullException;

// Get a character from the queue.
char get () throws QueueEmptyException;

}

6. Now, compile the updated ICharQ.java file. Then, compile FixedQueue.java,
QueueFullException.java, QueueEmptyException.java, and
QExcDemo.java. Finally, run QExcDemo. You will see the following output:

Attempting to store A - OK
Attempting to store B - OK
Attempting to store C - OK
Attempting to store D - OK
Attempting to store E - OK
Attempting to store F - OK
Attempting to store G - OK
Attempting to store H - OK
Attempting to store I - OK
Attempting to store J - OK
Attempting to store K

Queue is full. Maximum size is 10

Getting next char:
Getting next char:
Getting next char:
Getting next char:
Getting next char:
Getting next char:
Getting next char:
Getting next char:
Getting next char:
Getting next char:
Getting next char:
Queue is empty.

gH DT Q@QHEHMEHMUOMQWPE

v Chapter 9 Self Test

10.

. What class is at the top of the exception hierarchy?

Briefly explain how to use try and catch.
What is wrong with this fragment?

/[

vals[18] = 10;

catch (ArrayIndexOutOfBoundsException exc) {
// handle error

}

What happens if an exception is not caught?
What is wrong with this fragment?

class A extends Exception { ...

class B extends A ({

//
try {
/s
}
catch (A exc) { ... }
catch (B exc) { ... }

Can an inner catch rethrow an exception to an outer catch?

The finally block is the last bit of code executed before your program ends. True
or False? Explain your answer.

What type of exceptions must be explicitly declared in a throws clause of a
method?

What is wrong with this fragment?

class MyClass { // ... }

VA
throw new MyClass();

In question 3 of the Chapter 6 Self Test, you created a Stack class. Add custom
exceptions to your class that report stack full and stack empty conditions.

11. What are the three ways that an exception can be generated?
12. What are the two direct subclasses of Throwable?
13. What is the multi-catch feature?

14. Should your code typically catch exceptions of type Error?

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 10
Using 1/0

Key SKkills & Concepts

Understand the stream

Know the difference between byte and character streams
Know Java’s byte stream classes

Know Java’s character stream classes

Know the predefined streams

Use byte streams

Use byte streams for file I/0

Automatically close a file by using try-with-resources
Read and write binary data

Use random-access files

Use character streams

Use character streams for file I/O

Apply Java’s type wrappers to convert numeric strings

system, such as println(). However, you have been doing so without much

formal explanation. Because the Java I/O system is based upon a hierarchy of
classes, it was not possible to present its theory and details without first discussing
classes, inheritance, and exceptions. Now it is time to examine Java’s approach to
I/O in detail.

S ince the beginning of this book, you have been using parts of the Java I/O

Be forewarned, Java’s I/O system is quite large, containing many classes,
interfaces, and methods. Part of the reason for its size is that Java defines two
complete I/O systems: one for byte I/O and the other for character I/O. It won’t be
possible to discuss every aspect of Java’s I/O here. (An entire book could easily be
dedicated to Java’s I/O system!) This chapter will, however, introduce you to many
important and commonly used features. Fortunately, Java’s I/O system is cohesive
and consistent; once you understand its fundamentals, the rest of the I/O system is
easy to master.

Before we begin, an important point needs to be made. The I/O classes described
in this chapter support text-based console I/O and file I/O. They are not used to
create graphical user interfaces (GUIs). Thus, you will not use them to create
windowed applications, for example. However, Java does include substantial support
for building graphical user interfaces. The basics of GUI programming are found in
Chapter 16, which offers an introduction to Swing, and Chapter 17, which presents
an overview of JavaFX. (Swing and JavaFX are two of Java’s GUI toolkits.)

Java’s I/0 Is Built upon Streams

Java programs perform I/O through streams. An I/O stream is an abstraction that
either produces or consumes information. A stream is linked to a physical device by
the Java I/0O system. All streams behave in the same manner, even if the actual
physical devices they are linked to differ. Thus, the same I/O classes and methods
can be applied to different types of devices. For example, the same methods that you
use to write to the console can also be used to write to a disk file. Java implements
I/O streams within class hierarchies defined in the java.io package.

Byte Streams and Character Streams

Modern versions of Java define two types of I/O streams: byte and character. (The
original version of Java defined only the byte stream, but character streams were
quickly added.) Byte streams provide a convenient means for handling input and
output of bytes. They are used, for example, when reading or writing binary data.
They are especially helpful when working with files. Character streams are designed
for handling the input and output of characters. They use Unicode and, therefore, can
be internationalized. Also, in some cases, character streams are more efficient than
byte streams.

The fact that Java defines two different types of streams makes the I/O system
quite large because two separate sets of class hierarchies (one for bytes, one for
characters) are needed. The sheer number of I/O classes can make the I/O system

appear more intimidating than it actually is. Just remember, for the most part, the
functionality of byte streams is paralleled by that of the character streams.

One other point: At the lowest level, all I/O is still byte-oriented. The character-
based streams simply provide a convenient and efficient means for handling
characters.

The Byte Stream Classes

Byte streams are defined by using two class hierarchies. At the top of these are two
abstract classes: InputStream and OutputStream. InputStream defines the
characteristics common to byte input streams and OutputStream describes the
behavior of byte output streams.

From InputStream and QutputStream are created several concrete subclasses
that offer varying functionality and handle the details of reading and writing to
various devices, such as disk files. The byte stream classes in java.io are shown in
Table 10-1. Don’t be overwhelmed by the number of different classes. Once you can
use one byte stream, the others are easy to master.

Byte Stream Class Meaning

BufferedinputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArraylnputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DatalnputSiream An input stream that contains methods for reading the Java
standard data types

DotaQutputSiream An output stream that contains methods for writing the Java

standard data types

FilelnputStream

Input stream that reads from a file

FileOutputStream

Output stream that writes fo a file

FilterlnputStream

Implements InputStream

FilterOutputStream

Implements OutputStream

InputStream Abstract class that describes stream input

ObjectinputStream Input stream for objects

ObjectOutputStream Output stream for obijects

OutputStream Abstract class that describes stream output

PipedinputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and printin()
PushbackinputStream Input stream that allows bytes to be returned to the stream
SequencelnputStream Input stream that is a combination of two or more input sfreams that

will be read sequentially, one after the other

Table 10-1 The Byte Stream Classes in java.io

The Character Stream Classes

Character streams are defined by using two class hierarchies topped by these two
abstract classes: Reader and Writer. Reader is used for input, and Writer is used
for output. Concrete classes derived from Reader and Writer operate on Unicode

character streams.

From Reader and Writer are derived several concrete subclasses that handle
various I/O situations. In general, the character-based classes parallel the byte-based
classes. The character stream classes in java.io are shown in Table 10-2.

Character Stream Class Meaning

BufferedReader Buffered input character stream

BufferedWriter Buffered output character sfream

CharArrayReader Input stream that reads from a character array
CharArrayWriter Output stream that writes fo a character array
FileReader Input stream that reads from a file

FileWriter Qutput stream that writes fo a file

FilterReader Filtered reader

FilkerWriter Filtered writer

InputStreamReader Input stream that ranslates bytes to characters
LineNumberReader Input stream that counts lines

OutputStreamWeriter Output stream that translates characters fo byfes
PipedReader Input pipe

PipedWrifer QOutput pipe

PrinfWriter Qutput stream that contains print{) and println |
PushbackReader Input stream that allows characters to be returned fo the input stream
Reader Abstract class that describes character stream input
StringReader Input stream that reads from a string

StringWeriter Qutput stream that wrifes fo a string

Writer Abstract class that describes character sfream output

Table 10-2 The Character Stream 1/O Classes in java.io

The Predefined Streams

As you know, all Java programs automatically import the java.lang package. This
package defines a class called System, which encapsulates several aspects of the
run-time environment. Among other things, it contains three predefined stream
variables, called in, out, and err. These fields are declared as public, final, and
static within System. This means that they can be used by any other part of your
program and without reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console.
System.in refers to standard input, which is by default the keyboard. System.err
refers to the standard error stream, which is also the console by default. However,
these streams can be redirected to any compatible I/O device.

System.in is an object of type InputStream; System.out and System.err are
objects of type PrintStream. These are byte streams, even though they are typically
used to read and write characters from and to the console. The reason they are byte
and not character streams is that the predefined streams were part of the original
specification for Java, which did not include the character streams. As you will see,
it is possible to wrap these within character-based streams if desired.

Using the Byte Streams

We will begin our examination of Java’s I/O with the byte streams. As explained, at
the top of the byte stream hierarchy are the InputStream and OutputStream
classes. Table 10-3 shows the methods in InputStream, and Table 10-4 shows the
methods in QutputStream. In general, the methods in InputStream and
OutputStream can throw an IOException on error. The methods defined by these
two abstract classes are available to all of their subclasses. Thus, they form a
minimal set of I/O functions that all byte streams will have.

