

About the Author
Best-selling author Herbert Schildt has written extensively about programming for
over three decades and is a leading authority on the Java language. His books have
sold millions of copies worldwide and have been translated into all major foreign
languages. He is the author of numerous books on Java, including Java: The
Complete Reference, Herb Schildt’s Java Programming Cookbook, Introducing
JavaFX 8 Programming, and Swing: A Beginner’s Guide. He has also written
extensively about C, C++, and C#. Although interested in all facets of computing, his
primary focus is computer languages. Schildt holds both graduate and undergraduate
degrees from the University of Illinois. His website is www.HerbSchildt.com.

About the Technical Editor
Dr. Danny Coward has worked on all editions of the Java platform. He led the
definition of Java Servlets into the first version of the Java EE platform and beyond,
web services into the Java ME platform, and the strategy and planning for Java SE 7.
He founded JavaFX technology and, most recently, designed the largest addition to
the Java EE 7 standard, the Java WebSocket API. From coding in Java, to designing
APIs with industry experts, to serving for several years as an executive to the Java
Community Process, he has a uniquely broad perspective into multiple aspects of
Java technology. In addition, he is the author of two books on Java programming:
Java WebSocket Programming and Java EE: The Big Picture. Dr. Coward holds a
bachelor’s, master’s, and doctorate in mathematics from the University of Oxford.

http://www.HerbSchildt.com

Copyright © 2018 by McGraw-Hill Education (Publisher). All rights reserved.
Except as permitted under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of the
publisher.

ISBN: 978-1-25-958932-4
MHID: 1-25-958932-3.

The material in this eBook also appears in the print version of this title: ISBN: 978-
1-25-958931-7, MHID: 1-25-958931-5.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a
trademark symbol after every occurrence of a trademarked name, we use names in an
editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they
have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as
premiums and sales promotions or for use in corporate training programs. To contact
a representative, please visit the Contact Us page at www.mhprofessional.com.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates.
All other trademarks are the property of their respective owners, and McGraw-Hill
Education makes no claim of ownership by the mention of products that contain
these marks.

Screen displays of copyrighted Oracle software programs have been reproduced
herein with the permission of Oracle Corporation and/or its affiliates.

Information has been obtained by Publisher from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources,
Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or
completeness of any information included in this work and is not responsible for any
errors or omissions or the results obtained from the use of such information.

http://www.mhprofessional.com

Oracle Corporation does not make any representations or warranties as to the
accuracy, adequacy, or completeness of any information contained in this Work, and
is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all
rights in and to the work. Use of this work is subject to these terms. Except as
permitted under the Copyright Act of 1976 and the right to store and retrieve one
copy of the work, you may not decompile, disassemble, reverse engineer, reproduce,
modify, create derivative works based upon, transmit, distribute, disseminate, sell,
publish or sublicense the work or any part of it without McGraw-Hill Education’s
prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS
LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE
OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION
THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
McGraw-Hill Education and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall
be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill Education
has no responsibility for the content of any information accessed through the work.
Under no circumstances shall McGraw-Hill Education and/or its licensors be liable
for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to
any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

Contents

INTRODUCTION

1 Java Fundamentals
The Origins of Java
Java’s Lineage: C and C++
How Java Impacted the Internet

Java Simplified Web-Based Programming
Java Applets
Security
Portability

Java’s Magic: The Bytecode
Moving Beyond Applets
The Java Buzzwords
Object-Oriented Programming

Encapsulation
Polymorphism
Inheritance

Obtaining the Java Development Kit
A First Simple Program

Entering the Program
Compiling the Program
The First Sample Program Line by Line

Handling Syntax Errors
A Second Simple Program
Another Data Type
Try This 1-1: Converting Gallons to Liters
Two Control Statements

The if Statement
The for Loop

Create Blocks of Code
Semicolons and Positioning
Indentation Practices
Try This 1-2: Improving the Gallons-to-Liters Converter
The Java Keywords
Identifiers in Java
The Java Class Libraries
Chapter 1 Self Test

2 Introducing Data Types and Operators
Why Data Types Are Important
Java’s Primitive Types

Integers
Floating-Point Types
Characters

The Boolean Type
Try This 2-1: How Far Away Is the Lightning?
Literals

Hexadecimal, Octal, and Binary Literals
Character Escape Sequences
String Literals

A Closer Look at Variables
Initializing a Variable
Dynamic Initialization

The Scope and Lifetime of Variables
Operators
Arithmetic Operators

Increment and Decrement
Relational and Logical Operators
Short-Circuit Logical Operators
The Assignment Operator
Shorthand Assignments
Type Conversion in Assignments
Casting Incompatible Types
Operator Precedence

Try This 2-2: Display a Truth Table for the Logical Operators
Expressions

Type Conversion in Expressions
Spacing and Parentheses

Chapter 2 Self Test

3 Program Control Statements
Input Characters from the Keyboard
The if Statement
Nested ifs
The if-else-if Ladder
The switch Statement
Nested switch Statements
Try This 3-1: Start Building a Java Help System
The for Loop
Some Variations on the for Loop
Missing Pieces

The Infinite Loop
Loops with No Body
Declaring Loop Control Variables Inside the for Loop
The Enhanced for Loop
The while Loop
The do-while Loop
Try This 3-2: Improve the Java Help System
Use break to Exit a Loop
Use break as a Form of goto
Use continue
Try This 3-3: Finish the Java Help System
Nested Loops
Chapter 3 Self Test

4 Introducing Classes, Objects, and Methods
Class Fundamentals

The General Form of a Class
Defining a Class

How Objects Are Created
Reference Variables and Assignment

Methods
Adding a Method to the Vehicle Class

Returning from a Method
Returning a Value
Using Parameters

Adding a Parameterized Method to Vehicle
Try This 4-1: Creating a Help Class
Constructors
Parameterized Constructors
Adding a Constructor to the Vehicle Class
The new Operator Revisited
Garbage Collection
The this Keyword
Chapter 4 Self Test

5 More Data Types and Operators
Arrays

One-Dimensional Arrays
Try This 5-1: Sorting an Array
Multidimensional Arrays

Two-Dimensional Arrays
Irregular Arrays

Arrays of Three or More Dimensions
Initializing Multidimensional Arrays

Alternative Array Declaration Syntax
Assigning Array References
Using the length Member
Try This 5-2: A Queue Class
The For-Each Style for Loop

Iterating Over Multidimensional Arrays
Applying the Enhanced for

Strings
Constructing Strings
Operating on Strings
Arrays of Strings
Strings Are Immutable
Using a String to Control a switch Statement

Using Command-Line Arguments
The Bitwise Operators

The Bitwise AND, OR, XOR, and NOT Operators
The Shift Operators
Bitwise Shorthand Assignments

Try This 5-3: A ShowBits Class
The ? Operator
Chapter 5 Self Test

6 A Closer Look at Methods and Classes
Controlling Access to Class Members

Java’s Access Modifiers
Try This 6-1: Improving the Queue Class
Pass Objects to Methods

How Arguments Are Passed
Returning Objects
Method Overloading
Overloading Constructors
Try This 6-2: Overloading the Queue Constructor
Recursion
Understanding static

Static Blocks
Try This 6-3: The Quicksort
Introducing Nested and Inner Classes
Varargs: Variable-Length Arguments

Varargs Basics
Overloading Varargs Methods
Varargs and Ambiguity

Chapter 6 Self Test

7 Inheritance
Inheritance Basics
Member Access and Inheritance
Constructors and Inheritance
Using super to Call Superclass Constructors
Using super to Access Superclass Members
Try This 7-1: Extending the Vehicle Class

Creating a Multilevel Hierarchy
When Are Constructors Executed?
Superclass References and Subclass Objects
Method Overriding
Overridden Methods Support Polymorphism
Why Overridden Methods?

Applying Method Overriding to TwoDShape
Using Abstract Classes
Using final

final Prevents Overriding
final Prevents Inheritance
Using final with Data Members

The Object Class
Chapter 7 Self Test

8 Packages and Interfaces
Packages

Defining a Package
Finding Packages and CLASSPATH
A Short Package Example

Packages and Member Access
A Package Access Example

Understanding Protected Members
Importing Packages
Java’s Class Library Is Contained in Packages
Interfaces
Implementing Interfaces
Using Interface References
Try This 8-1: Creating a Queue Interface
Variables in Interfaces
Interfaces Can Be Extended
Default Interface Methods

Default Method Fundamentals
A More Practical Example of a Default Method
Multiple Inheritance Issues

Use static Methods in an Interface
Private Interface Methods

Final Thoughts on Packages and Interfaces
Chapter 8 Self Test

9 Exception Handling
The Exception Hierarchy
Exception Handling Fundamentals

Using try and catch
A Simple Exception Example

The Consequences of an Uncaught Exception
Exceptions Enable You to Handle Errors Gracefully

Using Multiple catch Statements
Catching Subclass Exceptions
Try Blocks Can Be Nested
Throwing an Exception

Rethrowing an Exception
A Closer Look at Throwable
Using finally
Using throws
Three Additional Exception Features
Java’s Built-in Exceptions
Creating Exception Subclasses
Try This 9-1: Adding Exceptions to the Queue Class
Chapter 9 Self Test

10 Using I/O
Java’s I/O Is Built upon Streams
Byte Streams and Character Streams
The Byte Stream Classes
The Character Stream Classes
The Predefined Streams
Using the Byte Streams

Reading Console Input
Writing Console Output

Reading and Writing Files Using Byte Streams
Inputting from a File
Writing to a File

Automatically Closing a File

Reading and Writing Binary Data
Try This 10-1: A File Comparison Utility
Random-Access Files
Using Java’s Character-Based Streams

Console Input Using Character Streams
Console Output Using Character Streams

File I/O Using Character Streams
Using a FileWriter
Using a FileReader

Using Java’s Type Wrappers to Convert Numeric Strings
Try This 10-2: Creating a Disk-Based Help System
Chapter 10 Self Test

11 Multithreaded Programming
Multithreading Fundamentals
The Thread Class and Runnable Interface
Creating a Thread

One Improvement and Two Simple Variations
Try This 11-1: Extending Thread
Creating Multiple Threads
Determining When a Thread Ends
Thread Priorities
Synchronization
Using Synchronized Methods
The synchronized Statement
Thread Communication Using notify(), wait(), and notifyAll()

An Example That Uses wait() and notify()
Suspending, Resuming, and Stopping Threads
Try This 11-2: Using the Main Thread
Chapter 11 Self Test

12 Enumerations, Autoboxing, Static Import, and Annotations
Enumerations

Enumeration Fundamentals
Java Enumerations Are Class Types
The values() and valueOf() Methods
Constructors, Methods, Instance Variables, and Enumerations

Two Important Restrictions
Enumerations Inherit Enum
Try This 12-1: A Computer-Controlled Traffic Light
Autoboxing
Type Wrappers
Autoboxing Fundamentals
Autoboxing and Methods
Autoboxing/Unboxing Occurs in Expressions

A Word of Warning
Static Import
Annotations (Metadata)
Chapter 12 Self Test

13 Generics
Generics Fundamentals
A Simple Generics Example

Generics Work Only with Reference Types
Generic Types Differ Based on Their Type Arguments
A Generic Class with Two Type Parameters
The General Form of a Generic Class

Bounded Types
Using Wildcard Arguments
Bounded Wildcards
Generic Methods
Generic Constructors
Generic Interfaces
Try This 13-1: Create a Generic Queue
Raw Types and Legacy Code
Type Inference with the Diamond Operator
Erasure
Ambiguity Errors
Some Generic Restrictions

Type Parameters Can’t Be Instantiated
Restrictions on Static Members
Generic Array Restrictions
Generic Exception Restriction

Continuing Your Study of Generics

Chapter 13 Self Test

14 Lambda Expressions and Method References
Introducing Lambda Expressions

Lambda Expression Fundamentals
Functional Interfaces
Lambda Expressions in Action

Block Lambda Expressions
Generic Functional Interfaces
Try This 14-1: Pass a Lambda Expression as an Argument
Lambda Expressions and Variable Capture
Throw an Exception from Within a Lambda Expression
Method References

Method References to static Methods
Method References to Instance Methods

Constructor References
Predefined Functional Interfaces
Chapter 14 Self Test

15 Modules
Module Basics

A Simple Module Example
Compile and Run the First Module Example
A Closer Look at requires and exports

java.base and the Platform Modules
Legacy Code and the Unnamed Module
Exporting to a Specific Module
Using requires transitive
Try This 15-1: Experiment with requires transitive
Use Services

Service and Service Provider Basics
The Service-Based Keywords
A Module-Based Service Example

Additional Module Features
Open Modules
The opens Statement
requires static

Continuing Your Study of Modules
Chapter 15 Self Test

16 Introducing Swing
The Origins and Design Philosophy of Swing
Components and Containers

Components
Containers
The Top-Level Container Panes

Layout Managers
A First Simple Swing Program

The First Swing Example Line by Line
Swing Event Handling

Events
Event Sources
Event Listeners
Event Classes and Listener Interfaces

Use JButton
Work with JTextField
Create a JCheckBox
Work with JList
Try This 16-1: A Swing-Based File Comparison Utility
Use Anonymous Inner Classes or Lambda Expressions to Handle Events
Chapter 16 Self Test

17 Introducing JavaFX
JavaFX Basic Concepts

The JavaFX Packages
The Stage and Scene Classes
Nodes and Scene Graphs
Layouts
The Application Class and the Life-cycle Methods
Launching a JavaFX Application

A JavaFX Application Skeleton
Compiling and Running a JavaFX Program
The Application Thread
A Simple JavaFX Control: Label

Using Buttons and Events
Event Basics
Introducing the Button Control
Demonstrating Event Handling and the Button

Three More JavaFX Controls
CheckBox

Try This 17-1: Use the CheckBox Indeterminate State
ListView
TextField

Introducing Effects and Transforms
Effects
Transforms
Demonstrating Effects and Transforms