Method

Description

int availablef | Returns the number of byfes of input currently available for reading.
void close(| Closes the input source. Subsequent read attempts will generate
an [OException.
void mark{int numByftes| Places @ mark ot the current point in the input stream that will
remain valid unfil numBytes byfes are read.
boolean markSupported|) Returns true if mark() /reset{) are supported by the invoking stream.
int read| | Refurns an integer representation of the next available byte of
input. =1 is returned when an attempt is made fo read at the end of
the sireom. |
int read(byte buffer]) Aﬂemlpts to read up fo bufferfengfh bytes into bufferand refurns the

actual number of bytes that were successhy clyrts}ud -1 is returned

when an attempt is made fo read at the end of the stream.

int read(byte buffed], int offsef,
int numBytes)

Attempts to read up to numBytes bytes into buffer starfing at
buffer|offsef], returning the number of bytes successfully read. -1 is
refurned when an attempt is made to read af the end of the sfream.

byte[| readAllBytes|)

Reads and returns, in the form of an array of bﬁﬂes all bytes
available in the stream. An atfem ecft to read af the end of the stream
results in an emply array. (Added by JDK 9.)

int readNBytes{byte buffer |, int offset

Attempts to read up to numBytes bytes into buffer starting t

int numBytes) buffer{offsef], returning the number of bytes successfully read.
An attempt fo read ot the end of the stream results in zero bytes
being read. (Added by JDK 9.)
void resef() Resefs the input pointer to the previously set mark.
long skip({long numBytes) lgnores (that is, skips) numByfes bytes of input, returning the

number of bytes actually ignored.

long transferTo{QutputStream outStrm|

Copies the contents of the mvokln stream to oufStrm, refurning the

number of bytes copied. (Added by DK 9.)

Table 10-3 The Methods Defined by InputStream

Method Description

void close() Closes the output stream. Subsequent write attempts will generate
Jip q P 9
| an |OException.

void flush() Causes any output that has been buffered to be sent to its
destination. That is, it flushes the output buffer.

void write(int b) Writes a single byte fo an output stream. Note that the parameter
is an int, which allows you to call write() with expressions without
having fo cast them back fo byte.

void write(byte buffer]]) | Writes a complete array of bytes o an oufput stream.
void write(byte buffer]], int offset, | Writes subran?e of numBytes bytes from the array buffer,
int numByfes) beginning at buffer| offsef].

Table 10-4 The Methods Defined by OutputStream

Reading Console Input

Originally, the only way to perform console input was to use a byte stream, and
much Java code still uses the byte streams exclusively. Today, you can use byte or
character streams. For commercial code, the preferred method of reading console
input is to use a character-oriented stream. Doing so makes your program easier to
internationalize and easier to maintain. It is also more convenient to operate directly
on characters rather than converting back and forth between characters and bytes.
However, for sample programs, simple utility programs for your own use, and
applications that deal with raw keyboard input, using the byte streams is acceptable.
For this reason, console 1/0O using byte streams is examined here.

Because System.in is an instance of InputStream, you automatically have access
to the methods defined by InputStream. This means that, for example, you can use
the read() method to read bytes from System.in. There are three versions of read(),
which are shown here:

int read() throws IOException
int read(byte data|]) throws IOException
int read(byte data|], int start, int max) throws IOException

In Chapter 3, you saw how to use the first version of read() to read a single
character from the keyboard (from System.in). It returns —1 when an attempt is made
to read at the end of the stream. The second version reads bytes from the input

stream and puts them into data until either the array is full, the end of stream is
reached, or an error occurs. It returns the number of bytes read, or —1 when an
attempt is made to read at the end of the stream. The third version reads input into
data beginning at the location specified by start. Up to max bytes are stored. It
returns the number of bytes read, or —1 when an attempt is made to read at the end of
the stream. All throw an IOException when an error occurs. When reading from
System.in, pressing ENTER generates an end-of-stream condition.

Here is a program that demonstrates reading an array of bytes from System.in.
Notice that any I/O exceptions that might be generated are simply thrown out of
main(). Such an approach is common when reading from the console, but you can
handle these types of errors yourself, if you choose.

// Read an array of bytes from the keyboard.

import java.io.*;

class ReadBytes ({
public static void main(String args|[])
throws IOException ({
byte data[] = new byte[1l0];

System.out .println("Enter some characters.");
System.in.read (data) ; = Read an array of bytes
System.out .print ("You entered: "); from the keyboard.
for(int i=0; 1 < data.length; i++)
System.out .print ((char) datalil]) ;

r

Here is a sample run:

Enter some characters.
Read Bytes
You entered: Read Bytes

Writing Console Output

As is the case with console input, Java originally provided only byte streams for
console output. Java 1.1 added character streams. For the most portable code,
character streams are recommended. Because System.out is a byte stream, however,
byte-based console output is still widely used. In fact, all of the programs in this
book up to this point have used it! Thus, it is examined here.

Console output is most easily accomplished with print() and println(), with
which you are already familiar. These methods are defined by the class PrintStream
(which is the type of the object referenced by System.out). Even though System.out
1s a byte stream, it is still acceptable to use this stream for simple console output.

Since PrintStream is an output stream derived from OutputStream, it also
implements the low-level method write(). Thus, it is possible to write to the console
by using write(). The simplest form of write() defined by PrintStream is shown
here:

void write(int byteval)

This method writes the byte specified by byteval to the file. Although byteval is
declared as an integer, only the low-order 8 bits are written. Here is a short example
that uses write() to output the character X followed by a new line:

// Demonstrate System.out.write().
class WriteDemo {
public static void main(String args|[]) {

int b;

b - IX! ;

System.out.write (b); <———— Write a byte to the screen.
System.out .write('\n') ;

}
}

Y ou will not often use write() to perform console output (although it might be
useful in some situations), since print() and println() are substantially easier to
use.

PrintStream supplies two additional output methods: printf() and format().
Both give you detailed control over the precise format of data that you output. For
example, you can specify the number of decimal places displayed, a minimum field
width, or the format of a negative value. Although we won’t be using these methods
in the examples in this book, they are features that you will want to look into as you
advance in your knowledge of Java.

Reading and Writing Files Using Byte Streams

Java provides a number of classes and methods that allow you to read and write files.
Of course, the most common types of files are disk files. In Java, all files are byte-
oriented, and Java provides methods to read and write bytes from and to a file. Thus,

reading and writing files using byte streams is very common. However, Java allows
you to wrap a byte-oriented file stream within a character-based object, which is
shown later in this chapter.

To create a byte stream linked to a file, use FileInputStream or
FileOutputStream. To open a file, simply create an object of one of these classes,
specifying the name of the file as an argument to the constructor. Once the file is
open, you can read from or write to it.

Inputting from a File

A file is opened for input by creating a FileInputStream object. Here is a commonly
used constructor:

FileInputStream(String fileName) throws FileNotFoundException

Here, fileName specifies the name of the file you want to open. If the file does not
exist, then FileNotFoundException is thrown. FileNotFoundException is a
subclass of IOException.

To read from a file, you can use read(). The version that we will use is shown
here:

int read() throws IOException

Each time it is called, read() reads a single byte from the file and returns it as an
integer value. It returns —1 when the end of the file is encountered. It throws an
IOException when an error occurs. Thus, this version of read() is the same as the
one used to read from the console.

When you are done with a file, you must close it by calling close(). Its general
form 1s shown here:

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be
used by another file. Failure to close a file can result in “memory leaks” because of
unused resources remaining allocated.

The following program uses read() to input and display the contents of a text file,
the name of which is specified as a command-line argument. Notice how the
try/catch blocks handle 1/O errors that might occur.

/* Display a text file.

To use this program, specify the name

of the file that you want to see.

For example, to see a file called TEST.TXT,
use the following command line.

java ShowFile TEST.TXT
*f

import java.io.*;

class ShowFile {
public static void main(String args|[])
{
int i;
FileInputStream fin;

// First make sure that a file has been specified.
if (args.length != 1) {
System.out.println("Usage: ShowFile File");
return;

}

try {
fin = new FileInputStream(args[0]); <«— Open the file.
} catch(FileNotFoundException exc) {
System.out.println("File Not Found");

return;
}
try {
// read bytes until EOF is encountered
do {
i = fin.read(); «———Read from the file.
if(i != -1) System.out.print((char) i);
} while(i != -1); <= When i equals -1, the end of
} catch(IOException exc) ({ the file has been reached.

System.out.println ("Error reading file.");

}

try 4
fin.close(); <«————— Close thefile.
} catch(IOException exc) {

System.out .println("Error closing file.");

}

Notice that the preceding example closes the file stream after the try block that
reads the file has completed. Although this approach is occasionally useful, Java
supports a variation that is often a better choice. The variation is to call close()
within a finally block. In this approach, all of the methods that access the file are
contained within a try block, and the finally block is used to close the file. This way,
no matter how the try block terminates, the file is closed. Assuming the preceding
example, here is how the try block that reads the file can be recoded:

try {
do {
1 = fin.read () ;
if(i != -1) System.out.print((char) 1i);
} while(i != -1);

} catch(IOException exc) {
System.out .println ("Error Reading File") ;
} finally { <
// Close file on the way out of the try block. | Useaq finally clause fo
try { close the file.
fin.close() ; =«
} catch(IOException exc)
System.out .println("Error Closing File");
)

}

One advantage to this approach in general is that if the code that accesses a file
terminates because of some non-I/O-related exception, the file is still closed by the
finally block. Although not an issue in this example (or most other example
programs) because the program simply ends if an unexpected exception occurs, this
can be a major source of trouble in larger programs. Using finally avoids this
trouble.