What Next?
Chapter 17 Self Test

A Answers to Self Tests
Chapter 1: Java Fundamentals
Chapter 2: Introducing Data Types and Operators
Chapter 3: Program Control Statements
Chapter 4: Introducing Classes, Objects, and Methods
Chapter 5: More Data Types and Operators
Chapter 6: A Closer Look at Methods and Classes
Chapter 7: Inheritance
Chapter 8: Packages and Interfaces
Chapter 9: Exception Handling
Chapter 10: Using I/O
Chapter 11: Multithreaded Programming
Chapter 12: Enumerations, Autoboxing, Static Import, and Annotations
Chapter 13: Generics
Chapter 14: Lambda Expressions and Method References
Chapter 15: Modules
Chapter 16: Introducing Swing
Chapter 17: Introducing JavaFX

B Using Java’s Documentation Comments
The javadoc Tags

@author
{@code}
@deprecated
{@docRoot}
@exception
{@index}
{@inheritDoc}
{@link}
{@linkplain}
{@literal}
@param
@return
@see
@serial
@serialData
@serialField
@since
@throws
{@value}
@version

The General Form of a Documentation Comment
What javadoc Outputs
An Example That Uses Documentation Comments

C An Overview of Java Web Start
What Is Java Web Start?
Four Key Java Web Start Essentials

Java Web Start Apps Require a JAR File
Java Web Start Apps Are Signed
Java Web Start Relies on JNLP
Linking to the Java Web Start JNLP File

Experimenting with Java Web Start Using the Local File System
Create a JAR File for ButtonDemo
Create a Keystore and Sign ButtonDemo.jar
Create a JNLP file for ButtonDemo
Create a Short HTML File Called StartBD.html
Add ButtonDemo.jnlp to the Exception Site List in the Java Control Panel

Execute ButtonDemo via Your Browser
Running a Java Web Start Application Using javaws
Using Java Web Start with an Applet

D Introducing JShell
JShell Basics
List, Edit, and Rerun Code
Add a Method
Create a Class
Use an Interface
Evaluate Expressions and Use Built-in Variables
Importing Packages
Exceptions
Some More JShell Commands
Exploring JShell Further

E More Java Keywords
The transient and volatile Modifiers
instanceof
strictfp
assert
Native Methods
Another Form of this

Index

T

Introduction

he purpose of this book is to teach you the fundamentals of Java programming.
It uses a step-by-step approach complete with numerous examples, self tests,
and projects. It assumes no previous programming experience. The book starts

with the basics, such as how to compile and run a Java program. It then discusses the
keywords, features, and constructs that form the core of the Java language. You’ll
also find coverage of some of Java’s most advanced features, including
multithreaded programming, generics, lambda expressions, and modules. An
introduction to the fundamentals of Swing and JavaFX concludes the book. By the
time you finish, you will have a firm grasp of the essentials of Java programming.

It is important to state at the outset that this book is just a starting point. Java is
more than just the elements that define the language. Java also includes extensive
libraries and tools that aid in the development of programs. To be a top-notch Java
programmer implies mastery of these areas, too. After completing this book, you will
have the knowledge to pursue any and all other aspects of Java.

The Evolution of Java
Only a few languages have fundamentally reshaped the very essence of
programming. In this elite group, one stands out because its impact was both rapid
and widespread. This language is, of course, Java. It is not an overstatement to say
that the original release of Java 1.0 in 1995 by Sun Microsystems, Inc., caused a
revolution in programming. This revolution radically transformed the Web into a
highly interactive environment. In the process, Java set a new standard in computer
language design.

Over the years, Java has continued to grow, evolve, and otherwise redefine itself.
Unlike many other languages, which are slow to incorporate new features, Java has
often been at the forefront of computer language development. One reason for this is
the culture of innovation and change that came to surround Java. As a result, Java

has gone through several upgrades—some relatively small, others more significant.
The first major update to Java was version 1.1. The features added by Java 1.1

were more substantial than the increase in the minor revision number would have
you think. For example, Java 1.1 added many new library elements, redefined the
way events are handled, and reconfigured many features of the original 1.0 library.

The next major release of Java was Java 2, where the 2 indicates “second
generation.” The creation of Java 2 was a watershed event, marking the beginning of
Java’s “modern age.” The first release of Java 2 carried the version number 1.2. It
may seem odd that the first release of Java 2 used the 1.2 version number. The
reason is that it originally referred to the internal version number of the Java libraries
but then was generalized to refer to the entire release itself. With Java 2, Sun
repackaged the Java product as J2SE (Java 2 Platform Standard Edition), and the
version numbers began to be applied to that product.

The next upgrade of Java was J2SE 1.3. This version of Java was the first major
upgrade to the original Java 2 release. For the most part, it added to existing
functionality and “tightened up” the development environment. The release of J2SE
1.4 further enhanced Java. This release contained several important new features,
including chained exceptions, channel-based I/O, and the assert keyword.

The release of J2SE 5 created nothing short of a second Java revolution. Unlike
most of the previous Java upgrades, which offered important but incremental
improvements, J2SE 5 fundamentally expanded the scope, power, and range of the
language. To give you an idea of the magnitude of the changes caused by J2SE 5,
here is a list of its major new features:

 Generics
 Autoboxing/unboxing
 Enumerations
 The enhanced “for-each” style for loop
 Variable-length arguments (varargs)
 Static import
 Annotations

This is not a list of minor tweaks or incremental upgrades. Each item in the list
represents a significant addition to the Java language. Some, such as generics, the
enhanced for loop, and varargs, introduced new syntax elements. Others, such as
autoboxing and auto-unboxing, altered the semantics of the language. Annotations
added an entirely new dimension to programming.

The importance of these new features is reflected in the use of the version number
“5.” The next version number for Java would normally have been 1.5. However, the
new features were so significant that a shift from 1.4 to 1.5 just didn’t seem to
express the magnitude of the change. Instead, Sun elected to increase the version
number to 5 as a way of emphasizing that a major event was taking place. Thus, it
was named J2SE 5, and the Java Development Kit (JDK) was called JDK 5. In order
to maintain consistency, however, Sun decided to use 1.5 as its internal version
number, which is also referred to as the developer version number. The “5” in J2SE
5 is called the product version number.

The next release of Java was called Java SE 6, and Sun once again decided to
change the name of the Java platform. First, notice that the “2” has been dropped.
Thus, the platform now had the name Java SE, and the official product name was
Java Platform, Standard Edition 6, with the development kit being called JDK 6. As
with J2SE 5, the 6 in Java SE 6 is the product version number. The internal,
developer version number is 1.6.

Java SE 6 built on the base of J2SE 5, adding incremental improvements. Java SE
6 added no major features to the Java language proper, but it did enhance the API
libraries, added several new packages, and offered improvements to the run time. It
also went through several updates during its long (in Java terms) life cycle, with
several upgrades added along the way. In general, Java SE 6 served to further
solidify the advances made by J2SE 5.

The next release of Java was called Java SE 7, with the development kit being
called JDK 7. It has an internal version number of 1.7. Java SE 7 was the first major
release of Java after Sun Microsystems was acquired by Oracle. Java SE 7 added
several new features, including significant additions to the language and the API
libraries. Some of the most important features added by Java SE 7 were those
developed as part of Project Coin. The purpose of Project Coin was to identify a
number of small changes to the Java language that would be incorporated into JDK
7, including

 A String can control a switch statement.
 Binary integer literals.
 Underscores in numeric literals.
 An expanded try statement, called try-with-resources, that supports automatic

resource management.
 Type inference (via the diamond operator) when constructing a generic instance.
 Enhanced exception handling in which two or more exceptions can be caught by

a single catch (multicatch) and better type checking for exceptions that are
rethrown.

As you can see, even though the Project Coin features were considered to be small
changes to the language, their benefits were much larger than the qualifier “small”
would suggest. In particular, the try-with-resources statement profoundly affects the
way that a substantial amount of code is written.

The next release of Java was Java SE 8, with the development kit being called
JDK 8. It has an internal version number of 1.8. JDK 8 represented a very significant
upgrade to the Java language because of the inclusion of a far-reaching new
language feature: the lambda expression. The impact of lambda expressions was, and
continues to be, quite profound, changing both the way that programming solutions
are conceptualized and how Java code is written. In the process, lambda expressions
can simplify and reduce the amount of source code needed to create certain
constructs. The addition of lambda expressions also caused a new operator (the –>)
and a new syntax element to be added to the language.

In addition to lambda expressions, JDK 8 added many other important new
features. For example, beginning with JDK 8, it is now possible to define a default
implementation for a method specified by an interface. JDK 8 also bundled support
for JavaFX, Java’s new GUI framework. JavaFX is expected to soon play an
important part in nearly all Java applications, ultimately replacing Swing for most
GUI-based projects. In the final analysis, Java SE 8 was a major release that
profoundly expanded the capabilities of the language and changed the way that Java
code is written.

Java SE 9
The newest release of Java is Java SE 9. The developer’s kit is called JDK 9. With
the release of JDK 9, the internal version number is also 9. JDK 9 represents a major
Java release, incorporating significant enhancements to both the Java language and
its libraries. The primary new feature is modules, which enable you to specify the
relationships and dependencies of the code that comprises an application. Modules
also add another dimension to Java’s access control features. The inclusion of
modules caused a new syntax element, several new keywords, and various tool
enhancements to be added to Java. Modules also have a profound effect on the API
library because, beginning with JDK 9, the library packages are now organized into
modules.

In addition to modules, JDK 9 includes several other new features. One of
particular interest is JShell, which is a tool that supports interactive program

experimentation and learning. (An introduction to JShell is found in Appendix D.)
Another interesting upgrade is support for private interface methods. Their inclusion
further enhances JDK 8’s support for default methods in interfaces. JDK 9 adds a
search feature to the javadoc tool and a new tag called @index to support it. As with
previous releases, JDK 9 contains a number of updates and enhancements to Java’s
API libraries.

As a general rule, in any Java release, it is the new features that receive the most
attention. However, there is one high-profile aspect of Java that is deprecated by
JDK 9: applets. Beginning with JDK 9, applets are no longer recommended for new
projects. As will be explained in greater detail in Chapter 1, because of waning
browser support for applets (and other factors), JDK 9 deprecates the entire applet
API. At this time, the use of Java Web Start is recommended for deploying
applications over the Internet. (An introduction to Java Web Start is found in
Appendix C.) Because applets are being phased out and not recommended for new
code, they are no longer discussed in this book. However, readers interested in
applets will find coverage of them in previous editions of this book.

In the final analysis, JDK 9 continues Java’s legacy of innovation, ensuring that
Java remains the vibrant, nimble language that the programming world has come to
expect. The material in this book has been updated to reflect Java SE 9 (JDK 9), with
many new features, updates, and additions indicated throughout.

How This Book Is Organized
This book presents an evenly paced tutorial in which each section builds upon the
previous one. It contains 17 chapters, each discussing an aspect of Java. This book is
unique because it includes several special elements that reinforce what you are
learning.

Key Skills & Concepts
Each chapter begins with a set of critical skills that you will be learning.

Self Test
Each chapter concludes with a Self Test that lets you test your knowledge. The
answers are in Appendix A.

Ask the Expert
Sprinkled throughout the book are special “Ask the Expert” boxes. These contain

additional information or interesting commentary about a topic. They use a
Question/Answer format.

Try This Elements
Each chapter contains one or more Try This elements, which are projects that show
you how to apply what you are learning. In many cases, these are real-world
examples that you can use as starting points for your own programs.

No Previous Programming Experience
Required
This book assumes no previous programming experience. Thus, if you have never
programmed before, you can use this book. If you do have some previous
programming experience, you will be able to advance a bit more quickly. Keep in
mind, however, that Java differs in several key ways from other popular computer
languages. It is important not to jump to conclusions. Thus, even for the experienced
programmer, a careful reading is advised.

Required Software
To compile and run all of the programs in this book, you will need the latest Java
Development Kit (JDK) from Oracle, which, at the time of this writing, is JDK 9.
This is the JDK for Java SE 9. Instructions for obtaining the Java JDK are given in
Chapter 1.

If you are using an earlier version of Java, you will still be able to use this book,
but you won’t be able to compile and run the programs that use Java’s newer
features.

Don’t Forget: Code on the Web
Remember, the source code for all of the examples and projects in this book is
available free of charge on the Web at www.oraclepressbooks.com.

Special Thanks
Special thanks to Danny Coward, the technical editor for this edition of the book.
Danny has worked on several of my books, and his advice, insights, and suggestions

http://www.oraclepressbooks.com

have always been of great value and much appreciated.

For Further Study
Java: A Beginner’s Guide is your gateway to the Herb Schildt series of Java
programming books. Here are some others that you will find of interest:

Java: The Complete Reference
Herb Schildt’s Java Programming Cookbook
The Art of Java
Swing: A Beginner’s Guide
Introducing JavaFX 8 Programming

I

Chapter 1

Java Fundamentals

Key Skills & Concepts
 Know the history and philosophy of Java

 Understand Java’s contribution to the Internet

 Understand the importance of bytecode

 Know the Java buzzwords

 Understand the foundational principles of object-oriented programming

 Create, compile, and run a simple Java program

 Use variables

 Use the if and for control statements

 Create blocks of code

 Understand how statements are positioned, indented, and terminated

 Know the Java keywords

 Understand the rules for Java identifiers

n computing, few technologies have had the impact of Java. Its creation in the
early days of the Web helped shape the modern form of the Internet, including
both the client and server sides. Its innovative features advanced the art and

science of programming, setting a new standard in computer language design. The
forward-thinking culture that grew up around Java ensured it would remain vibrant
and alive, adapting to the often rapid and varied changes in the computing landscape.
Simply put: not only is Java one of the world’s most important computer languages,
it is a force that revolutionized programming and, in the process, changed the world.