Sometimes it’s easier to wrap the portions of a program that open the file and
access the file within a single try block (rather than separating the two), and then use
a finally block to close the file. For example, here is another way to write the

ShowFile program:

/* This variation wraps the code that opens and
accesses the file within a single try block.
The file is closed by the finally block.

L
import java.io.*;

class ShowFile ({
public static void main(String args/|[])

int 1i;
FileInputStream fin = null; <«———Here, finis initialized to null.

// First, confirm that a file name has been specified.
if (args.length != 1) {
System.out.println("Usage: ShowFile filename");
return;

}

// The following code opens a file, reads characters until EOF
// 1s encountered, and then closes the file via a finally block.
try {

fin = new FileInputStream(args[0]);

do {

i = fin.read();

if(i != -1) System.out.print((char) i);
} while(i != -1);

} catch (FileNotFoundException exc) {
System.out.println("File Not Found.");

} catch(IOException exc) {
System.out.println("An I/O Error Occurred") ;

} finally {
// Close file in all cases.
try {
1f(fin != null) fin.close(); <————Close fin only ifitis not null.

} catch(IOException exc) {
System.out.println("Error Closing File");

}
}
}

In this approach, notice that fin is initialized to null. Then, in the finally block, the
file is closed only if fin is not null. This works because fin will be non-null only if
the file was successfully opened. Thus, close() will not be called if an exception
occurs while opening the file.

It is possible to make the try/catch sequence in the preceding example a bit more
compact. Because FileNotFoundException is a subclass of IOException, it need

not be caught separately. For example, this catch clause could be used to catch both
exceptions, eliminating the need to catch FileNotFoundException separately. In this
case, the standard exception message, which describes the error, is displayed.

} catch(IOException exc) {
System.out.println("I/O Error: " + exc);
} finally ({

Ask the Expert

Q: I noticed that read() returns —1 when the end of the file has been
reached, but that it does not have a special return value for a file
error. Why not?

A: In Java, errors are handled by exceptions. Thus, if read(), or any other
I/0 method, returns a value, it means that no error has occurred. This 1s a
much cleaner way than handling I/O errors by using special error codes.

In this approach, any error, including an error opening the file, will simply be
handled by the single catch statement. Because of its compactness, this approach is
used by most of the I/O examples in this book. Be aware, however, that it will not be
appropriate in cases in which you want to deal separately with a failure to open a
file, such as might be caused if a user mistypes a file name. In such a situation, you
might want to prompt for the correct name, for example, before entering a try block
that accesses the file.

Writing to a File

To open a file for output, create a FileQutputStream object. Here are two
commonly used constructors:

FileOutputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName, boolean append) throws FileNotFoundException

If the file cannot be created, then FileNotFoundException is thrown. In the first
form, when an output file is opened, any preexisting file by the same name is

destroyed. In the second form, if append is true, then output is appended to the end
of the file. Otherwise, the file is overwritten.

To write to a file, you will use the write() method. Its simplest form is shown
here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is
declared as an integer, only the low-order 8 bits are written to the file. If an error
occurs during writing, an IOException is thrown.

Once you are done with an output file, you must close it using close(), shown
here:

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be
used by another file. It also helps ensure that any output remaining in an output
buffer is actually written to the physical device.

The following example copies a text file. The names of the source and destination
files are specified on the command line.

/* Copy a text file.
To use this program, specify the name
of the source file and the destination file.
For example, to copy a file called FIRST.TXT
to a file called SECOND.TXT, use the following
command line.

java CopyFile FIRST.TXT SECOND.TXT
*y

import java.io.*;

class CopyFile {
public static void main(String args[]) throws IOException
int %
FileInputStream fin = null;
FileOutputStream fout = null;

// First, make sure that both files has been specified.
if (args.length != 2) {
System.out .println("Usage: CopyFile from to");
return;

}

// Copy a File.

try {
// Attempt to open the files.
fin = new FileInputStream(args [0]) ;
fout = new FileOutputStream(args[1]) ;

do {
i = fin.read(); = I Read bytes from one file
if(i != -1) fout.write(i); = and write them to another.
} while(i != -1);

} catch(IOException exc) ({

System.out.println("I/O Erroxr: " + exc);
} finally {
try {
if (fin != null) fin.close();

} catch(IOException exc)
System.out.println("Error Closing Input File");

try {
if (fout != null) fout.close();

} catch(IOException exc) ({
System.out .println ("Error Closing Output File");

Automatically Closing a File

In the preceding section, the example programs have made explicit calls to close() to
close a file once it is no longer needed. This is the way files have been closed since
Java was first created. As a result, this approach is widespread in existing code.
Furthermore, this approach is still valid and useful. However, beginning with JDK 7,
Java has included a feature that offers another, more streamlined way to manage
resources, such as file streams, by automating the closing process. It is based on
another version of the try statement called try-with-resources, and is sometimes
referred to as automatic resource management. The principal advantage of try-with-
resources is that it prevents situations in which a file (or other resource) is
inadvertently not released after it is no longer needed. As explained, forgetting to
close a file can result in memory leaks and could lead to other problems.

The try-with-resources statement has this general form:

try (resource-specification) {
// use the resource

j

Often, resource-specification is a statement that declares and initializes a resource,
such as a file. In this case, it consists of a variable declaration in which the variable
1s initialized with a reference to the object being managed. When the try block ends,
the resource is automatically released. In the case of a file, this means that the file is
automatically closed. (Thus, there is no need to call close() explicitly.) A try-with-
resources statement can also include catch and finally clauses.

NOTE

Beginning with JDK 9, it is also possible for the resource specification of the try to
consist of a variable that has been declared and initialized earlier in the program.
However, that variable must be effectively final, which means that it has not been
assigned a new value after being given its initial value.

The try-with-resources statement can be used only with those resources that

implement the AutoCloseable interface defined by java.lang. This interface defines
the close() method. AutoCloseable is inherited by the Closeable interface defined
in java.io. Both interfaces are implemented by the stream classes, including
FileInputStream and FileOQutputStream. Thus, try-with-resources can be used
when working with streams, including file streams.

As a first example of automatically closing a file, here is a reworked version of the
ShowFile program that uses it:

/* This version of the ShowFile program uses a try-with-resources
statement to automatically close a file when it is no longer needed.

]

import java.io.*;

class ShowFile {
public static void main(String args|[])

{

int 1;

// First, make sure that a file name has been specified.
if (args.length != 1) {
System.out.println("Usage: ShowFile filename");
return:

}

// The following code uses try-with-resources to open a file
// and then automatically close it when the try block is left.

try (FileInputStream fin = new FileInputStream(args([0])) ({
do {
" = fin.readl); , , A try-with-resources block.
if(1 != -1) System.out.print((char) 1);
} while(i != -1);

} catch(IOException exc) {
System.out.println("I/O Error: " + eXc);

}
}
)

In the program, pay special attention to how the file is opened within the try-with-
resources statement:

try(FileInputStream fin = new FileInputStream(args([0])) {

Notice how the resource-specification portion of the try declares a FileInputStream
called fin, which is then assigned a reference to the file opened by its constructor.
Thus, in this version of the program the variable fin is local to the try block, being
created when the try is entered. When the try is exited, the file associated with fin is
automatically closed by an implicit call to close(). You don’t need to call close()
explicitly, which means that you can’t forget to close the file. This is a key
advantage of automatic resource management.

It is important to understand that a resource declared in the try statement is
implicitly final. This means that you can’t assign to the resource after it has been
created. Also, the scope of the resource is limited to the try-with-resources
statement.

You can manage more than one resource within a single try statement. To do so,
simply separate each resource specification with a semicolon. The following
program shows an example. It reworks the CopyFile program shown earlier so that it
uses a single try-with-resources statement to manage both fin and fout.

/* A version of CopyFile that uses try-with-resources.
It demonstrates two resources (in this case files) being
managed by a single try statement.

*f
import java.io.*;

class CopyFile ({
public static void main(String args[]) throws IOException

{

int i;

// First, confirm that both files have been specified.
if (args.length != 2) {
System.out.println("Usage: CopyFile from to");
return;

}

// Open and manage two files via the try statement.
try (FileInputStream fin = new FileInputStream(args[0]);
FileOutputStream fout = new FileOutputStream(args[1]))

Manage two resources.

do {

1 = fin.read() ;

if(i != -1) fout.write(i);
} while(i != -1);

} catch(IOException exc) {
System.out .println("I/O Error: " + exc);

}
}
}

In this program, notice how the input and output files are opened within the try:

try (FileInputStream fin = new FileInputStream(args[0]) ;
FileOutputStream fout = new FileOutputStream(args([1l]))

After this try block ends, both fin and fout will have been closed. If you compare
this version of the program to the previous version, you will see that it is much
shorter. The ability to streamline source code is a side-benefit of try-with-resources.
There 1s one other aspect to try-with-resources that needs to be mentioned. In
general, when a try block executes, it is possible that an exception inside the try

block will lead to another exception that occurs when the resource is closed in a
finally clause. In the case of a “normal” try statement, the original exception is lost,
being preempted by the second exception. However, with a try-with-resources
statement, the second exception is suppressed. It is not, however, lost. Instead, it is
added to the list of suppressed exceptions associated with the first exception. The list
of suppressed exceptions can be obtained by use of the getSuppressed() method
defined by Throwable.