Although Java is a language often associated with Internet programming, it is by
no means limited in that regard. Java is a powerful, full-featured, general-purpose
programming language. Thus, if you are new to programming, Java is an excellent
language to learn. Moreover, to be a professional programmer today implies the
ability to program in Java—it is that important. In the course of this book, you will
learn the basic skills that will help you master it.

The purpose of this chapter is to introduce you to Java, beginning with its history,
its design philosophy, and several of its most important features. By far, the hardest
thing about learning a programming language is the fact that no element exists in
isolation. Instead, the components of the language work in conjunction with each
other. This interrelatedness is especially pronounced in Java. In fact, it is difficult to
discuss one aspect of Java without involving others. To help overcome this problem,
this chapter provides a brief overview of several Java features, including the general
form of a Java program, some basic control structures, and simple operators. It does
not go into too many details, but, rather, concentrates on general concepts common
to any Java program.

The Origins of Java
Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank,
and Mike Sheridan at Sun Microsystems in 1991. This language was initially called
“Oak” but was renamed “Java” in 1995. Somewhat surprisingly, the original impetus
for Java was not the Internet! Instead, the primary motivation was the need for a
platform-independent language that could be used to create software to be embedded
in various consumer electronic devices, such as toasters, microwave ovens, and
remote controls. As you can probably guess, many different types of CPUs are used
as controllers. The trouble was that (at that time) most computer languages were
designed to be compiled into machine code that was targeted for a specific type of
CPU. For example, consider the C++ language.

Although it was possible to compile a C++ program for just about any type of
CPU, to do so required a full C++ compiler targeted for that CPU. The problem,
however, is that compilers are expensive and time consuming to create. In an attempt
to find a better solution, Gosling and the others worked on a portable, cross-platform
language that could produce code that would run on a variety of CPUs under
differing environments. This effort ultimately led to the creation of Java.

About the time that the details of Java were being worked out, a second, and
ultimately more important, factor emerged that would play a crucial role in the future
of Java. This second force was, of course, the World Wide Web. Had the Web not
taken shape at about the same time that Java was being implemented, Java might

have remained a useful but obscure language for programming consumer electronics.
However, with the emergence of the Web, Java was propelled to the forefront of
computer language design, because the Web, too, demanded portable programs.

Most programmers learn early in their careers that portable programs are as
elusive as they are desirable. While the quest for a way to create efficient, portable
(platform-independent) programs is nearly as old as the discipline of programming
itself, it had taken a back seat to other, more pressing problems. However, with the
advent of the Internet and the Web, the old problem of portability returned with a
vengeance. After all, the Internet consists of a diverse, distributed universe populated
with many types of computers, operating systems, and CPUs.

What was once an irritating but low-priority problem had become a high-profile
necessity. By 1993 it became obvious to members of the Java design team that the
problems of portability frequently encountered when creating code for embedded
controllers are also found when attempting to create code for the Internet. This
realization caused the focus of Java to switch from consumer electronics to Internet
programming. So, while it was the desire for an architecture-neutral programming
language that provided the initial spark, it was the Internet that ultimately led to
Java’s large-scale success.

Java’s Lineage: C and C++
The history of computer languages is not one of isolated events. Rather, it is a
continuum in which each new language is influenced in one way or another by what
has come before. In this regard, Java is no exception. Before moving on, it is useful
to understand where Java fits into the family tree of computer languages.

The two languages that form Java’s closest ancestors are C and C++. As you may
know, C and C++ are among the most important computer languages ever invented,
and are still in widespread use today. From C, Java inherits its syntax. Java’s object
model is adapted from C++. Java’s relationship to C and C++ is important for a
number of reasons. First, at the time of Java’s creation, many programmers were
familiar with the C/C++ syntax. Because Java uses a similar syntax, it was relatively
easy for a C/C++ programmer to learn Java. This made it possible for Java to be
readily utilized by the pool of existing programmers, thus facilitating Java’s
acceptance by the programming community.

Second, Java’s designers did not “reinvent the wheel.” Instead, they further
refined an already highly successful programming paradigm. The modern age of
programming began with C. It moved to C++, and then to Java. By inheriting and
building upon that rich heritage, Java provides a powerful, logically consistent
programming environment that takes the best of the past and adds new features

related to the online environment and advances in the art of programming. Perhaps
most important, because of their similarities, C, C++, and Java define a common,
conceptual framework for the professional programmer. Programmers do not face
major rifts when switching from one language to another.

Java has another attribute in common with C and C++: it was designed, tested, and
refined by real, working programmers. It is a language grounded in the needs and
experiences of the people who devised it. There is no better way to produce a top-
flight professional programming language.

One last point: although C++ and Java are related, especially in their support for
object-oriented programming, Java is not simply the “Internet version of C++.” Java
has significant practical and philosophical differences from C++. Furthermore, Java
is not an enhanced version of C++. For example, it is neither upwardly nor
downwardly compatible with C++. Moreover, Java was not designed to replace C++.
Java was designed to solve a certain set of problems. C++ was designed to solve a
different set of problems. They will coexist for many years to come.

How Java Impacted the Internet
The Internet helped catapult Java to the forefront of programming, and Java, in turn,
had a profound effect on the Internet. First, the creation of Java simplified Internet
programming in general, acting as a catalyst that drew legions of programmers to the
Web. Second, Java innovated a new type of networked program called the applet
that changed the way the online world thought about content. Finally, and perhaps
most importantly, Java addressed some of the thorniest issues associated with the
Internet: portability and security.

Ask the Expert
Q: What is C# and how does it relate to Java?
A: A few years after the creation of Java, Microsoft developed the C#

language. This is important because C# is closely related to Java. In fact,
many of C#’s features directly parallel Java. Both Java and C# share the
same general C++-style syntax, support distributed programming, and
utilize a similar object model. There are, of course, differences between
Java and C#, but the overall “look and feel” of these languages is very
similar. This means that if you already know C#, then learning Java will
be especially easy. Conversely, if C# is in your future, then your

knowledge of Java will come in handy.
Given the similarity between Java and C#, one might naturally ask, “Will

C# replace Java?” The answer is no. Java and C# are optimized for two
different types of computing environments. Just as C++ and Java will
coexist for a long time to come, so will C# and Java.

Java Simplified Web-Based Programming
Java simplified Web-based programming in a number of ways. Arguably the most
important is found in its ability to create portable, cross-platform programs. Of
nearly equal importance is Java’s support for networking. Its library of ready-to-use
functionality enabled programmers to easily write programs that accessed or made
use of the Internet. It also provided mechanisms that enabled programs to be easily
delivered over the Internet. Although the details are beyond the scope of this book, it
is sufficient to know that Java’s support for networking was a key factor in its rapid
rise.

Java Applets
At the time of Java’s creation, one of its most exciting features was the applet. An
applet is a special kind of Java program that is designed to be transmitted over the
Internet and automatically executed inside a Java-compatible web browser. If the
user clicks a link that contains an applet, the applet will download and run in the
browser automatically. Applets were intended to be small programs, typically used
to display data provided by the server, handle user input, or provide simple
functions, such as a loan calculator. The key feature of applets is that they execute
locally, rather than on the server. In essence, the applet allowed some functionality to
be moved from the server to the client.

The creation of the applet was important because, at the time, it expanded the
universe of objects that can move about freely in cyberspace. In general, there are
two very broad categories of objects that are transmitted between the server and the
client: passive information and dynamic, active programs. For example, when you
read your e-mail, you are viewing passive data. Even when you download a program,
the program’s code is still only passive data until you execute it. By contrast, the
applet is a dynamic, self-executing program. Such a program is an active agent on
the client computer, yet it is delivered by the server.

In the early days of Java, applets were a crucial part of Java programming. They
illustrated the power and benefits of Java, added an exciting dimension to web pages,

and enabled programmers to explore the full extent of what was possible with Java.
Although there are still applets in use today, over time they became less important.
As will be explained, beginning with JDK 9, applets are being phased out, with other
mechanisms supplying an alternative way of delivering dynamic, active programs
via the Web.

Security
As desirable as dynamic, networked programs are, they also present serious
problems in the areas of security and portability. Obviously, a program that
downloads and executes automatically on the client computer must be prevented
from doing harm. It must also be able to run in a variety of different environments
and under different operating systems. As you will see, Java addressed these
problems in an effective and elegant way. Let’s look a bit more closely at each,
beginning with security.

As you are likely aware, every time that you download a program, you are taking
a risk because the code you are downloading might contain a virus, Trojan horse, or
other harmful code. At the core of the problem is the fact that malicious code can
cause its damage because it has gained unauthorized access to system resources. For
example, a virus program might gather private information, such as credit card
numbers, bank account balances, and passwords, by searching the contents of your
computer’s local file system. In order for Java to enable programs to be safely
downloaded and executed on the client computer, it was necessary to prevent them
from launching such an attack.

Java achieved this protection by enabling you to confine an application to the Java
execution environment and prevent it from accessing other parts of the computer.
(You will see how this is accomplished shortly.) The ability to download an
application with a high level of confidence that no harm will be done contributed
significantly to Java’s early success.

Portability
Portability is a major aspect of the Internet because there are many different types of
computers and operating systems connected to it. If a Java program were to be run
on virtually any computer connected to the Internet, there needed to be some way to
enable that program to execute on different types of systems. In other words, a
mechanism that allows the same application to be downloaded and executed by a
wide variety of CPUs, operating systems, and browsers is required. It is not practical
to have different versions of the same application for different computers. The same
code must work in all computers. Therefore, some means of generating portable

executable code was needed. As you will soon see, the same mechanism that helps
ensure security also helps create portability.

Java’s Magic: The Bytecode
The key that allows Java to address both the security and the portability problems
just described is that the output of a Java compiler is not executable code. Rather, it
is bytecode. Bytecode is a highly optimized set of instructions designed to be
executed by the Java run-time system, which is called the Java Virtual Machine
(JVM). In essence, the original JVM was designed as an interpreter for bytecode.
This may come as a bit of a surprise because many modern languages are designed
to be compiled into CPU-specific, executable code due to performance concerns.
However, the fact that a Java program is executed by the JVM helps solve the major
problems associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program
in a wide variety of environments because only the JVM needs to be implemented
for each platform. Once the run-time package exists for a given system, any Java
program can run on it. Remember, although the details of the JVM will differ from
platform to platform, all JVMs understand the same Java bytecode. If a Java program
were compiled to native code, then different versions of the same program would
have to exist for each type of CPU connected to the Internet. This is, of course, not a
feasible solution. Thus, the execution of bytecode by the JVM is the easiest way to
create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure.
Because the JVM is in control, it manages program execution. Thus, it is possible for
the JVM to create a restricted execution environment, called the sandbox, that
contains the program, preventing unrestricted access to the machine. Safety is also
enhanced by certain restrictions that exist in the Java language.

When a program is interpreted, it generally runs slower than the same program
would run if compiled to executable code. However, with Java, the differential
between the two is not so great. Because bytecode has been highly optimized, the use
of bytecode enables the JVM to execute programs much faster than you might
expect.

Although Java was designed as an interpreted language, there is nothing about
Java that prevents on-the-fly compilation of bytecode into native code in order to
boost performance. For this reason, the HotSpot technology was introduced not long
after Java’s initial release. HotSpot provides a just-in-time (JIT) compiler for
bytecode. When a JIT compiler is part of the JVM, selected portions of bytecode are
compiled into executable code in real time on a piece-by-piece, demand basis. That

is, a JIT compiler compiles code as it is needed, during execution. Furthermore, not
all sequences of bytecode are compiled—only those that will benefit from
compilation. The remaining code is simply interpreted. However, the just-in-time
approach still yields a significant performance boost. Even when dynamic
compilation is applied to bytecode, the portability and safety features still apply
because the JVM is still in charge of the execution environment.

One other point: Beginning with JDK 9, selected Java environments will also
include an ahead-of-time compiler that can be used to compile bytecode into native
code prior to execution by the JVM, rather than on-the-fly. Ahead-of-time
compilation is a specialized feature and it does not replace Java’s traditional
approach just described. Furthermore, ahead-of-time compilation has several
restrictions. Here are three examples: At the time of this writing, ahead-of-time
compilation is only for experimental purposes, is available only on 64-bit Linux
versions of Java, and pre-compiled code must be executed on the same (or similarly
configured) system that compiled the code. Thus, ahead-of-time compilation reduces
portability. Because of the highly specialized nature of ahead-of-time compilation, it
is not discussed further in this book.

Ask the Expert
Q: I have heard about a special type of Java program called a servlet.

What is it?
A: A Java servlet is a small program that executes on a server. Servlets

dynamically extend the functionality of a web server. It is helpful to
understand that as useful as client-side applications can be, they are just
one half of the client/server equation. Not long after the initial release of
Java, it became obvious that Java would also be useful on the server side.
The result was the servlet. Thus, with the advent of the servlet, Java
spanned both sides of the client/server connection. Although the topic of
servlets is beyond the scope of this beginner’s guide, they are something
that you will want to study as you advance in Java programming.
(Coverage of servlets can be found in my book Java: The Complete
Reference, Tenth Edition published by Oracle Press/McGraw-Hill
Education, 2018.)

Moving Beyond Applets
As explained previously, in the early years of Java, applets were a crucial part of
Java programming. They not only added excitement to a web page, they were a
highly visible part of Java, which added to its charisma. However, applets rely on a
Java browser plug-in. Thus, for an applet to work, the browser must support it.
Recently, support for the Java browser plug-in has been waning. Simply put, without
browser support, applets are not viable. Because of this, beginning with JDK 9,
Java’s support for applets has been deprecated. In the language of Java, deprecated
means that a feature is still available but flagged as obsolete. A deprecated feature is
subject to removal in a future release. Thus, deprecated features should not be used
for new code.