Because of its advantages, try-with-resources will be used by the remaining
examples in this chapter. However, it is still very important that you are familiar with
the traditional approach shown earlier in which close() is called explicitly. There are
several reasons for this. First, you may encounter legacy code that still relies on the
traditional approach. It is important that all Java programmers be fully versed in and
comfortable with the traditional approach when maintaining or updating this older
code. Second, you might need to work in an environment that predates JDK 7. In
such a situation, the try-with-resources statement will not be available and the
traditional approach must be employed. Finally, there may be cases in which
explicitly closing a resource is more appropriate than the automated approach. The
foregoing notwithstanding, if you are using a modern version of Java, then you will
usually want to use the new, automated approach to resource management. It offers a
streamlined, robust alternative to the traditional approach.

Reading and Writing Binary Data

So far, we have just been reading and writing bytes containing ASCII characters, but
it is possible—indeed, common—to read and write other types of data. For example,
you might want to create a file that contains ints, doubles, or shorts. To read and
write binary values of the Java primitive types, you will use DatalnputStream and
DataOutputStream.

DataOutputStream implements the DataOutput interface. This interface defines
methods that write all of Java’s primitive types to a file. It is important to understand
that this data is written using its internal, binary format, not its human-readable text
form. Several commonly used output methods for Java’s primitive types are shown
in Table 10-5. Each throws an IOException on failure.

Output Method Purpose

void writeBoolean(boolean vall Writes the boolean specified by val.

void writeByteint val Writes the low-order byte specified by val
void writeChar{int val) Writes the value specified by val s a char.
void writeDouble(double val) Writes the double specified by val

void writeFloat{float vl Writes the float specified by val.

void writelnt(int val) : Werites the int spec_ified by val,

void writelong(long val) Writes the long specified by val.

void writeShort{int val) Writes the value specified by val as a short.

Table 10-5 Commonly Used Output Methods Defined by DataQutputStream

Here is the constructor for DataQutputStream. Notice that it is built upon an
instance of QutputStream.

DataOutputStream(OutputStream outputStream)

Here, outputStream is the stream to which data is written. To write output to a file,
you can use the object created by FileOutputStream for this parameter.
DatalnputStream implements the Datalnput interface, which provides methods
for reading all of Java’s primitive types. These methods are shown in Table 10-6,
and each can throw an IOException. DatalnputStream uses an InputStream
instance as its foundation, overlaying it with methods that read the various Java data
types. Remember that DatalnputStream reads data in its binary format, not its
human-readable form. The constructor for DatalnputStream is shown here:

Input Method Purpose

boolean readBoolean | Reads a boolean.
byte readBytef) Reads a byte.
char readChar() Reads a char.
double readDouble() Reads a double.
float readFloat() Reads a float.

int readint{) Reads an int,
long readLong() Reads a long.
short readShort() Reads a short.

Table 10-6 Commonly Used Input Methods Defined by DatalnputStream
DatalnputStream(InputStream inputStream)

Here, inputStream is the stream that is linked to the instance of DatalnputStream
being created. To read input from a file, you can use the object created by
FileInputStream for this parameter.

Here is a program that demonstrates DataOutputStream and DatalnputStream.
It writes and then reads back various types of data to and from a file.

// Write and then read back binary data.
import java.io.*;

class RWData {
public static void main(String args|[])
{
int 1 = 10;
double d = 1023.56;
boolean b = true;

// Write some values.
try (DataOutputStream dataOut =
new DataOutputStream(new FileOutputStream("testdata")))

}

}

System.out .println ("Writing " + 1i);
dataOut.writeInt (i) ; -

System.out.println ("Writing " + 4d);

dataOut.writeDouble (4d) ; «

System.out.println("Writing " + b);
dataOut.writeBoolean (b) ; -

System.out.println ("Writing " + 12.2 * 7.4);
dataOut.writeDouble (12.2 * 7.4); 4

}

catch(IOException exc) ({
System.out.println("Write error.");
return;

}

System.out .println() ;

// Now, read them back.
try (DatalInputStream dataln =

Write binary data.

new DataInputStream(new FileInputStream("testdata")))

{

i = dataln.readInt(); =

System.out .println("Reading " + 1i);

d = dataln.readDouble(); =

System.out.println("Reading " + 4d);

— Read binary data.

b = dataIn.readBoolean() ; <
System.out.println("Reading " + b);

d = dataIn.readDouble();

System.out.println("Reading " + d);

}

catch (IOException exc) {
System.out.println ("Read error.");

}

The output from the program is shown here.

Writing 10
Writing 1023.56
Writing true
Writing 90.28
Reading 10
Reading 1023.56
Reading true
Reading 90.28

IS’ ICRUNE A File Comparison Utility

- .
--

This project develops a simple, yet useful file comparison utility. It works by
opening both files to be compared and then reading and comparing each
corresponding set of bytes. If a mismatch is found, the files differ. If the end of each
file 1s reached at the same time and if no mismatches have been found, then the files
are the same. Notice that it uses a try-with-resources statement to automatically
close the files.

1. Create a file called CompFiles.java.

2. Into CompFiles.java, add the following program:

/*
Try This 10-1

Compare two files.

To use this program, specify the names
of the files to be compared on the command line.

java CompFile FIRST.TXT SECOND.TXT
¥

import java.io.*;

class CompFiles {
public static void main(String args[])

{

int i=0, j=0;

// First make sure that both files have been specified.
if (args.length !=2) {

System.out.println("Usage: CompFiles f1 f2");

return;

}

// Compare the files.
try (FileInputStream fl1l = new FileInputStream(args [0]) ;
FileInputStream £2 new FileInputStream(args|[1l]))

// Check the contents of each file.

do {

1 = fl.read();

j = £f2.read () ;

if(i != j) break;
} while(i != -1 && j != -1);
1f(i 1= 3)

System.out.println("Files differ.");
else

System.out.println("Files are the same.");
} catch(IOException exc)
System.out.println("I/O Error: " + exc);

}
}
}

3. To try CompFiles, first copy CompFiles.java to a file called temp. Then, try this
command line:

java CompFiles CompFiles.java temp

The program will report that the files are the same. Next, compare
CompkFiles.java to CopyFile.java (shown earlier) using this command line:

java CompFiles CompFiles.java CopyFile.java

These files differ and CompFiles will report this fact.

4. On your own, try enhancing CompFiles with various options. For example, add
an option that ignores the case of letters. Another idea is to have CompFiles
display the position within the file where the files differ.

Random-Access Files

Up to this point, we have been using sequential files, which are files that are
accessed 1n a strictly linear fashion, one byte after another. However, Java also
allows you to access the contents of a file in random order. To do this, you will use
RandomAccessFile, which encapsulates a random-access file. RandomAccessFile
is not derived from InputStream or QutputStream. Instead, it implements the
interfaces Datalnput and DataOutput, which define the basic I/O methods. It also
supports positioning requests—that is, you can position the file pointer within the

file. The constructor that we will be using is shown here:

RandomAccessFile(String fileName, String access)
throws FileNotFoundException

Here, the name of the file is passed in fileName and access determines what type of
file access 1s permitted. If it is "r", the file can be read but not written. If it is "rw",
the file is opened in read-write mode. (The access parameter also supports "rws" and
"rwd", which (for local devices) ensure that changes to the file are immediately
written to the physical device.)

The method seek(), shown here, is used to set the current position of the file
pointer within the file:

void seek(long newPos) throws IOException

Here, newPos specifies the new position, in bytes, of the file pointer from the
beginning of the file. After a call to seek(), the next read or write operation will
occur at the new file position.

Because RandomA ccessFile implements the Datalnput and DataOuput
interfaces, methods to read and write the primitive types, such as readInt() and
writeDouble(), are available. The read() and write() methods are also supported.

Here is an example that demonstrates random-access I/O. It writes six doubles to
a file and then reads them back in nonsequential order.

// Demonstrate random access files.

import java.io.¥*;

class RandomAccessDemo {
public static void main(String args(])

{

double data[] = { 19.4, 10.1, 123.54, 33.0, 87.9, 74.25 };
double 4;

Open random-access file.

// Open and use a random access file.
try (RandomAccessFile raf = new RandomAccessFile ("random.dat", "rw"))

{

// Write values to the file.
for(int i=0; i < data.length; i++) {
raf .writeDouble (data[i]) ;

J

// Now, read back specific values
raf.seek(0); // seek to first double ==

d = raf.readDouble();
System.out.println("First value is " + d4);

raf.seek(8); // seek to second double

d = raf.readDouble();
System.out.println("Second value is " + d);
raf.seek(8 * 3); // seek to fourth double
d = raf.readDouble() ;
System.out.println("Fourth value is " + d);

System.out.println();

// Now, read every other value.