Various alternatives to applets are in place, with arguably the most important
being Java Web Start. Java Web Start enables an application to be dynamically
downloaded from a web page. The difference is that the application runs on its own,
not inside the browser. Thus, it does not rely on the Java plug-in. Java Web Start is a
deployment mechanism that works with many types of Java programs. Although
deployment strategies are beyond the scope of this book, because of its importance, a
brief introduction to Java Web Start is presented in Appendix C.

The Java Buzzwords
No overview of Java is complete without a look at the Java buzzwords. Although the
fundamental forces that necessitated the invention of Java are portability and
security, other factors played an important role in molding the final form of the
language. The key considerations were summed up by the Java design team in the
following list of buzzwords.

Object-Oriented Programming
At the center of Java is object-oriented programming (OOP). The object-oriented
methodology is inseparable from Java, and all Java programs are, to at least some
extent, object-oriented. Because of OOP’s importance to Java, it is useful to
understand in a general way OOP’s basic principles before you write even a simple
Java program. Later in this book, you will see how to put these concepts into
practice.

OOP is a powerful way to approach the job of programming. Programming
methodologies have changed dramatically since the invention of the computer,
primarily to accommodate the increasing complexity of programs. For example,
when computers were first invented, programming was done by toggling in the
binary machine instructions using the computer’s front panel. As long as programs
were just a few hundred instructions long, this approach worked. As programs grew,
assembly language was invented so that a programmer could deal with larger,
increasingly complex programs, using symbolic representations of the machine
instructions. As programs continued to grow, high-level languages were introduced
that gave the programmer more tools with which to handle complexity. The first

widespread language was, of course, FORTRAN. Although FORTRAN was a very
impressive first step, it is hardly a language that encourages clear, easy-to-
understand programs.

The 1960s gave birth to structured programming. This is the method encouraged
by languages such as C and Pascal. The use of structured languages made it possible
to write moderately complex programs fairly easily. Structured languages are
characterized by their support for stand-alone subroutines, local variables, rich
control constructs, and their lack of reliance upon the GOTO. Although structured
languages are a powerful tool, even they reach their limit when a project becomes
too large.

Consider this: At each milestone in the development of programming, techniques
and tools were created to allow the programmer to deal with increasingly greater
complexity. Each step of the way, the new approach took the best elements of the
previous methods and moved forward. Prior to the invention of OOP, many projects
were nearing (or exceeding) the point where the structured approach no longer
works. Object-oriented methods were created to help programmers break through
these barriers.

Object-oriented programming took the best ideas of structured programming and
combined them with several new concepts. The result was a different way of
organizing a program. In the most general sense, a program can be organized in one
of two ways: around its code (what is happening) or around its data (what is being
affected). Using only structured programming techniques, programs are typically
organized around code. This approach can be thought of as “code acting on data.”

Object-oriented programs work the other way around. They are organized around
data, with the key principle being “data controlling access to code.” In an object-
oriented language, you define the data and the routines that are permitted to act on
that data. Thus, a data type defines precisely what sort of operations can be applied
to that data.

To support the principles of object-oriented programming, all OOP languages,
including Java, have three traits in common: encapsulation, polymorphism, and
inheritance. Let’s examine each.

Encapsulation
Encapsulation is a programming mechanism that binds together code and the data it
manipulates, and that keeps both safe from outside interference and misuse. In an
object-oriented language, code and data can be bound together in such a way that a
self-contained black box is created. Within the box are all necessary data and code.
When code and data are linked together in this fashion, an object is created. In other
words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public.
Private code or data is known to and accessible by only another part of the object.
That is, private code or data cannot be accessed by a piece of the program that exists
outside the object. When code or data is public, other parts of your program can
access it even though it is defined within an object. Typically, the public parts of an
object are used to provide a controlled interface to the private elements of the object.

Java’s basic unit of encapsulation is the class. Although the class will be examined
in great detail later in this book, the following brief discussion will be helpful now.
A class defines the form of an object. It specifies both the data and the code that will
operate on that data. Java uses a class specification to construct objects. Objects are
instances of a class. Thus, a class is essentially a set of plans that specify how to
build an object.

The code and data that constitute a class are called members of the class.
Specifically, the data defined by the class are referred to as member variables or
instance variables. The code that operates on that data is referred to as member
methods or just methods. Method is Java’s term for a subroutine. If you are familiar
with C/C++, it may help to know that what a Java programmer calls a method, a
C/C++ programmer calls a function.

Polymorphism
Polymorphism (from Greek, meaning “many forms”) is the quality that allows one
interface to access a general class of actions. The specific action is determined by the
exact nature of the situation. A simple example of polymorphism is found in the
steering wheel of an automobile. The steering wheel (i.e., the interface) is the same
no matter what type of actual steering mechanism is used. That is, the steering wheel
works the same whether your car has manual steering, power steering, or rack-and-
pinion steering. Therefore, once you know how to operate the steering wheel, you
can drive any type of car.

The same principle can also apply to programming. For example, consider a stack
(which is a first-in, last-out list). You might have a program that requires three
different types of stacks. One stack is used for integer values, one for floating-point
values, and one for characters. In this case, the algorithm that implements each stack
is the same, even though the data being stored differs. In a non-object-oriented
language, you would be required to create three different sets of stack routines, with
each set using different names. However, because of polymorphism, in Java you can
create one general set of stack routines that works for all three specific situations.
This way, once you know how to use one stack, you can use them all.

More generally, the concept of polymorphism is often expressed by the phrase
“one interface, multiple methods.” This means that it is possible to design a generic

interface to a group of related activities. Polymorphism helps reduce complexity by
allowing the same interface to be used to specify a general class of action. It is the
compiler’s job to select the specific action (i.e., method) as it applies to each
situation. You, the programmer, don’t need to do this selection manually. You need
only remember and utilize the general interface.

Inheritance
Inheritance is the process by which one object can acquire the properties of another
object. This is important because it supports the concept of hierarchical
classification. If you think about it, most knowledge is made manageable by
hierarchical (i.e., top-down) classifications. For example, a Red Delicious apple is
part of the classification apple, which in turn is part of the fruit class, which is under
the larger class food. That is, the food class possesses certain qualities (edible,
nutritious, etc.) which also, logically, apply to its subclass, fruit. In addition to these
qualities, the fruit class has specific characteristics (juicy, sweet, etc.) that
distinguish it from other food. The apple class defines those qualities specific to an
apple (grows on trees, not tropical, etc.). A Red Delicious apple would, in turn,
inherit all the qualities of all preceding classes, and would define only those qualities
that make it unique.

Without the use of hierarchies, each object would have to explicitly define all of
its characteristics. Using inheritance, an object need only define those qualities that
make it unique within its class. It can inherit its general attributes from its parent.
Thus, it is the inheritance mechanism that makes it possible for one object to be a
specific instance of a
more general case.

Obtaining the Java Development Kit
Now that the theoretical underpinning of Java has been explained, it is time to start
writing Java programs. Before you can compile and run those programs, however,
you must have the Java Development Kit (JDK) installed on your computer. The
JDK is available free of charge from Oracle. At the time of this writing, the current
release of the JDK is JDK 9. This is the version used by Java SE 9. (SE stands for
Standard Edition.) Because JDK 9 contains many new features that are not supported
by earlier versions of Java, it is recommended that you use JDK 9 (or later) to
compile and run the programs in this book. If you use an earlier version, then
programs containing new features will not compile.

The JDK can be downloaded from
www.oracle.com/technetwork/java/javase/downloads/index.html. Just go to the

http://www.oracle.com/technetwork/java/javase/downloads/index.html

download page and follow the instructions for the type of computer that you have.
After you have installed the JDK, you will be able to compile and run programs. The
JDK supplies two primary programs. The first is javac, which is the Java compiler.
The second is java, which is the standard Java interpreter and is also referred to as
the application launcher.

One other point: The JDK runs in the command prompt environment and uses
command-line tools. It is not a windowed application. It is also not an integrated
development environment (IDE).

NOTE
In addition to the basic command-line tools supplied with the JDK, there are several
high-quality IDEs available for Java, such as NetBeans and Eclipse. An IDE can be
very helpful when developing and deploying commercial applications. As a general
rule, you can also use an IDE to compile and run the programs in this book if you so
choose. However, the instructions presented in this book for compiling and running a
Java program describe only the JDK command-line tools. The reasons for this are
easy to understand. First, the JDK is readily available to all readers. Second, the
instructions for using the JDK will be the same for all readers. Furthermore, for the
simple programs presented in this book, using the JDK command-line tools is
usually the easiest approach. If you are using an IDE, you will need to follow its
instructions. Because of differences between IDEs, no general set of instructions can
be given.

Ask the Expert
Q: You state that object-oriented programming is an effective way to

manage large programs. However, it seems that it might add
substantial overhead to relatively small ones. Since you say that all
Java programs are, to some extent, object-oriented, does this impose
a penalty for smaller programs?

A: No. As you will see, for small programs, Java’s object-oriented features
are nearly transparent. Although it is true that Java follows a strict object
model, you have wide latitude as to the degree to which you employ it.
For smaller programs, their “object-orientedness” is barely perceptible.
As your programs grow, you will integrate more object-oriented features
effortlessly.

A First Simple Program
Let’s start by compiling and running the short sample program shown here:

You will follow these three steps:

1. Enter the program.
2. Compile the program.
3. Run the program.

Entering the Program
The programs shown in this book are available from www.oraclepressbooks.com.
However, if you want to enter the programs by hand, you are free to do so. In this
case, you must enter the program into your computer using a text editor, not a word
processor. Word processors typically store format information along with text. This
format information will confuse the Java compiler. If you are using a Windows
platform, you can use WordPad or any other programming editor that you like.

For most computer languages, the name of the file that holds the source code to a
program is arbitrary. However, this is not the case with Java. The first thing that you
must learn about Java is that the name you give to a source file is very important. For
this example, the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that
contains (among other things) one or more class definitions. (For now, we will be
using source files that contain only one class.) The Java compiler requires that a
source file use the .java filename extension. As you can see by looking at the

http://www.oraclepressbooks.com

program, the name of the class defined by the program is also Example. This is not a
coincidence. In Java, all code must reside inside a class. By convention, the name of
the main class should match the name of the file that holds the program. You should
also make sure that the capitalization of the filename matches the class name. The
reason for this is that Java is case sensitive. At this point, the convention that
filenames correspond to class names may seem arbitrary. However, this convention
makes it easier to maintain and organize your programs.

Compiling the Program
To compile the Example program, execute the compiler, javac, specifying the name
of the source file on the command line, as shown here:

javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode
version of the program. Remember, bytecode is not executable code. Bytecode must
be executed by a Java Virtual Machine. Thus, the output of javac is not code that can
be directly executed.

To actually run the program, you must use the Java interpreter, java. To do so,
pass the class name Example as a command-line argument, as shown here:

java Example

When the program is run, the following output is displayed:

Java drives the Web.

When Java source code is compiled, each individual class is put into its own
output file named after the class and using the .class extension. This is why it is a
good idea to give your Java source files the same name as the class they contain—
the name of the source file will match the name of the .class file. When you execute
the Java interpreter as just shown, you are actually specifying the name of the class
that you want the interpreter to execute. It will automatically search for a file by that
name that has the .class extension. If it finds the file, it will execute the code
contained in the specified class.

NOTE
If, when you try to compile the program, the computer cannot find javac (and
assuming that you have installed the JDK correctly), you may need to specify the
path to the command-line tools. In Windows, for example, this means that you will
need to add the path to the command-line tools to the paths defined for the PATH

environmental variable. For example, if JDK 9 was installed under the Program Files
directory, then the path to the command-line tools will be similar to C:\Program
Files\Java\jdk-9\bin. (Of course, you will need to find the path to Java on your
computer, which may differ from the one just shown. Also the specific version of the
JDK may differ.) You will need to consult the documentation for your operating
system on how to set the path, because this procedure differs between OSes.

The First Sample Program Line by Line
Although Example.java is quite short, it includes several key features that are
common to all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

This is a comment. Like most other programming languages, Java lets you enter a
remark into a program’s source file. The contents of a comment are ignored by the
compiler. Instead, a comment describes or explains the operation of the program to
anyone who is reading its source code. In this case, the comment describes the
program and reminds you that the source file should be called Example.java. Of
course, in real applications, comments generally explain how some part of the
program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program
is called a multiline comment. This type of comment must begin with /* and end with
*/. Anything between these two comment symbols is ignored by the compiler. As the
name suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. As
mentioned, the class is Java’s basic unit of encapsulation. Example is the name of
the class. The class definition begins with the opening curly brace ({) and ends with
the closing curly brace (}). The elements between the two braces are members of the
class. For the moment, don’t worry too much about the details of a class except to
note that in Java, all program activity occurs within one. This is one reason why all
Java programs are (at least a little bit) object-oriented.

The next line in the program is the single-line comment, shown here:

// A Java program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment
begins with a // and ends at the end of the line. As a general rule, programmers use
multiline comments for longer remarks and single-line comments for brief, line-by-
line descriptions.

The next line of code is shown here:

public static void main (String args[]) {

This line begins the main() method. As mentioned earlier, in Java, a subroutine is
called a method. As the comment preceding it suggests, this is the line at which the
program will begin executing. In general, Java applications begin execution by
calling main(). The exact meaning of each part of this line cannot be given now,
since it involves a detailed understanding of several other of Java’s features.
However, since many of the examples in this book will use this line of code, let’s
take a brief look at each part now.

The public keyword is an access modifier. An access modifier determines how
other parts of the program can access the members of the class. When a class
member is preceded by public, then that member can be accessed by code outside
the class in which it is declared. (The opposite of public is private, which prevents a
member from being used by code defined outside of its class.) In this case, main()
must be declared as public, since it must be called by code outside of its class when
the program is started. The keyword static allows main() to be called before an
object of the class has been created. This is necessary because main() is called by
the JVM before any objects are made. The keyword void simply tells the compiler
that main() does not return a value. As you will see, methods may also return
values. If all this seems a bit confusing, don’t worry. All of these concepts will be
discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Any
information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are
called parameters. If no parameters are required for a given method, you still need to
include the empty parentheses. In main() there is only one parameter, String args[
], which declares a parameter named args. This is an array of objects of type String.
(Arrays are collections of similar objects.) Objects of type String store sequences of
characters. In this case, args receives any command-line arguments present when the
program is executed. This program does not make use of this information, but other
programs shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All
of the code included in a method will occur between the method’s opening curly
brace and its closing curly brace.