System.out.println("Here is every other value: ");

for (int i1=0; i < data.length; i+=2) {
raf.seek(8 * i); // seek to ith double

Use seek() to set
the file poinfer.

d = raf.readDouble() ;
System.out.print(d + " ");

}
}

catch (IOException exc) {
System.out.println("I/O Exrror: " + exc);

}

The output from the program is shown here.

First value is 19.4
Second value is 10.1
Fourth value is 33.0

Here is every other value:
19.4 123.54 87.9

Notice how each value is located. Since each double value is 8 bytes long, each
value starts on an 8-byte boundary. Thus, the first value is located at zero, the second
begins at byte 8, the third starts at byte 16, and so on. Thus, to read the fourth value,
the program seeks to location 24.

Ask the Expert

Q: In looking through the documentation provided by the JDK, I
noticed a class called Console. Is this a class that I can use to perform
console-based 1/0?

A: The short answer is Yes. The Console class was added by JDK 6, and it is
used to read from and write to the console. Console is primarily a
convenience class because most of its functionality is available through
System.in and System.out. However, its use can simplify some types of
console interactions, especially when reading strings from the console.
Console supplies no constructors. Instead, a Console object is obtained

by calling System.console(). It is shown here.

static Console console()

If a console is available, then a reference to it is returned. Otherwise, null is
returned. A console may not be available in all cases, such as when a

program runs as a background task. Therefore, if null is returned, no console
I/O 1s possible.

Console defines several methods that perform 1/0, such as readLine()
and printf(). It also defines a method called readPassword(), which can be
used to obtain a password. It lets your application read a password without
echoing what is typed. You can also obtain a reference to the Reader and
the Writer that are attached to the console. In general, Console is a class
that you may find useful for some types of applications.

Using Java’s Character-Based Streams

As the preceding sections have shown, Java’s byte streams are both powerful and
flexible. However, they are not the ideal way to handle character-based I/O. For this
purpose, Java defines the character stream classes. At the top of the character stream
hierarchy are the abstract classes Reader and Writer. Table 10-7 shows the methods
in Reader, and Table 10-8 shows the methods in Writer. Most of the methods can
throw an IOException on error. The methods defined by these two abstract classes
are available to all of their subclasses. Thus, they form a minimal set of I/O functions
that all character streams will have.

Method

Description

abstract void close()

Closes the input source. Subsequent read attempts will generate
an |OException.

void markint numChars)

Places a mark ot the current point in the input stream that will
remain valid until numChars characters are read.

boolean markSupported| |

Returns true if mark()/reset() are supported on this stream.

int read|) Returns an integer representation of the next available character
from the invoking input stream. =1 is returned when an aftempt is
made to read at the end of the stream.

int read(char buffer]} Attempts to read up to bufer.length characters into buffer and

returns the actual number of characters that were successFu”y
read. -1 is refurned when an attempt is made to read at the end
of the stream.

abstract int read(char buffed],
int offset,
int numChars)

Attempts fo read up to numChars characters into buffer starting
at butfer{offsef], returning the number of characters successhully
read. -1 is returned when an attempt is made to read ot the end
of the stream.

int read(CharBuffer buffer]

Attempts to fill the buffer specified by buffer, returning the number
of characters successfully read. =1 is returned when an attempt is
made to read o the end of the stream. CharBuffer is a class that

encapsulates a sequence of characters, such as a string.

boolean ready()

Returns true if the next input request will not wait. Otherwise,
it refurns false.

void resef{)

Resets the input pointer to the previously set mark.

long skip(long numChars)

Skips over numChars characters of input, refurning the number
of characters actually skipped.

Table 10-7 The Methods Defined by Reader

Method

Description

Weriter append|char ch)

Appends ch to the end of the invoking output stream. Returns
a reference fo the invoking stream.

Weriter append(CharSequence chars|

Appends chars to the end of the invoking output stream.
Returns a reference to the invoking stream. CharSequence is
an interface that defines read-only operations on a sequence
of characters.

Writer append(CharSequence chars,
int begf'n, int end

Appends the sequence of chars starting at begin and stopping
witﬁ end to the end of the invoking output stream. Refurns

a reference to the invoking stream. CharSequence is an
interface that defines reuji-on|y operafions on a sequence of
characters.

abstract void close()

Closes the output stream. Subsequent write attempts will
generafe an IOException.

abstract void flush()

Causes any output that has been buffered to be sentto its
destination. That s, it flushes the output buffer.

void writelint ch)

Writes a single character to the invoking output stream. Note
that the parameter is an int, which allows you to call write()
with expressions without having fo cast them back to char.

void write(char buffer]]|

Writes a comp|ete array of characters fo the invoking output
stream,

abstract void write(char buffed |,
int offset,
int numChars)

void write{String str]

Writes a subrange of numChars characters from the array
buffer, beginning at buffer{offsef] to the invoking output stream.

Werites str to the invoking output stream.

void write(String str, int offset,
int numChars|

Writes a subrange of numChars characters from the array str,

beginning ot the specified offset,

Table 10-8 The Methods Defined by Writer

Console Input Using Character Streams

For code that will be internationalized, inputting from the console using Java’s
character-based streams is a better, more convenient way to read characters from the

keyboard than is using the byte streams. However, since System.in is a byte stream,
you will need to wrap System.in inside some type of Reader. The best class for
reading console input is BufferedReader, which supports a buffered input stream.
However, you cannot construct a BufferedReader directly from System.in. Instead,
you must first convert it into a character stream. To do this, you will use
InputStreamReader, which converts bytes to characters. To obtain an
InputStreamReader object that is linked to System.in, use the constructor shown
next:

InputStreamReader(InputStream inputStream)

Since System.in refers to an object of type InputStream, it can be used for
inputStream.

Next, using the object produced by InputStreamReader, construct a
BufferedReader using the constructor shown here:

BufferedReader(Reader inputReader)

Here, inputReader is the stream that 1s linked to the instance of BufferedReader
being created. Putting it all together, the following line of code creates a
BufferedReader that is connected to the keyboard.

BufferedReader br = new BufferedReader (new
Input StreamReader (System.in)) ;

After this statement executes, br will be a character-based stream that is linked to the
console through System.in.

Reading Characters

Characters can be read from System.in using the read() method defined by
BufferedReader in much the same way as they were read using byte streams. Here
are three versions of read() supported by BufferedReader.

int read() throws IOException
int read(char data[]) throws IOException
int read(char data|], int start, int max) throws IOException

The first version of read() reads a single Unicode character. It returns —1 when an
attempt is made to read at the end of the stream. The second version reads characters
from the input stream and puts them into data until either the array is full, the end of
stream 1s reached, or an error occurs. It returns the number of characters read or —1

when an attempt 1s made to read at the end of the stream. The third version reads
input into data beginning at the location specified by start. Up to max characters are
stored. It returns the number of characters read or —1 when an attempt is made to
read at the end of the stream. All throw an IOException on error. When reading
from System.in, pressing ENTER generates an end-of-stream condition.

The following program demonstrates read() by reading characters from the
console until the user types a period. Notice that any [/O exceptions that might be
generated are simply thrown out of main(). As mentioned earlier in this chapter,
such an approach is common when reading from the console. Of course, you can
handle these types of errors under program control, if you choose.

// Use a BufferedReader to read characters from the console.
import java.io.*;

class ReadChars
public static void main(String args|[])

throwe IQException Create BufferedReader

{ linked to System.in.
char c;

BufferedReader br = new =
BufferedReader (new
InputStreamReader (System.in)) ;

System.out.println ("Enter characters, period to quit.");

// read characters
do {

c¢ = (char) br.read() ;
System.out.println(c) ;
} while(c != '."');

Here is a sample run:

Enter characters, period to quit.
One Two.

0

n

e

T

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member
of the BufferedReader class. Its general form is shown here:

String readLine() throws IOException

[t returns a String object that contains the characters read. It returns null if an
attempt is made to read when at the end of the stream.

The following program demonstrates BufferedReader and the readLine()
method. The program reads and displays lines of text until you enter the word “stop”.

// Read a string from console using a BufferedReader.
import java.io.*;

class ReadLines {

public static void main (String args/|[])
throws IOException

{
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader (new

InputStreamReader (System.in)) ;

String str;

System.out.println("Enter lines of text.");
System.out .println("Enter 'stop' to quit.");

do
str = br.readLine () ; €4——— Use readLline() from BufferedReader
System.out.println(str) ; to read a line of fext.

} while(!str.equals ("stop"));

Console Output Using Character Streams

While it is still permissible to use System.out to write to the console under Java, its
use is recommended mostly for debugging purposes or for sample programs such as
those found in this book. For real-world programs, the preferred method of writing to
the console when using Java is through a PrintWriter stream. PrintWriter is one of

the character-based classes. As explained, using a character-based class for console
output makes it easier to internationalize your program.
PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushingOn)

Here, outputStream is an object of type OutputStream and flushingOn controls
whether Java flushes the output stream every time a println() method (among
others) is called. If flushingOn is true, flushing automatically takes place. If false,
flushing is not automatic.