The next line of code is shown here. Notice that it occurs inside main().
System.out.println("Java drives the Web.");

This line outputs the string "Java drives the Web." followed by a new line on the
screen. Output is actually accomplished by the built-in println() method. In this
case, println() displays the string that is passed to it. As you will see, println() can
be used to display other types of information, too. The line begins with System.out.
While too complicated to explain in detail at this time, briefly, System is a
predefined class that provides access to the system, and out is the output stream that
is connected to the console. Thus, System.out is an object that encapsulates console
output. The fact that Java uses an object to define console output is further evidence
of its object-oriented nature.

As you have probably guessed, console output (and input) is not used frequently
in real-world Java applications. Since most modern computing environments are
windowed and graphical in nature, console I/O is used mostly for simple utility
programs, for demonstration programs, and for server-side code. Later in this book,
you will learn other ways to generate output using Java, but for now, we will
continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. Many statements in
Java end with a semicolon. As you will see, the semicolon is an important part of the
Java syntax.

The first } in the program ends main(), and the last } ends the Example class
definition.

One last point: Java is case sensitive. Forgetting this can cause you serious
problems. For example, if you accidentally type Main instead of main, or PrintLn
instead of println, the preceding program will be incorrect. Furthermore, although
the Java compiler will compile classes that do not contain a main() method, it has
no way to execute them. So, if you had mistyped main, the compiler would still
compile your program. However, the Java interpreter would report an error because
it would be unable to find the main() method.

Handling Syntax Errors
If you have not yet done so, enter, compile, and run the preceding program. As you
may know from your previous programming experience, it is quite easy to
accidentally type something incorrectly when entering code into your computer.

Fortunately, if you enter something incorrectly into your program, the compiler will
report a syntax error message when it tries to compile it. The Java compiler attempts
to make sense out of your source code no matter what you have written. For this
reason, the error that is reported may not always reflect the actual cause of the
problem. In the preceding program, for example, an accidental omission of the
opening curly brace after the main() method causes the compiler to report the
following two errors:

Clearly, the first error message is completely wrong because what is missing is not a
semicolon, but a curly brace.

The point of this discussion is that when your program contains a syntax error,
you shouldn’t necessarily take the compiler’s messages at face value. The messages
may be misleading. You may need to “second-guess” an error message in order to
find the real problem. Also, look at the last few lines of code in your program that
precede the line being flagged. Sometimes an error will not be reported until several
lines after the point at which the error actually occurred.

A Second Simple Program
Perhaps no other construct is as important to a programming language as the
assignment of a value to a variable. A variable is a named memory location that can
be assigned a value. Further, the value of a variable can be changed during the
execution of a program. That is, the content of a variable is changeable, not fixed.
The following program creates two variables called var1 and var2:

When you run this program, you will see the following output:

var1 contains 1024
var2 contains var1 / 2: 512

This program introduces several new concepts. First, the statement

int var1; // this declares a variable

declares a variable called var1 of type integer. In Java, all variables must be declared
before they are used. Further, the type of values that the variable can hold must also
be specified. This is called the type of the variable. In this case, var1 can hold
integer values. These are whole number values. In Java, to declare a variable to be of
type integer, precede its name with the keyword int. Thus, the preceding statement
declares a variable called var1 of type int.

The next line declares a second variable called var2:

int var2; // this declares another variable

Notice that this line uses the same format as the first line except that the name of the
variable is different.

In general, to declare a variable you will use a statement like this:
type var-name;
Here, type specifies the type of variable being declared, and var-name is the name of

the variable. In addition to int, Java supports several other data types.
The following line of code assigns var1 the value 1024:

var1 = 1024; // this assigns 1024 to var1

In Java, the assignment operator is the single equal sign. It copies the value on its
right side into the variable on its left.

The next line of code outputs the value of var1 preceded by the string "var1
contains ":

System.out.println("var1 contains " + var1);

In this statement, the plus sign causes the value of var1 to be displayed after the
string that precedes it. This approach can be generalized. Using the + operator, you
can chain together as many items as you want within a single println() statement.

The next line of code assigns var2 the value of var1 divided by 2:

var2 = var1 / 2;

This line divides the value in var1 by 2 and then stores that result in var2. Thus,
after the line executes, var2 will contain the value 512. The value of var1 will be
unchanged. Like most other computer languages, Java supports a full range of
arithmetic operators, including those shown here:

Here are the next two lines in the program:

System.out.print("var2 contains var1 / 2: ");
System.out.println(var2);

Two new things are occurring here. First, the built-in method print() is used to
display the string "var2 contains var1 / 2: ". This string is not followed by a new line.
This means that when the next output is generated, it will start on the same line. The
print() method is just like println(), except that it does not output a new line after
each call. Second, in the call to println(), notice that var2 is used by itself. Both
print() and println() can be used to output values of any of Java’s built-in types.

One more point about declaring variables before we move on: It is possible to

declare two or more variables using the same declaration statement. Just separate
their names by commas. For example, var1 and var2 could have been declared like
this:

int var1, var2; // both declared using one statement

Another Data Type
In the preceding program, a variable of type int was used. However, a variable of
type int can hold only whole numbers. Thus, it cannot be used when a fractional
component is required. For example, an int variable can hold the value 18, but not
the value 18.3. Fortunately, int is only one of several data types defined by Java. To
allow numbers with fractional components, Java defines two floating-point types:
float and double, which represent single- and double-precision values, respectively.
Of the two, double is the most commonly used.

To declare a variable of type double, use a statement similar to that shown here:

double x;

Here, x is the name of the variable, which is of type double. Because x has a
floating-point type, it can hold values such as 122.23, 0.034, or –19.0.

To better understand the difference between int and double, try the following
program:

The output from this program is shown here:

As you can see, when var is divided by 4, a whole-number division is performed,
and the outcome is 2—the fractional component is lost. However, when the double
variable x is divided by 4, the fractional component is preserved, and the proper

answer is displayed.
There is one other new thing to notice in the program. To print a blank line,

simply call println() without any arguments.

Ask the Expert
Q: Why does Java have different data types for integers and floating-

point values? That is, why aren’t all numeric values just the same
type?

A: Java supplies different data types so that you can write efficient programs.
For example, integer arithmetic is faster than floating-point calculations.
Thus, if you don’t need fractional values, then you don’t need to incur the
overhead associated with types float or double. Second, the amount of
memory required for one type of data might be less than that required for
another. By supplying different types, Java enables you to make best use
of system resources. Finally, some algorithms require (or at least benefit
from) the use of a specific type of data. In general, Java supplies a
number of built-in types to give you the greatest flexibility.

Try This 1-1 Converting Gallons to Liters

Although the preceding sample programs illustrate several important features of the
Java language, they are not very useful. Even though you do not know much about
Java at this point, you can still put what you have learned to work to create a
practical program. In this project, we will create a program that converts gallons to
liters. The program will work by declaring two double variables. One will hold the
number of the gallons, and the second will hold the number of liters after the
conversion. There are 3.7854 liters in a gallon. Thus, to convert gallons to liters, the
gallon value is multiplied by 3.7854. The program displays both the number of
gallons and the equivalent number of liters.

1. Create a new file called GalToLit.java.

2. Enter the following program into the file:

3. Compile the program using the following command line:
javac GalToLit.java

4. Run the program using this command:
java GalToLit
You will see this output:
10.0 gallons is 37.854 liters.

5. As it stands, this program converts 10 gallons to liters. However, by changing the
value assigned to gallons, you can have the program convert a different number
of gallons into its equivalent number of liters.

Two Control Statements
Inside a method, execution proceeds from one statement to the next, top to bottom.
However, it is possible to alter this flow through the use of the various program
control statements supported by Java. Although we will look closely at control
statements later, two are briefly introduced here because we will be using them to

write sample programs.

The if Statement
You can selectively execute part of a program through the use of Java’s conditional
statement: the if. The Java if statement works much like the IF statement in any other
language. It determines the flow of program execution based on whether some
condition is true or false. Its simplest form is shown here:
if(condition) statement;
Here, condition is a Boolean expression. (A Boolean expression is one that evaluates
to either true or false.) If condition is true, then the statement is executed. If
condition is false, then the statement is bypassed. Here is an example:

if(10 < 11) System.out.println("10 is less than 11");

In this case, since 10 is less than 11, the conditional expression is true, and println()
will execute. However, consider the following:

if(10 < 9) System.out.println("this won't be displayed");

In this case, 10 is not less than 9. Thus, the call to println() will not take place.
Java defines a full complement of relational operators that may be used in a

conditional expression. They are shown here:

Notice that the test for equality is the double equal sign.
Here is a program that illustrates the if statement:

The output generated by this program is shown here:

Notice one other thing in this program. The line

int a, b, c;

declares three variables, a, b, and c, by use of a comma-separated list. As mentioned
earlier, when you need two or more variables of the same type, they can be declared
in one statement. Just separate the variable names by commas.

The for Loop
You can repeatedly execute a sequence of code by creating a loop. Loops are used
whenever you need to perform a repetitive task because they are much simpler and
easier than trying to write the same statement sequence over and over again. Java
supplies a powerful assortment of loop constructs. The one we will look at here is the
for loop. The simplest form of the for loop is shown here:
for(initialization; condition; iteration) statement;
In its most common form, the initialization portion of the loop sets a loop control
variable to an initial value. The condition is a Boolean expression that tests the loop
control variable. If the outcome of that test is true, statement executes and the for
loop continues to iterate. If it is false, the loop terminates. The iteration expression
determines how the loop control variable is changed each time the loop iterates. Here
is a short program that illustrates the for loop:

The output generated by the program is shown here:

This is count: 0
This is count: 1
This is count: 2
This is count: 3
This is count: 4
Done!

In this example, count is the loop control variable. It is set to zero in the
initialization portion of the for. At the start of each iteration (including the first one),
the conditional test count < 5 is performed. If the outcome of this test is true, the
println() statement is executed, and then the iteration portion of the loop is
executed, which increases count by 1. This process continues until the conditional
test is false, at which point execution picks up at the bottom of the loop. As a point
of interest, in professionally written Java programs, you will almost never see the
iteration portion of the loop written as shown in the preceding program. That is, you
will seldom see statements like this:

count = count + 1;

The reason is that Java includes a special increment operator that performs this
operation more efficiently. The increment operator is ++ (that is, two plus signs back
to back). The increment operator increases its operand by one. By use of the
increment operator, the preceding statement can be written like this:

count++;

Thus, the for in the preceding program will usually be written like this:

for(count = 0; count < 5; count++)

You might want to try this. As you will see, the loop still runs exactly the same as it
did before.

Java also provides a decrement operator, which is specified as – –. This operator
decreases its operand by one.

Create Blocks of Code
Another key element of Java is the code block. A code block is a grouping of two or
more statements. This is done by enclosing the statements between opening and
closing curly braces. Once a block of code has been created, it becomes a logical unit
that can be used any place that a single statement can. For example, a block can be a
target for Java’s if and for statements. Consider this if statement:

Here, if w is less than h, both statements inside the block will be executed. Thus, the
two statements inside the block form a logical unit, and one statement cannot execute
without the other also executing. The key point here is that whenever you need to
logically link two or more statements, you do so by creating a block. Code blocks
allow many algorithms to be implemented with greater clarity and efficiency.

Here is a program that uses a block of code to prevent a division by zero:

The output generated by this program is shown here:

i does not equal zero
j / i is 2.0

In this case, the target of the if statement is a block of code and not just a single
statement. If the condition controlling the if is true (as it is in this case), the three
statements inside the block will be executed. Try setting i to zero and observe the
result. You will see that the entire block is skipped.

Ask the Expert
Q: Does the use of a code block introduce any run-time inefficiencies? In

other words, does Java actually execute the { and }?
A: No. Code blocks do not add any overhead whatsoever. In fact, because of

their ability to simplify the coding of certain algorithms, their use

generally increases speed and efficiency. Also, the { and } exist only in
your program’s source code. Java does not, per se, execute the { or }.

As you will see later in this book, blocks of code have additional properties and
uses. However, the main reason for their existence is to create logically inseparable
units of code.

Semicolons and Positioning
In Java, the semicolon is a separator. It is often used to terminate a statement. In
essence, the semicolon indicates the end of one logical entity.

As you know, a block is a set of logically connected statements that are
surrounded by opening and closing braces. A block is not terminated with a
semicolon. Instead, the end of the block is indicated by the closing brace.

Java does not recognize the end of the line as a terminator. For this reason, it does
not matter where on a line you put a statement. For example,

x = y;
y = y + 1;
System.out.println(x + " " + y);

is the same as the following, to Java:

x = y; y = y + 1; System.out.println(x + " " + y);

Furthermore, the individual elements of a statement can also be put on separate
lines. For example, the following is perfectly acceptable:

Breaking long lines in this fashion is often used to make programs more readable. It
can also help prevent excessively long lines from wrapping.

Indentation Practices
You may have noticed in the previous examples that certain statements were
indented. Java is a free-form language, meaning that it does not matter where you
place statements relative to each other on a line. However, over the years, a common

and accepted indentation style has developed that allows for very readable programs.
This book follows that style, and it is recommended that you do so as well. Using
this style, you indent one level after each opening brace, and move back out one
level after each closing brace. Certain statements encourage some additional
indenting; these will be covered later.