PrintWriter supports the print() and println() methods for all types including
Object. Thus, you can use these methods in just the same way as they have been
used with System.out. If an argument is not a primitive type, the PrintWriter
methods will call the object’s toString() method and then print out the result.

To write to the console using a PrintWriter, specify System.out for the output
stream and flush the stream after each call to println(). For example, this line of
code creates a PrintWriter that is connected to console output.

PrintWriter pw = new PrintWriter (System.out, true);

The following application illustrates using a PrintWriter to handle console
output.

// Demonstrate PrintWriter.
import java.io.*; Create a PrintWriter linked
to System.out.

public class PrintWriterDemo { l
public static void main(String args[])
PrintWriter pw = new PrintWriter (System.out, true);
intk 1 = 10;
double 4 = 123.65;

pw.println("Using a PrintWriter.");
pw.println (i) ;
pw.println(4) ;

pw.println(i + " + " + d + " is " + (i+44d));

The output from this program is

Using a PrintWriter.
10

123.65

10 + 123.65 is 133.65

Remember that there is nothing wrong with using System.out to write simple text
output to the console when you are learning Java or debugging your programs.
However, using a PrintWriter will make your real-world applications easier to
internationalize. Since no advantage is to be gained by using a PrintWriter in the
sample programs shown in this book, for convenience we will continue to use
System.out to write to the console.

File I/0 Using Character Streams

Although byte-oriented file handling is the most common, it is possible to use
character-based streams for this purpose. The advantage to the character streams is
that they operate directly on Unicode characters. Thus, if you want to store Unicode
text, the character streams are certainly your best option. In general, to perform
character-based file I/O, you will use the FileReader and FileWriter classes.

Using a FileWriter

FileWriter creates a Writer that you can use to write to a file. Two commonly used
constructors are shown here:

FileWriter(String fileName) throws IOException
FileWriter(String fileName, boolean append) throws IOException

Here, fileName is the full path name of a file. If append is true, then output is
appended to the end of the file. Otherwise, the file is overwritten. Either throws an
IOException on failure. FileWriter is derived from OutputStreamWriter and
Writer. Thus, it has access to the methods defined by these classes.

Here is a simple key-to-disk utility that reads lines of text entered at the keyboard
and writes them to a file called "test.txt". Text is read until the user enters the word
"stop". It uses a FileWriter to output to the file.

// A simple key-to-disk utility that demonstrates a FileWriter.
import java.io.*;

class KtoD ({
public static void main(String args|[])

{

String str;
BufferedReader br =
new BufferedReader (
new InputStreamReader (System.in)) ;

System.out.println("Enter text ('stop' to quit).");

try (FileWriter fw = new FileWriter ("test.txt")) <— Create a FileWriter.

{

do {
System.out.print(": ");
str = br.readLine () ;

if (str.compareTo("stop") == 0) break;

str = str + "\r\n"; // add newline

fw.write(str) ; = Write strings fo the file.
} while(str.compareTo ("stop") != 0);
} catch(IOException exc) {
System.out.println("I/O Error: " + exc);
}
)
)
Using a FileReader

The FileReader class creates a Reader that you can use to read the contents of a
file. A commonly used constructor is shown here:

FileReader(String fileName) throws FileNotFoundException

Here, fileName is the full path name of a file. It throws a FileNotFoundException if
the file does not exist. FileReader is derived from InputStreamReader and
Reader. Thus, it has access to the methods defined by these classes.

The following program creates a simple disk-to-screen utility that reads a text file
called "test.txt" and displays its contents on the screen. Thus, it is the complement of
the key-to-disk utility shown in the previous section.

// A simple disk-to-screen utilitiy that demonstrates a FileReader.
import java.io.*;

class DtoS {
public static void main(String args|[]) {

String s; Create a File Reader.

// Create and use a FileReader wrapped in a BufferedReader.
try (BufferedReader br = new BufferedReader (new FileReader("test.txt")))

{
while((s = br.readLine()) != null) { « Read lines from the file and
System.out.println(s); display them on the screen.

}

} catch(IOException exc) {

System.out.println("I/O Error: " + exc);

}
}
}

In this example, notice that the FileReader is wrapped in a BufferedReader. This
gives it access to readLine(). Also, closing the BufferedReader, br in this case,
automatically closes the file.

Ask the Expert

Q: I have heard about another I/O package called NIO. Can you tell me
about it?

A: Originally called New I/0, NIO was added to Java by JDK 1.4. It supports
a channel-based approach to I/O operations. The NIO classes are
contained in java.nio and its subordinate packages, such as
java.nio.channels and java.nio.charset.

NIO is built on two foundational items: buffers and channels. A buffer
holds data. A channel represents an open connection to an I/O device, such

as a file or a socket. In general, to use the new I/O system, you obtain a

channel to an I/O device and a buffer to hold data. You then operate on the
buffer, inputting or outputting data as needed.

Two other entities used by NIO are charsets and selectors. A charset
defines the way that bytes are mapped to characters. You can encode a
sequence of characters into bytes using an encoder. You can decode a
sequence of bytes into characters using a decoder. A selector supports key-
based, non-blocking, multiplexed I/O. In other words, selectors enable you
to perform I/O through multiple channels. Selectors are most applicable to
socket-backed channels.

Beginning with JDK 7, NIO was substantially enhanced, so much so that
the term N/O.2 is often used. The improvements included three new
packages (java.nio.file, java.nio.file.attribute, and java.nio.file.spi);
several new classes, interfaces, and methods; and direct support for stream-
based I/0. The additions greatly expanded the ways in which NIO can be
used, especially with files.

It is important to understand that NIO does not replace the 1/O classes
found in java.io, which are discussed in this chapter. Instead, the NIO
classes are designed to supplement the standard I/O system, offering an
alternative approach, which can be beneficial in some circumstances.

Using Java’s Type Wrappers to Convert
Numeric Strings

Before leaving the topic of I/O, we will examine a technique useful when reading
numeric strings. As you know, Java’s println() method provides a convenient way
to output various types of data to the console, including numeric values of the built-
in types, such as int and double. Thus, println() automatically converts numeric
values into their human-readable form. However, methods like read() do not
provide a parallel functionality that reads and converts a string containing a numeric
value into its internal, binary format. For example, there 1s no version of read() that
reads a string such as "100" and then automatically converts it into its corresponding
binary value that is able to be stored in an int variable. Instead, Java provides various
other ways to accomplish this task. Perhaps the easiest is to use one of Java’s type
wrappers.

Java’s type wrappers are classes that encapsulate, or wrap, the primitive types.
Type wrappers are needed because the primitive types are not objects. This limits

their use to some extent. For example, a primitive type cannot be passed by
reference. To address this kind of need, Java provides classes that correspond to each
of the primitive types.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character,
and Boolean. These classes offer a wide array of methods that allow you to fully
integrate the primitive types into Java’s object hierarchy. As a side benefit, the
numeric wrappers also define methods that convert a numeric string into its
corresponding binary equivalent. Several of these conversion methods are shown
here. Each returns a binary value that corresponds to the string.

Wrapper ' Conversion Method

Double static double parseDouble(String str) throws NumberFormatException
Float | staic float parseFloat{String str) throws NumberFormatException
Long stfic long parseLong(String st throws NumberFormatException
Integer | static int parselnt(String str) throws NumberFormatException

Short il ot parseShort{String sir) throws NumberFormatException
Byte static byte parseByte(String str) throws NumberFormatException

The integer wrappers also offer a second parsing method that allows you to specify
the radix.

The parsing methods give us an easy way to convert a numeric value, read as a
string from the keyboard or a text file, into its proper internal format. For example,
the following program demonstrates parselnt() and parseDouble(). It averages a
list of numbers entered by the user. It first asks the user for the number of values to
be averaged. It then reads that number using readLine() and uses parselnt() to
convert the string into an integer. Next, it inputs the values, using parseDouble() to
convert the strings into their double equivalents.

/* This program averages a list of numbers entered
by the user. */

import java.io.*;

class AvgNums {
public static void main(String args|[])

{

throws IOException

// create a BufferedReader using System.in
BufferedReader br = new

BufferedReader (new InputStreamReader (System.in)) ;
String str;
int n;
double sum = 0.0;
double avg, t;

System.out .print ("How many numbers will you enter: ");
str = br.readLine();

try

} n = Integer.parselnt (str); <«———— Convertsiring to int.

catch (NumberFormatException exc) {
System.out .println("Invalid format") ;
o= 0;

}

System.out.println("Enter " + n + " values.");
for(int i=0; 1 < n ; i++) {
System.out .print (": ");
str = br.readLine();
try {
t = Double.parseDouble (str) ; « Convert string to double.
} catch(NumberFormatException exc) {
System.out.println("Invalid format") ;
L = 0.0;

}

sum += t;

}

avg = sum / n;
System.out.println("Average is " + avg);

Here is a sample run:

How many numbers will you enter: 5
Enter 5 values.
: 1.1

g w N
g w N

Average is 3.3

Ask the Expert

Q: What else can the primitive type wrapper classes do?

A: The primitive type wrappers provide a number of methods that help
integrate the primitive types into the object hierarchy. For example,
various storage mechanisms provided by the Java library, including maps,
lists, and sets, work only with objects. Thus, to store an int, for example,
in a list, it must be wrapped in an object. Also, all type wrappers have a
method called compareTo(), which compares the value contained within
the wrapper; equals(), which tests two values for equality; and methods
that return the value of the object in various forms. The topic of type
wrappers is taken up again in Chapter 12, when autoboxing is discussed.

Try This 10-2 Creating a Disk-Based Help System

In Try This 4-1, you created a Help class that displayed information about Java’s
control statements. In that implementation, the help information was stored within
the class itself, and the user selected help from a menu of numbered options.

Although this approach was fully functional, it is certainly not the ideal way of
creating a Help system. For example, to add to or change the help information, the
source code of the program needed to be modified. Also, the selection of the topic by
number rather than by name is tedious, and is not suitable for long lists of topics.
Here, we will remedy these shortcomings by creating a disk-based Help system.

The disk-based Help system stores help information in a help file. The help file is

a standard text file that can be changed or expanded at will, without changing the
Help program. The user obtains help about a topic by typing in its name. The Help
system searches the help file for the topic. If it is found, information about the topic
1s displayed.

1. Create the help file that will be used by the Help system. The help file is a
standard text file that is organized like this:

#topic-namel
topic info

#topic-name2
topic info

#topic-nameN
topic info

The name of each topic must be preceded by a #, and the topic name must be on
a line of its own. Preceding each topic name with a # allows the program to
quickly find the start of each topic. After the topic name are any number of
information lines about the topic. However, there must be a blank line between
the end of one topic’s information and the start of the next topic. Also, there
must be no trailing spaces at the end of any help-topic lines.

Here is a simple help file that you can use to try the disk-based Help system. It
stores information about Java’s control statements.

#if
if (condition) statement;
else statement;

#switch
switch(expression)
case constant:
statement sequence
break;

//
}

#for
for (init; condition; iteration) statement;

#while
while (condition) statement;

#do
do {
statement;
} while (condition);

#break
break; or break label;

#continue
continue; or continue label;

2. Create a file called FileHelp.java.

3. Begin creating the new Help class with these lines of code.

class Help {
String helpfile; // name of help file

Help (String fname) {
helpfile = fname;

}

The name of the help file is passed to the Help constructor and stored in the
instance variable helpfile. Since each instance of Help will have its own copy of

helpfile, each instance can use a different file. Thus, you can create different sets
of help files for different sets of topics.

4. Add the helpOn() method shown here to the Help class. This method retrieves
help on the specified topic.

// Display help on a topic.
boolean helpOn (String what) {
ifnt €eh;
String topic, info;

// Open the help file.
try (BufferedReader helpRdr =

new BufferedReader (new FileReader (helpfile)))
{

do {
// read characters until a # is found
ch = helpRdr.read() ;

// now, see 1f topics match
if{ch == "#'})
topic = helpRdr.readLine() ;

if (what.compareTo (topic) == 0) { // found topic
do {

info = helpRdr.readLine() ;

if (info != null) System.out.println(info);
} while((info != null) &&

(info.compareTo("") != 0));
return true;

}
}
} while(ch != -1);

}

catch (IOException exc)

System.out.println("Error accessing help file.");
return false;

}
return false; // topic not found

}

The first thing to notice is that helpOn() handles all possible I/O exceptions

itself and does not include a throws clause. By handling its own exceptions, it
prevents this burden from being passed on to all code that uses it. Thus, other
code can simply call helpOn() without having to wrap that call in a try/catch
block.

The help file is opened using a FileReader that is wrapped in a
BufferedReader. Since the help file contains text, using a character stream
allows the Help system to be more efficiently internationalized.

The helpOn() method works like this. A string containing the name of the topic
1s passed in the what parameter. The help file is then opened. Then, the file is
searched, looking for a match between what and a topic in the file. Remember,
in the file, each topic is preceded by a #, so the search loop scans the file for #s.
When it finds one, it then checks to see if the topic following that # matches the
one passed in what. If it does, the information associated with that topic is
displayed. If a match is found, helpOn() returns true. Otherwise, it returns
false.

5. The Help class also provides a method called getSelection(). It prompts the user
for a topic and returns the topic string entered by the user.

// Get a Help topic.
String getSelection() ({
String topic = ",

BufferedReader br = new BufferedReader (
new InputStreamReader (System.in)) ;

System.out.print ("Enter topic: ");

try {
topic = br.readlLine() ;
}

catch (IOException exc)
System.out.println("Error reading console.");

return topic;

}

This method creates a BufferedReader attached to System.in. It then prompts
for the name of a topic, reads the topic, and returns it to the caller.

6. The entire disk-based Help system is shown here:

/*
Try This 10-2

A help program that uses a disk file
to store help information.

®if
import java.io.?*;

/* The Help class opens a help file,
searches for a topic, and then displays
the information associated with that topic.
Notice that it handles all I/O exceptions
itself, avoiding the need for calling
code to do so. */

class Help {

String helpfile; // name of help file

Help (String fname)
helpfile = fname;

}

// Display help on a topic.
boolean helpOn (String what) {
int ch;
String topic, info;

// Open the help file.
try (BufferedReader helpRdr =

new BufferedReader (new FileReader (helpfile)))
{

do {
// read characters until a # is found

ch = helpRdr.read() ;

// now, see if topics match

if(ch == '#') {
topic = helpRdr.readLine() ;
if (what .compareTo (topic) == 0) { // found topic
do {
info = helpRdr.readLine () ;
if(info != null) System.out.println(info) ;
} while((info != null) &&
(info.compareTo("") != 0));

return true;
} while(ch != -1);
catch (IOException exc)
System.out.println("Error accessing help file.");
return false;

}

return false; // topic not found

}

// Get a Help topic.
String getSelection () {
String toplc = ®%;

Buf feredReader br = new BufferedReader (
new InputStreamReader (System.in)) ;

System.out.print ("Enter topic: ") ;

try
topic = br.readLine () ;

}

catch (IOException exc)
System.out.println("Error reading console.");
}

return topic;

}
}

// Demonstrate the file-based Help system.
class FileHelp {

public static void main(String args[]) {

Help hlpobj = new Help("helpfile.txt");
String topic;

System.out.println("Try the help system. " +
"Enter 'stop' to end.");
do {
topic = hlpobj.getSelection() ;

if(!hlpobj.helpOn (topic))
System.out.println("Topic not found.\n");

} while (topic.compareTo ("stop") != 0);
}
}

Ask the Expert

Q: In addition to the parse methods defined by the primitive type
wrappers, is there another easy way to convert a numeric string
entered at the keyboard into its equivalent binary format?

A: Yes! Another way to convert a numeric string into its internal, binary
format is to use one of the methods defined by the Scanner class,
packaged in java.util. Scanner reads formatted (that is, human-readable)
input and converts it into its binary form. Scanner can be used to read
input from a variety of sources, including the console and files.

Therefore, you can use Scanner to read a numeric string entered at the

keyboard and assign its value to a variable. Although Scanner contains

far too many features to describe in detail, the following illustrates its

basic usage.

To use Scanner to read from the keyboard, you must first create a
Scanner linked to console input. To do this, you will use the following
constructor:

Scanner(InputStream from)

This creates a Scanner that uses the stream specified by from as a source for
input. You can use this constructor to create a Scanner linked to console
input, as shown here:

Scanner conin = new Scanner (System.in);

This works because System.in is an object of type InputStream. After this
line executes, conin can be used to read input from the keyboard.

Once you have created a Scanner, it is a simple matter to use it to read
numeric input. Here is the general procedure:

1. Determine if a specific type of input is available by calling one of
Scanner’s hasNextX methods, where X is the type of data desired.

2. Ifinput is available, read it by calling one of Scanner’s nextX
methods.

As the preceding indicates, Scanner defines two sets of methods that enable
you to read input. The first are the hasNext methods. These include methods
such as hasNextInt() and hasNextDouble(), for example. Each of the
hasNext methods returns true if the desired data type is the next available
item in the data stream, and false otherwise. For example, calling
hasNextInt() returns true only if the next item in the stream is the human-
readable form of an integer. If the desired data is available, you can read it
by calling one of Scanner’s next methods, such as nextInt() or
nextDouble(). These methods convert the human-readable form of the data
into its internal, binary representation and return the result. For example, to
read an integer, call nextInt().

The following sequence shows how to read an integer from the keyboard.

Scanner conin = new Scanner (System.in);int i;if
(conin.hasNextInt()) 1 = conin.nextInt();

Using this code, if you enter the number 123 on the keyboard, then i will

contain the value 123.

Technically, you can call a next method without first calling a hasNext
method. However, doing so is not usually a good idea. If a next method
cannot find the type of data it is looking for, it throws an
InputMismatchException. For this reason, it is best to first confirm that the
desired type of data is available by calling a hasNext method before calling
its corresponding next method.

v Chapter 10 Self Test

g

AU S

11.
12.
13.

. Why does Java define both byte and character streams?

Even though console input and output is text-based, why does Java still use byte
streams for this purpose?