Try This 1-2 Improving the Gallons-to-Liters Converter

You can use the for loop, the if statement, and code blocks to create an improved
version of the gallons-to-liters converter that you developed in the first project. This
new version will print a table of conversions, beginning with 1 gallon and ending at
100 gallons. After every 10 gallons, a blank line will be output. This is accomplished
through the use of a variable called counter that counts the number of lines that have
been output. Pay special attention to its use.
1. Create a new file called GalToLitTable.java.
2. Enter the following program into the file:

3. Compile the program using the following command line:
javac GalToLitTable.java

4. Run the program using this command:
java GalToLitTable

Here is a portion of the output that you will see:

The Java Keywords
Sixty-one keywords are currently defined in the Java language (see Table 1-1).

These keywords, combined with the syntax of the operators and separators, form the
definition of the Java language. In general, keywords cannot be used as names for a
variable, class, or method. The exceptions to this rule are the new context-sensitive
keywords added by JDK 9 to support modules. (See Chapter 15 for details.) Also,
beginning with JDK 9, an underscore by itself is considered a keyword in order to
prevent its use as the name of something in your program.

Table 1-1 The Java Keywords

The keywords const and goto are reserved but not used. In the early days of Java,
several other keywords were reserved for possible future use. However, the current
specification for Java defines only the keywords shown in Table 1-1.

In addition to the keywords, Java reserves the following: true, false, and null.
These are values defined by Java. You may not use these words for the names of
variables, classes, and so on.

Identifiers in Java
In Java an identifier is a name given to a method, a variable, or any other user-
defined item. Identifiers can be from one to several characters long. Variable names
may start with any letter of the alphabet, an underscore, or a dollar sign. Next may be
either a letter, a digit, a dollar sign, or an underscore. The underscore can be used to

enhance the readability of a variable name, as in line_count. Uppercase and
lowercase are different; that is, to Java, myvar and MyVar are separate names. Here
are some examples of acceptable identifiers:

Remember, you can’t start an identifier with a digit. Thus, 12x is invalid, for
example.

In general, you cannot use the Java keywords as identifier names. Also, you
should not use the name of any standard method, such as println, as an identifier.
Beyond these two restrictions, good programming practice dictates that you use
identifier names that reflect the meaning or usage of the items being named.

The Java Class Libraries
The sample programs shown in this chapter make use of two of Java’s built-in
methods: println() and print(). These methods are accessed through System.out.
System is a class predefined by Java that is automatically included in your programs.
In the larger view, the Java environment relies on several built-in class libraries that
contain many built-in methods that provide support for such things as I/O, string
handling, networking, and graphics. The standard classes also provide support for a
graphical user interface (GUI). Thus, Java as a totality is a combination of the Java
language itself, plus its standard classes. As you will see, the class libraries provide
much of the functionality that comes with Java. Indeed, part of becoming a Java
programmer is learning to use the standard Java classes. Throughout this book,
various elements of the standard library classes and methods are described.
However, the Java library is something that you will also want to explore more on
your own.

 Chapter 1 Self Test

1. What is bytecode and why is it important to Java’s use for Internet
programming?

2. What are the three main principles of object-oriented programming?

3. Where do Java programs begin execution?
4. What is a variable?
5. Which of the following variable names is invalid?

A. count
B. $count
C. count27
D. 67count

6. How do you create a single-line comment? How do you create a multiline
comment?

7. Show the general form of the if statement. Show the general form of the for
loop.

8. How do you create a block of code?
9. The moon’s gravity is about 17 percent that of earth’s. Write a program that

computes your effective weight on the moon.
10. Adapt Try This 1-2 so that it prints a conversion table of inches to meters.

Display 12 feet of conversions, inch by inch. Output a blank line every 12
inches. (One meter equals approximately 39.37 inches.)

11. If you make a typing mistake when entering your program, what sort of error
will result?

12. Does it matter where on a line you put a statement?

A

Chapter 2

Introducing Data Types and Operators

Key Skills & Concepts
 Know Java’s primitive types

 Use literals

 Initialize variables

 Know the scope rules of variables within a method

 Use the arithmetic operators

 Use the relational and logical operators

 Understand the assignment operators

 Use shorthand assignments

 Understand type conversion in assignments

 Cast incompatible types

 Understand type conversion in expressions

t the foundation of any programming language are its data types and
operators, and Java is no exception. These elements define the limits of a
language and determine the kind of tasks to which it can be applied.

Fortunately, Java supports a rich assortment of both data types and operators, making
it suitable for any type of programming.

Data types and operators are a large subject. We will begin here with an
examination of Java’s foundational data types and its most commonly used
operators. We will also take a closer look at variables and examine the expression.

Why Data Types Are Important
Data types are especially important in Java because it is a strongly typed language.
This means that all operations are type-checked by the compiler for type
compatibility. Illegal operations will not be compiled. Thus, strong type checking
helps prevent errors and enhances reliability. To enable strong type checking, all
variables, expressions, and values have a type. There is no concept of a “type-less”
variable, for example. Furthermore, the type of a value determines what operations
are allowed on it. An operation allowed on one type might not be allowed on
another.

Java’s Primitive Types
Java contains two general categories of built-in data types: object-oriented and non-
object-oriented. Java’s object-oriented types are defined by classes, and a discussion
of classes is deferred until later. However, at the core of Java are eight primitive
(also called elemental or simple) types of data, which are shown in Table 2-1. The
term primitive is used here to indicate that these types are not objects in an object-
oriented sense, but rather, normal binary values. These primitive types are not
objects because of efficiency concerns. All of Java’s other data types are constructed
from these primitive types.

Table 2-1 Java’s Built-in Primitive Data Types

Java strictly specifies a range and behavior for each primitive type, which all

implementations of the Java Virtual Machine must support. Because of Java’s
portability requirement, Java is uncompromising on this account. For example, an int
is the same in all execution environments. This allows programs to be fully portable.
There is no need to rewrite code to fit a specific platform. Although strictly
specifying the range of the primitive types may cause a small loss of performance in
some environments, it is necessary in order to achieve portability.

Integers
Java defines four integer types: byte, short, int, and long, which are shown here:

As the table shows, all of the integer types are signed positive and negative values.
Java does not support unsigned (positive-only) integers. Many other computer
languages support both signed and unsigned integers. However, Java’s designers felt
that unsigned integers were unnecessary.

NOTE
Technically, the Java run-time system can use any size it wants to store a primitive
type. However, in all cases, types must act as specified.

The most commonly used integer type is int. Variables of type int are often
employed to control loops, to index arrays, and to perform general-purpose integer
math.

When you need an integer that has a range greater than int, use long. For example,
here is a program that computes the number of cubic inches contained in a cube that
is one mile by one mile, by one mile:

Here is the output from the program:

There are 254358061056000 cubic inches in cubic mile.

Clearly, the result could not have been held in an int variable.
The smallest integer type is byte. Variables of type byte are especially useful

when working with raw binary data that may not be directly compatible with Java’s
other built-in types. The short type creates a short integer. Variables of type short
are appropriate when you don’t need the larger range offered by int.

Ask the Expert
Q: You say that there are four integer types: int, short, long, and byte.

However, I have heard that char can also be categorized as an integer
type in Java. Can you explain?

A: The formal specification for Java defines a type category called integral
types, which includes byte, short, int, long, and char. They are called
integral types because they all hold whole-number, binary values.

However, the purpose of the first four is to represent numeric integer
quantities. The purpose of char is to represent characters. Therefore, the
principal uses of char and the principal uses of the other integral types
are fundamentally different. Because of the differences, the char type is
treated separately in this book.

Floating-Point Types
As explained in Chapter 1, the floating-point types can represent numbers that have
fractional components. There are two kinds of floating-point types, float and double,
which represent single- and double-precision numbers, respectively. Type float is 32
bits wide and type double is 64 bits wide.

Of the two, double is the most commonly used, and many of the math functions in
Java’s class library use double values. For example, the sqrt() method (which is
defined by the standard Math class) returns a double value that is the square root of
its double argument. Here, sqrt() is used to compute the length of the hypotenuse,
given the lengths of the two opposing sides:

The output from the program is shown here:

Hypotenuse is 5.0

One other point about the preceding example: As mentioned, sqrt() is a member
of the standard Math class. Notice how sqrt() is called; it is preceded by the name
Math. This is similar to the way System.out precedes println(). Although not all
standard methods are called by specifying their class name first, several are.

Characters
In Java, characters are not 8-bit quantities like they are in many other computer
languages. Instead, Java uses Unicode. Unicode defines a character set that can
represent all of the characters found in all human languages. In Java, char is an
unsigned 16-bit type having a range of 0 to 65,535. The standard 8-bit ASCII
character set is a subset of Unicode and ranges from 0 to 127. Thus, the ASCII
characters are still valid Java characters.

A character variable can be assigned a value by enclosing the character in single
quotes. For example, this assigns the variable ch the letter X:

char ch;
ch = 'X';

You can output a char value using a println() statement. For example, this line
outputs the value in ch:

System.out.println("This is ch: " + ch);

Since char is an unsigned 16-bit type, it is possible to perform various arithmetic
manipulations on a char variable. For example, consider the following program:

The output generated by this program is shown here:

ch contains X
ch is now Y
ch is now Z

In the program, ch is first given the value X. Next, ch is incremented. This results
in ch containing Y, the next character in the ASCII (and Unicode) sequence. Next,
ch is assigned the value 90, which is the ASCII (and Unicode) value that
corresponds to the letter Z. Since the ASCII character set occupies the first 127
values in the Unicode character set, all the “old tricks” that you may have used with
characters in other languages will work in Java, too.

Ask the Expert
Q: Why does Java use Unicode?
A: Java was designed for worldwide use. Thus, it needs to use a character set

that can represent all the world’s languages. Unicode is the standard
character set designed expressly for this purpose. Of course, the use of
Unicode is inefficient for languages such as English, German, Spanish, or
French, whose characters can be contained within 8 bits. But such is the
price that must be paid for global portability.

The Boolean Type
The boolean type represents true/false values. Java defines the values true and false
using the reserved words true and false. Thus, a variable or expression of type
boolean will be one of these two values.

Here is a program that demonstrates the boolean type:

The output generated by this program is shown here:

There are three interesting things to notice about this program. First, as you can
see, when a boolean value is output by println(), "true" or "false" is displayed.

Second, the value of a boolean variable is sufficient, by itself, to control the if
statement. There is no need to write an if statement like this:

if(b == true) ...

Third, the outcome of a relational operator, such as <, is a boolean value. This is
why the expression 10 > 9 displays the value "true." Further, the extra set of
parentheses around 10 > 9 is necessary because the + operator has a higher
precedence than the >.

Try This 2-1 How Far Away Is the Lightning?

In this project, you will create a program that computes how far away, in feet, a
listener is from a lightning strike. Sound travels approximately 1,100 feet per second
through air. Thus, knowing the interval between the time you see a lightning bolt and
the time the sound reaches you enables you to compute the distance to the lightning.
For this project, assume that the time interval is 7.2 seconds.

1. Create a new file called Sound.java.
2. To compute the distance, you will need to use floating-point values. Why?

Because the time interval, 7.2, has a fractional component. Although it would be
permissible to use a value of type float, we will use double in the example.

3. To compute the distance, you will multiply 7.2 by 1,100. You will then assign
this value to a variable.

4. Finally, you will display the result.

Here is the entire Sound.java program listing:

5. Compile and run the program. The following result is displayed:
The lightning is 7920.0 feet away.

6. Extra challenge: You can compute the distance to a large object, such as a rock
wall, by timing the echo. For example, if you clap your hands and time how long
it takes for you to hear the echo, then you know the total round-trip time.
Dividing this value by two yields the time it takes the sound to go one way. You
can then use this value to compute the distance to the object. Modify the
preceding program so that it computes the distance, assuming that the time
interval is that of an echo.

Literals
In Java, literals refer to fixed values that are represented in their human-readable
form. For example, the number 100 is a literal. Literals are also commonly called
constants. For the most part, literals, and their usage, are so intuitive that they have
been used in one form or another by all the preceding sample programs. Now the
time has come to explain them formally.

Java literals can be of any of the primitive data types. The way each literal is
represented depends upon its type. As explained earlier, character constants are

enclosed in single quotes. For example, 'a' and ' %' are both character constants.
Integer literals are specified as numbers without fractional components. For

example, 10 and –100 are integer literals. Floating-point literals require the use of
the decimal point followed by the number’s fractional component. For example,
11.123 is a floating-point literal. Java also allows you to use scientific notation for
floating-point numbers.

By default, integer literals are of type int. If you want to specify a long literal,
append an l or an L. For example, 12 is an int, but 12L is a long.

By default, floating-point literals are of type double. To specify a float literal,
append an F or f to the constant. For example, 10.19F is of type float.

Although integer literals create an int value by default, they can still be assigned
to variables of type char, byte, or short as long as the value being assigned can be
represented by the target type. An integer literal can always be assigned to a long
variable.

Beginning with JDK 7, you can embed one or more underscores into an integer or
floating-point literal. Doing so can make it easier to read values consisting of many
digits. When the literal is compiled, the underscores are simply discarded. Here is an
example:

123_45_1234

This specifies the value 123,451,234. The use of underscores is particularly useful
when encoding things like part numbers, customer IDs, and status codes that are
commonly thought of as consisting of subgroups of digits.

Hexadecimal, Octal, and Binary Literals
As you may know, in programming it is sometimes easier to use a number system
based on 8 or 16 instead of 10. The number system based on 8 is called octal, and it
uses the digits 0 through 7. In octal the number 10 is the same as 8 in decimal. The
base 16 number system is called hexadecimal and uses the digits 0 through 9 plus the
letters A through F, which stand for 10, 11, 12, 13, 14, and 15. For example, the
hexadecimal number 10 is 16 in decimal. Because of the frequency with which these
two number systems are used, Java allows you to specify integer literals in
hexadecimal or octal instead of decimal. A hexadecimal literal must begin with 0x or
0X (a zero followed by an x or X). An octal literal begins with a zero. Here are some
examples:

hex = 0xFF; // 255 in decimal
oct = 011; // 9 in decimal

As a point of interest, Java also allows hexadecimal floating-point literals, but they

are seldom used.
Beginning with JDK 7, it is possible to specify an integer literal by use of binary.

To do so, precede the binary number with a 0b or 0B. For example, this specifies the
value 12 in binary: 0b1100.

Character Escape Sequences
Enclosing character constants in single quotes works for most printing characters,
but a few characters, such as the carriage return, pose a special problem when a text
editor is used. In addition, certain other characters, such as the single and double
quotes, have special meaning in Java, so you cannot use them directly. For these
reasons, Java provides special escape sequences, sometimes referred to as backslash
character constants, shown in Table 2-2. These sequences are used in place of the
characters that they represent.

Table 2-2 Character Escape Sequences

For example, this assigns ch the tab character:

ch = '\t';

The next example assigns a single quote to ch:

ch = '\'';

String Literals
Java supports one other type of literal: the string. A string is a set of characters
enclosed by double quotes. For example,

"this is a test"

is a string. You have seen examples of strings in many of the println() statements in
the preceding sample programs.

In addition to normal characters, a string literal can also contain one or more of the
escape sequences just described. For example, consider the following program. It
uses the \n and \t escape sequences.

The output is shown here:

Ask the Expert
Q: Is a string consisting of a single character the same as a character

literal? For example, is "k" the same as 'k'?
A: No. You must not confuse strings with characters. A character literal

represents a single letter of type char. A string containing only one letter
is still a string. Although strings consist of characters, they are not the
same type.

Notice how the \n escape sequence is used to generate a new line. You don’t need
to use multiple println() statements to get multiline output. Just embed \n within a
longer string at the points where you want the new lines to occur.

A Closer Look at Variables
Variables were introduced in Chapter 1. Here, we will take a closer look at them. As
you learned earlier, variables are declared using this form of statement,
type var-name;
where type is the data type of the variable, and var-name is its name. You can
declare a variable of any valid type, including the simple types just described, and
every variable will have a type. Thus, the capabilities of a variable are determined by
its type. For example, a variable of type boolean cannot be used to store floating-
point values. Furthermore, the type of a variable cannot change during its lifetime.
An int variable cannot turn into a char variable, for example.

All variables in Java must be declared prior to their use. This is necessary because
the compiler must know what type of data a variable contains before it can properly
compile any statement that uses the variable. It also enables Java to perform strict
type checking.

Initializing a Variable
In general, you must give a variable a value prior to using it. One way to give a
variable a value is through an assignment statement, as you have already seen.
Another way is by giving it an initial value when it is declared. To do this, follow the
variable’s name with an equal sign and the value being assigned. The general form
of initialization is shown here:
type var = value;
Here, value is the value that is given to var when var is created. The value must be
compatible with the specified type. Here are some examples:

When declaring two or more variables of the same type using a comma-separated
list, you can give one or more of those variables an initial value. For example:

int a, b = 8, c = 19, d; // b and c have initializations

In this case, only b and c are initialized.

Dynamic Initialization
Although the preceding examples have used only constants as initializers, Java
allows variables to be initialized dynamically, using any expression valid at the time
the variable is declared. For example, here is a short program that computes the
volume of a cylinder given the radius of its base and its height:

Here, three local variables—radius, height, and volume—are declared. The first
two, radius and height, are initialized by constants. However, volume is initialized
dynamically to the volume of the cylinder. The key point here is that the
initialization expression can use any element valid at the time of the initialization,
including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables
So far, all of the variables that we have been using were declared at the start of the
main() method. However, Java allows variables to be declared within any block. As
explained in Chapter 1, a block is begun with an opening curly brace and ended by a
closing curly brace. A block defines a scope. Thus, each time you start a new block,
you are creating a new scope. A scope determines what objects are visible to other
parts of your program. It also determines the lifetime of those objects.

Some other computer languages define two general categories of scopes: global
and local. Although supported by Java, these are not the best ways to categorize
Java’s scopes. The most important scopes in Java are those defined by a class and
those defined by a method. A discussion of class scope (and variables declared
within it) is deferred until later in this book, when classes are described. For now, we

will examine only the scopes defined by or within a method.
The scope defined by a method begins with its opening curly brace. However, if

that method has parameters, they too are included within the method’s scope.
As a general rule, variables declared inside a scope are not visible (that is,

accessible) to code that is defined outside that scope. Thus, when you declare a
variable within a scope, you are localizing that variable and protecting it from
unauthorized access and/or modification. Indeed, the scope rules provide the
foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are
creating a new, nested scope. When this occurs, the outer scope encloses the inner
scope. This means that objects declared in the outer scope will be visible to code
within the inner scope. However, the reverse is not true. Objects declared within the
inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

As the comments indicate, the variable x is declared at the start of main()’s scope
and is accessible to all subsequent code within main(). Within the if block, y is

declared. Since a block defines a scope, y is visible only to other code within its
block. This is why outside of its block, the line y = 100; is commented out. If you
remove the leading comment symbol, a compile-time error will occur, because y is
not visible outside of its block. Within the if block, x can be used because code
within a block (that is, a nested scope) has access to variables declared by an
enclosing scope.

Within a block, variables can be declared at any point, but are valid only after they
are declared. Thus, if you define a variable at the start of a method, it is available to
all of the code within that method. Conversely, if you declare a variable at the end of
a block, it is effectively useless, because no code will have access to it.

Here is another important point to remember: variables are created when their
scope is entered, and destroyed when their scope is left. This means that a variable
will not hold its value once it has gone out of scope. Therefore, variables declared
within a method will not hold their values between calls to that method. Also, a
variable declared within a block will lose its value when the block is left. Thus, the
lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, that variable will be reinitialized
each time the block in which it is declared is entered. For example, consider this
program:

The output generated by this program is shown here:

As you can see, y is reinitialized to –1 each time the inner for loop is entered. Even
though it is subsequently assigned the value 100, this value is lost.

There is one quirk to Java’s scope rules that may surprise you: although blocks
can be nested, no variable declared within an inner scope can have the same name as
a variable declared by an enclosing scope. For example, the following program,
which tries to declare two separate variables with the same name, will not compile.

Operators
Java provides a rich operator environment. An operator is a symbol that tells the

compiler to perform a specific mathematical or logical manipulation. Java has four
general classes of operators: arithmetic, bitwise, relational, and logical. Java also
defines some additional operators that handle certain special situations. This chapter
will examine the arithmetic, relational, and logical operators. We will also examine
the assignment operator. The bitwise and other special operators are examined later.

Arithmetic Operators
Java defines the following arithmetic operators:

The operators +, –, *, and / all work the same way in Java as they do in any other
computer language (or algebra, for that matter). These can be applied to any built-in
numeric data type. They can also be used on objects of type char.

Although the actions of arithmetic operators are well known to all readers, a few
special situations warrant some explanation. First, remember that when / is applied to
an integer, any remainder will be truncated; for example, 10/3 will equal 3 in integer
division. You can obtain the remainder of this division by using the modulus
operator %. It yields the remainder of an integer division. For example, 10 % 3 is 1.
In Java, the % can be applied to both integer and floating-point types. Thus, 10.0 %
3.0 is also 1. The following program demonstrates the modulus operator.

The output from the program is shown here:

Result and remainder of 10 / 3: 3 1
Result and remainder of 10.0 / 3.0: 3.3333333333333335 1.0

As you can see, the % yields a remainder of 1 for both integer and floating-point
operations.

Increment and Decrement
Introduced in Chapter 1, the ++ and the – – are Java’s increment and decrement
operators. As you will see, they have some special properties that make them quite
interesting. Let’s begin by reviewing precisely what the increment and decrement
operators do.

The increment operator adds 1 to its operand, and the decrement operator subtracts
1. Therefore,

x = x + 1;

is the same as

x++;

and

x = x - 1;

is the same as

x--;

Both the increment and decrement operators can either precede (prefix) or follow
(postfix) the operand. For example,

x = x + 1;

can be written as

++x; // prefix form

or as

x++; // postfix form

In the foregoing example, there is no difference whether the increment is applied
as a prefix or a postfix. However, when an increment or decrement is used as part of
a larger expression, there is an important difference. When an increment or
decrement operator precedes its operand, Java will perform the corresponding
operation prior to obtaining the operand’s value for use by the rest of the expression.
If the operator follows its operand, Java will obtain the operand’s value before
incrementing or decrementing it. Consider the following:

x = 10;
y = ++x;

In this case, y will be set to 11. However, if the code is written as

x = 10;
y = x++;

then y will be set to 10. In both cases, x is still set to 11; the difference is when it
happens. There are significant advantages in being able to control when the
increment or decrement operation takes place.

Relational and Logical Operators
In the terms relational operator and logical operator, relational refers to the

relationships that values can have with one another, and logical refers to the ways in
which true and false values can be connected together. Since the relational operators
produce true or false results, they often work with the logical operators. For this
reason they will be discussed together here.

The relational operators are shown here:

The logical operators are shown next:

The outcome of the relational and logical operators is a boolean value.
In Java, all objects can be compared for equality or inequality using = = and !=.

However, the comparison operators, <, >, <=, or >=, can be applied only to those
types that support an ordering relationship. Therefore, all of the relational operators
can be applied to all numeric types and to type char. However, values of type
boolean can only be compared for equality or inequality, since the true and false
values are not ordered. For example, true > false has no meaning in Java.

For the logical operators, the operands must be of type boolean, and the result of a

logical operation is of type boolean. The logical operators, &, |, ^, and !, support the
basic logical operations AND, OR, XOR, and NOT, according to the following truth
table:

As the table shows, the outcome of an exclusive OR operation is true when
exactly one and only one operand is true.

Here is a program that demonstrates several of the relational and logical operators:

The output from the program is shown here:

Short-Circuit Logical Operators
Java supplies special short-circuit versions of its AND and OR logical operators that
can be used to produce more efficient code. To understand why, consider the
following. In an AND operation, if the first operand is false, the outcome is false no

matter what value the second operand has. In an OR operation, if the first operand is
true, the outcome of the operation is true no matter what the value of the second
operand. Thus, in these two cases there is no need to evaluate the second operand.
By not evaluating the second operand, time is saved and more efficient code is
produced.

The short-circuit AND operator is &&, and the short-circuit OR operator is ||.
Their normal counterparts are & and |. The only difference between the normal and
short-circuit versions is that the normal operands will always evaluate each operand,
but short-circuit versions will evaluate the second operand only when necessary.

Here is a program that demonstrates the short-circuit AND operator. The program
determines whether the value in d is a factor of n. It does this by performing a
modulus operation. If the remainder of n / d is zero, then d is a factor. However,
since the modulus operation involves a division, the short-circuit form of the AND is
used to prevent a divide-by-zero error.

To prevent a divide-by-zero, the if statement first checks to see if d is equal to
zero. If it is, the short-circuit AND stops at that point and does not perform the
modulus division. Thus, in the first test, d is 2 and the modulus operation is
performed. The second test fails because d is set to zero, and the modulus operation
is skipped, avoiding a divide-by-zero error. Finally, the normal AND operator is
tried. This causes both operands to be evaluated, which leads to a run-time error
when the division by zero occurs.

One last point: The formal specification for Java refers to the short-circuit
operators as the conditional-or and the conditional-and operators, but the term
“short-circuit” is commonly used.

The Assignment Operator

You have been using the assignment operator since Chapter 1. Now it is time to take
a formal look at it. The assignment operator is the single equal sign, =. This operator
works in Java much as it does in any other computer language. It has this general
form:
var = expression;
Here, the type of var must be compatible with the type of expression.

The assignment operator does have one interesting attribute that you may not be
familiar with: it allows you to create a chain of assignments. For example, consider
this fragment:

This fragment sets the variables x, y, and z to 100 using a single statement. This
works because the = is an operator that yields the value of the right-hand expression.
Thus, the value of z = 100 is 100, which is then assigned to y, which in turn is
assigned to x. Using a “chain of assignment” is an easy way to set a group of
variables to a common value.

Shorthand Assignments
Java provides special shorthand assignment operators that simplify the coding of
certain assignment statements. Let’s begin with an example. The assignment
statement shown here

x = x + 10;

can be written, using Java shorthand, as

x += 10;

Ask the Expert
Q: Since the short-circuit operators are, in some cases, more efficient

than their normal counterparts, why does Java still offer the normal
AND and OR operators?

A: In some cases you will want both operands of an AND or OR operation to

be evaluated because of the side effects produced. Consider the
following:

As the comments indicate, in the first if statement, i is incremented whether
the if succeeds or not. However, when the short-circuit operator is used, the
variable i is not incremented when the first operand is false. The lesson here is
that if your code expects the right-hand operand of an AND or OR operation to
be evaluated, you must use Java’s non-short-circuit forms of these operations.

The operator pair += tells the compiler to assign to x the value of x plus 10. Here is
another example. The statement

x = x - 100;

is the same as

x -= 100;

Both statements assign to x the value of x minus 100.
This shorthand will work for all the binary operators in Java (that is, those that

require two operands). The general form of the shorthand is
var op = expression;
Thus, the arithmetic and logical shorthand assignment operators are the following:

Because these operators combine an operation with an assignment, they are formally
referred to as compound assignment operators.

The compound assignment operators provide two benefits. First, they are more
compact than their “longhand” equivalents. Second, in some cases, they are more
efficient. For these reasons, you will often see the compound assignment operators
used in professionally written Java programs.

Type Conversion in Assignments
In programming, it is common to assign one type of variable to another. For
example, you might want to assign an int value to a float variable, as shown here:

When compatible types are mixed in an assignment, the value of the right side is
automatically converted to the type of the left side. Thus, in the preceding fragment,
the value in i is converted into a float and then assigned to f. However, because of
Java’s strict type checking, not all types are compatible, and thus, not all type
conversions are implicitly allowed. For example, boolean and int are not
compatible.