Show how to open a file for reading bytes.
Show how to open a file for reading characters.
Show how to open a file for random-access 1/O.

How can you convert a numeric string such as "123.23" into its binary
equivalent?

Write a program that copies a text file. In the process, have it convert all spaces
into hyphens. Use the byte stream file classes. Use the traditional approach to
closing a file by explicitly calling close().

. Rewrite the program described in question 7 so that it uses the character stream

classes. This time, use the try-with-resources statement to automatically close
the file.

. What type of stream is System.in?
10.

What does the read() method of InputStream return when an attempt is made
to read at the end of the stream?

What type of stream is used to read binary data?

Reader and Writer are at the top of the class hierarchies.

The try-with-resources statement is used for

14. If you are using the traditional method of closing a file, then closing a file within
a finally block is generally a good approach. True or False?

“'

VAR
‘?‘\'."u‘ \
\‘ |" a\

W\
A

“w
.. \ \\\“‘
\ \

Chapter 11

Multithreaded Programming

Key SKkills & Concepts

Understand multithreading fundamentals

Know the Thread class and the Runnable interface
Create a thread

Create multiple threads

Determine when a thread ends

Use thread priorities

Understand thread synchronization

Use synchronized methods

Use synchronized blocks

Communicate between threads

Suspend, resume, and stop threads

built-in support for multithreaded programming. A multithreaded program

contains two or more parts that can run concurrently. Each part of such a
program is called a thread, and each thread defines a separate path of execution.
Thus, multithreading is a specialized form of multitasking.

ﬁ Ithough Java contains many innovative features, one of its most exciting is its

Multithreading Fundamentals

There are two distinct types of multitasking: process-based and thread-based. It is

important to understand the difference between the two. A process is, in essence, a
program that is executing. Thus, process-based multitasking is the feature that
allows your computer to run two or more programs concurrently. For example, it is
process-based multitasking that allows you to run the Java compiler at the same time
you are using a text editor or browsing the Internet. In process-based multitasking, a
program is the smallest unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of
dispatchable code. This means that a single program can perform two or more tasks
at once. For instance, a text editor can be formatting text at the same time that it is
printing, as long as these two actions are being performed by two separate threads.
Although Java programs make use of process-based multitasking environments,
process-based multitasking is not under the control of Java. Multithreaded
multitasking is.

A principal advantage of multithreading is that it enables you to write very
efficient programs because it lets you utilize the idle time that is present in most
programs. As you probably know, most I/O devices, whether they be network ports,
disk drives, or the keyboard, are much slower than the CPU. Thus, a program will
often spend a majority of its execution time waiting to send or receive information to
or from a device. By using multithreading, your program can execute another task
during this idle time. For example, while one part of your program is sending a file
over the Internet, another part can be reading keyboard input, and still another can be
buffering the next block of data to send.

As you probably know, over the past few years, multiprocessor and multicore
systems have become commonplace. Of course, single-processor systems are still in
widespread use. It is important to understand that Java’s multithreading features
work in both types of systems. In a single-core system, concurrently executing
threads share the CPU, with each thread receiving a slice of CPU time. Therefore, in
a single-core system, two or more threads do not actually run at the same time, but
idle CPU time is utilized. However, in multiprocessor/multicore systems, it is
possible for two or more threads to actually execute simultaneously. In many cases,
this can further improve program efficiency and increase the speed of certain
operations.

A thread can be in one of several states. It can be running. It can be ready to run
as soon as it gets CPU time. A running thread can be suspended, which is a
temporary halt to its execution. It can later be resumed. A thread can be blocked
when waiting for a resource. A thread can be ferminated, in which case its execution
ends and cannot be resumed.

Along with thread-based multitasking comes the need for a special type of feature
called synchronization, which allows the execution of threads to be coordinated in

certain well-defined ways. Java has a complete subsystem devoted to
synchronization, and its key features are also described here.

If you have programmed for operating systems such as Windows, then you are
already familiar with multithreaded programming. However, the fact that Java
manages threads through language elements makes multithreading especially
convenient. Many of the details are handled for you.

The Thread Class and Runnable Interface

Java’s multithreading system is built upon the Thread class and its companion
interface, Runnable. Both are packaged in java.lang. Thread encapsulates a thread
of execution. To create a new thread, your program will either extend Thread or
implement the Runnable interface.

The Thread class defines several methods that help manage threads. Here are
some of the more commonly used ones (we will be looking at these more closely as
they are used):

Method 'Meaning

final String getNamef) Obtains a thread's name.

final int getPriority() | Obtains o thread's priority.

final boolean isAlive() | Detaritinas sebther o fheoad i sil running.

final void join() “WGIfs for a thread to terminate. |

void run() Entry point for the thread.

static void sleep(long milliseconds| Suspends a thread for a specified period of milliseconds.
void starf{) | Starts a thread by calling its run() method.

All processes have at least one thread of execution, which is usually called the
main thread, because it is the one that is executed when your program begins. Thus,
the main thread is the thread that all of the preceding example programs in the book
have been using. From the main thread, you can create other threads.

Creating a Thread

You create a thread by instantiating an object of type Thread. The Thread class
encapsulates an object that is runnable. As mentioned, Java defines two ways in

which you can create a runnable object:
You can implement the Runnable interface.

You can extend the Thread class.

Most of the examples in this chapter will use the approach that implements
Runnable. However, Try This 11-1 shows how to implement a thread by extending
Thread. Remember: Both approaches still use the Thread class to instantiate,
access, and control the thread. The only difference is how a thread-enabled class is
created.

The Runnable interface abstracts a unit of executable code. You can construct a
thread on any object that implements the Runnable interface. Runnable defines
only one method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important
to understand that run() can call other methods, use other classes, and declare
variables just like the main thread. The only difference is that run() establishes the
entry point for another, concurrent thread of execution within your program. This
thread will end when run() returns.

After you have created a class that implements Runnable, you will instantiate an
object of type Thread on an object of that class. Thread defines several
constructors. The one that we will use first is shown here:

Thread(Runnable threadOb)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin.

Once created, the new thread will not start running until you call its start()
method, which is declared within Thread. In essence, start() executes a call to run(
). The start() method is shown here:

void start()

Here is an example that creates a new thread and starts it running;:

// Create a thread by implementing Runnable.
2 A ¢ Objects of MyThread can be run in

their own threads because MyThread

class MyThread implements Runnable { ‘7imp|ements Runnable.

String thrdName;

MyThread (String name) {
thrdName = name;
}

// Entry point of thread.

public void run() { = Threads start executing here.

System.out .println(thrdName + " starting.");
try {
for (int count=0; count < 10; count++) {
Thread.sleep (400) ;
System.out.println("In " + thrdName +
", count is " + count);

}
}

catch (InterruptedException exc) {
System.out.println(thrdName + " interrupted.");
System.out.println(thrdName + " terminating.");
}

class UseThreads ({
public static void main(String args|[]) {
System.out.println("Main thread starting.");

// First, construct a MyThread object.
MyThread mt = new MyThread("Child #1"); <«——— Create a runnable object.

// Next, construct a thread from that object.

Thread newThrd = new Thread(mt); Construct a thread on that object.

// Finally, start execution of the thread.
newThrd.start () ; Start running the thread.

for(int i=0; 1<50; i++) {
System.out .print (".");

try {
Thread.sleep(100) ;

}

catch (InterruptedException exc) {
System.out.println("Main thread interrupted.");

}
}

System.out.println("Main thread ending.");

Let’s look closely at this program. First, MyThread implements Runnable. This
means that an object of type MyThread is suitable for use as a thread and can be
passed to the Thread constructor.

Inside run(), a loop is established that counts from 0 to 9. Notice the call to sleep(
). The sleep() method causes the thread from which it is called to suspend execution
for the specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method can
throw an InterruptedException. Thus, calls to it must be wrapped in a try block.
The sleep() method also has a second form, which allows you to specify the period
in terms of milliseconds and nanoseconds if you need that level of precision. In run(
), sleep() pauses the thread for 400 milliseconds each time through the loop. This
lets the thread run slow enough for you to watch it execute.

Inside main(), a new Thread object is created by the following sequence of
statements:

// First, construct a MyThread object.
MyThread mt = new MyThread("Child #1");

// Next, construct a thread from that object.
Thread newThrd = new Thread (mt) ;

// Finally, start execution of the thread.
newThrd.start () ;

As the comments suggest, first an object of MyThread is created. This object is then
used to construct a Thread object. This is possible because MyThread implements
Runnable. Finally, execution of the new thread is started by calling start(). This
causes the child thread’s run() method to begin. After calling start(), execution
returns to main(), and it enters main()’s for loop. Notice that this loop iterates 50
times, pausing 100 milliseconds each time through the loop. Both threads continue
running, sharing the CPU in single-CPU systems, until their loops finish. The output
produced by this program is as follows. Because of differences between computing
environments, the precise output that you see may differ slightly from that shown
here:

Main thread starting.
.Child #1 starting.

...In Child #1, count is 0
.-« «I0 Child $#1, count is 1
e s I Child #1, cvounkt is 2
..+l Child #1, count is 3
....In Child #1, count is 4
e