When one type of data is assigned to another type of variable, an automatic type
conversion will take place if

 The two types are compatible.
 The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example,
the int type is always large enough to hold all valid byte values, and both int and
byte are integer types, so an automatic conversion from byte to int can be applied.

For widening conversions, the numeric types, including integer and floating-point
types, are compatible with each other. For example, the following program is

perfectly valid since long to double is a widening conversion that is automatically
performed.

Although there is an automatic conversion from long to double, there is no
automatic conversion from double to long, since this is not a widening conversion.
Thus, the following version of the preceding program is invalid.

There are no automatic conversions from the numeric types to char or boolean.
Also, char and boolean are not compatible with each other. However, an integer
literal can be assigned to char.

Casting Incompatible Types
Although the automatic type conversions are helpful, they will not fulfill all
programming needs because they apply only to widening conversions between
compatible types. For all other cases you must employ a cast. A cast is an instruction
to the compiler to convert one type into another. Thus, it requests an explicit type
conversion. A cast has this general form:

(target-type) expression

Here, target-type specifies the desired type to convert the specified expression to.
For example, if you want to convert the type of the expression x/y to int, you can
write

Here, even though x and y are of type double, the cast converts the outcome of the
expression to int. The parentheses surrounding x / y are necessary. Otherwise, the
cast to int would apply only to the x and not to the outcome of the division. The cast
is necessary here because there is no automatic conversion from double to int.

When a cast involves a narrowing conversion, information might be lost. For
example, when casting a long into a short, information will be lost if the long’s
value is greater than the range of a short because its high-order bits are removed.
When a floating-point value is cast to an integer type, the fractional component will
also be lost due to truncation. For example, if the value 1.23 is assigned to an integer,
the resulting value will simply be 1. The 0.23 is lost.

The following program demonstrates some type conversions that require casts:

The output from the program is shown here:

In the program, the cast of (x / y) to int results in the truncation of the fractional
component, and information is lost. Next, no loss of information occurs when b is
assigned the value 100 because a byte can hold the value 100. However, when the
attempt is made to assign b the value 257, information loss occurs because 257

exceeds a byte’s maximum value. Finally, no information is lost, but a cast is needed
when assigning a byte value to a char.

Operator Precedence
Table 2-3 shows the order of precedence for all Java operators, from highest to
lowest. This table includes several operators that will be discussed later in this book.
Although technically separators, the [], (), and . can also act like operators. In that
capacity, they would have the highest precedence.

Table 2-3 The Precedence of the Java Operators

Try This 2-2 Display a Truth Table for the Logical
Operators

In this project, you will create a program that displays the truth table for Java’s
logical operators. You must make the columns in the table line up. This project
makes use of several features covered in this chapter, including one of Java’s escape
sequences and the logical operators. It also illustrates the differences in the
precedence between the arithmetic + operator and the logical operators.

1. Create a new file called LogicalOpTable.java.
2. To ensure that the columns line up, you will use the \t escape sequence to embed

tabs into each output string. For example, this println() statement displays the
header for the table:
System.out.println("P\tQ\tAND\tOR\tXOR\tNOT");

3. Each subsequent line in the table will use tabs to position the outcome of each
operation under its proper heading.

4. Here is the entire LogicalOpTable.java program listing. Enter it at this time.

Notice the parentheses surrounding the logical operations inside the println()
statements. They are necessary because of the precedence of Java’s operators.
The + operator is higher than the logical operators.

5. Compile and run the program. The following table is displayed.

6. On your own, try modifying the program so that it uses and displays 1’s and 0’s,
rather than true and false. This may involve a bit more effort than you might at
first think!

Expressions
Operators, variables, and literals are constituents of expressions. You probably
already know the general form of an expression from your other programming
experience, or from algebra. However, a few aspects of expressions will be discussed
now.

Type Conversion in Expressions
Within an expression, it is possible to mix two or more different types of data as long
as they are compatible with each other. For example, you can mix short and long
within an expression because they are both numeric types. When different types of
data are mixed within an expression, they are all converted to the same type. This is
accomplished through the use of Java’s type promotion rules.

First, all char, byte, and short values are promoted to int. Then, if one operand is
a long, the whole expression is promoted to long. If one operand is a float operand,
the entire expression is promoted to float. If any of the operands is double, the result
is double.

It is important to understand that type promotions apply only to the values
operated upon when an expression is evaluated. For example, if the value of a byte
variable is promoted to int inside an expression, outside the expression, the variable
is still a byte. Type promotion only affects the evaluation of an expression.

Type promotion can, however, lead to somewhat unexpected results. For example,
when an arithmetic operation involves two byte values, the following sequence
occurs: First, the byte operands are promoted to int. Then the operation takes place,
yielding an int result. Thus, the outcome of an operation involving two byte values
will be an int. This is not what you might intuitively expect. Consider the following
program:

Somewhat counterintuitively, no cast is needed when assigning b*b to i, because
b is promoted to int when the expression is evaluated. However, when you try to
assign b * b to b, you do need a cast—back to byte! Keep this in mind if you get
unexpected type-incompatibility error messages on expressions that would otherwise
seem perfectly OK.

This same sort of situation also occurs when performing operations on chars. For
example, in the following fragment, the cast back to char is needed because of the
promotion of ch1 and ch2 to int within the expression:

Without the cast, the result of adding ch1 to ch2 would be int, which can’t be
assigned to a char.

Casts are not only useful when converting between types in an assignment. For
example, consider the following program. It uses a cast to double to obtain a
fractional component from an otherwise integer division.

The output from the program is shown here:

Spacing and Parentheses
An expression in Java may have tabs and spaces in it to make it more readable. For
example, the following two expressions are the same, but the second is easier to
read:

Parentheses increase the precedence of the operations contained within them, just
like in algebra. Use of redundant or additional parentheses will not cause errors or
slow down the execution of the expression. You are encouraged to use parentheses to
make clear the exact order of evaluation, both for yourself and for others who may
have to figure out your program later. For example, which of the following two
expressions is easier to read?

 Chapter 2 Self Test

1. Why does Java strictly specify the range and behavior of its primitive types?
2. What is Java’s character type, and how does it differ from the character type

used by some other programming languages?
3. A boolean value can have any value you like because any non-zero value is true.

True or False?
4. Given this output,

One
Two
Three
using a single string, show the println() statement that produced it.

5. What is wrong with this fragment?

6. Explain the difference between the prefix and postfix forms of the increment
operator.

7. Show how a short-circuit AND can be used to prevent a divide-by-zero error.

8. In an expression, what type are byte and short promoted to?
9. In general, when is a cast needed?
10. Write a program that finds all of the prime numbers between 2 and 100.
11. Does the use of redundant parentheses affect program performance?
12. Does a block define a scope?

I

Chapter 3

Program Control Statements

Key Skills & Concepts
 Input characters from the keyboard

 Know the complete form of the if statement

 Use the switch statement

 Know the complete form of the for loop

 Use the while loop

 Use the do-while loop

 Use break to exit a loop

 Use break as a form of goto

 Apply continue

 Nest loops

n this chapter, you will learn about the statements that control a program’s flow
of execution. There are three categories of program control statements: selection
statements, which include the if and the switch; iteration statements, which

include the for, while, and do-while loops; and jump statements, which include
break, continue, and return. Except for return, which is discussed later in this
book, the remaining control statements, including the if and for statements to which
you have already had a brief introduction, are examined in detail here. The chapter
begins by explaining how to perform some simple keyboard input.

Input Characters from the Keyboard

Before examining Java’s control statements, we will make a short digression that
will allow you to begin writing interactive programs. Up to this point, the sample
programs in this book have displayed information to the user, but they have not
received information from the user. Thus, you have been using console output, but
not console (keyboard) input. The main reason for this is that Java’s input
capabilities rely on or make use of features not discussed until later in this book.
Also, most real-world Java applications will be graphical and window based, not
console based. For these reasons, not much use of console input is found in this
book. However, there is one type of console input that is relatively easy to use:
reading a character from the keyboard. Since several of the examples in this chapter
will make use of this feature, it is discussed here.

To read a character from the keyboard, we will use System.in.read(). System.in
is the complement to System.out. It is the input object attached to the keyboard. The
read() method waits until the user presses a key and then returns the result. The
character is returned as an integer, so it must be cast into a char to assign it to a char
variable. By default, console input is line buffered. Here, the term buffer refers to a
small portion of memory that is used to hold the characters before they are read by
your program. In this case, the buffer holds a complete line of text. As a result, you
must press ENTER before any character that you type will be sent to your program.
Here is a program that reads a character from the keyboard:

Here is a sample run:

Press a key followed by ENTER: t
Your key is: t

In the program, notice that main() begins like this:

Because System.in.read() is being used, the program must specify the throws
java.io.IOException clause. This line is necessary to handle input errors. It is part of
Java’s exception handling mechanism, which is discussed in Chapter 9. For now,
don’t worry about its precise meaning.

The fact that System.in is line buffered is a source of annoyance at times. When
you press ENTER, a carriage return, line feed sequence is entered into the input
stream. Furthermore, these characters are left pending in the input buffer until you
read them. Thus, for some applications, you may need to remove them (by reading
them) before the next input operation. You will see an example of this later in this
chapter.

The if Statement
Chapter 1 introduced the if statement. It is examined in detail here. The complete
form of the if statement is

if(condition) statement;
else statement;

where the targets of the if and else are single statements. The else clause is optional.
The targets of both the if and else can be blocks of statements. The general form of
the if, using blocks of statements, is

If the conditional expression is true, the target of the if will be executed; otherwise, if
it exists, the target of the else will be executed. At no time will both of them be
executed. The conditional expression controlling the if must produce a boolean

result.
To demonstrate the if (and several other control statements), we will create and

develop a simple computerized guessing game that would be suitable for young
children. In the first version of the game, the program asks the player for a letter
between A and Z. If the player presses the correct letter on the keyboard, the
program responds by printing the message ** Right **. The program is shown here:

This program prompts the player and then reads a character from the keyboard.
Using an if statement, it then checks that character against the answer, which is K in
this case. If K was entered, the message is displayed. When you try this program,
remember that the K must be entered in uppercase.

Taking the guessing game further, the next version uses the else to print a message
when the wrong letter is picked.

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are
very common in programming. The main thing to remember about nested ifs in Java
is that an else statement always refers to the nearest if statement that is within the
same block as the else and not already associated with an else. Here is an example:

As the comments indicate, the final else is not associated with if(j < 20), because it is
not in the same block (even though it is the nearest if without an else). Rather, the
final else is associated with if(i == 10). The inner else refers to if(k > 100), because
it is the closest if within the same block.

You can use a nested if to add a further improvement to the guessing game. This
addition provides the player with feedback about a wrong guess.

The if-else-if Ladder
A common programming construct that is based upon the nested if is the if-else-if
ladder. It looks like this:

The conditional expressions are evaluated from the top downward. As soon as a true
condition is found, the statement associated with it is executed, and the rest of the
ladder is bypassed. If none of the conditions are true, the final else statement will be
executed. The final else often acts as a default condition; that is, if all other
conditional tests fail, the last else statement is performed. If there is no final else and
all other conditions are false, no action will take place.

The following program demonstrates the if-else-if ladder:

The program produces the following output:

As you can see, the default else is executed only if none of the preceding if
statements succeeds.

The switch Statement
The second of Java’s selection statements is the switch. The switch provides for a
multiway branch. Thus, it enables a program to select among several alternatives.
Although a series of nested if statements can perform multiway tests, for many
situations the switch is a more efficient approach. It works like this: the value of an
expression is successively tested against a list of constants. When a match is found,
the statement sequence associated with that match is executed. The general form of
the switch statement is

For versions of Java prior to JDK 7, the expression controlling the switch must

resolve to type byte, short, int, char, or an enumeration. (Enumerations are
described in Chapter 12.) However, beginning with JDK 7, expression can also be of
type String. This means that modern versions of Java can use a string to control a
switch. (This technique is demonstrated in Chapter 5, when String is described.)
Frequently, the expression controlling a switch is simply a variable rather than a
larger expression.

Each value specified in the case statements must be a unique constant expression
(such as a literal value). Duplicate case values are not allowed. The type of each
value must be compatible with the type of expression.

The default statement sequence is executed if no case constant matches the
expression. The default is optional; if it is not present, no action takes place if all
matches fail. When a match is found, the statements associated with that case are
executed until the break is encountered or, in the case of default or the last case,
until the end of the switch is reached.

The following program demonstrates the switch:

The output produced by this program is shown here:

As you can see, each time through the loop, the statements associated with the case

constant that matches i are executed. All others are bypassed. When i is five or
greater, no case statements match, so the default statement is executed.

Technically, the break statement is optional, although most applications of the
switch will use it. When encountered within the statement sequence of a case, the
break statement causes program flow to exit from the entire switch statement and
resume at the next statement outside the switch. However, if a break statement does
not end the statement sequence associated with a case, then all the statements at and
following the matching case will be executed until a break (or the end of the switch)
is encountered.

For example, study the following program carefully. Before looking at the output,
can you figure out what it will display on the screen?

This program displays the following output:

As this program illustrates, execution will continue into the next case if no break
statement is present.

You can have empty cases, as shown in this example:

In this fragment, if i has the value 1, 2, or 3, the first println() statement executes. If
it is 4, the second println() statement executes. The “stacking” of cases, as shown in
this example, is common when several cases share common code.

Nested switch Statements
It is possible to have a switch as part of the statement sequence of an outer switch.
This is called a nested switch. Even if the case constants of the inner and outer
switch contain common values, no conflicts will arise. For example, the following

code fragment is perfectly acceptable:

Try This 3-1 Start Building a Java Help System

This project builds a simple help system that displays the syntax for the Java control
statements. The program displays a menu containing the control statements and then
waits for you to choose one. After one is chosen, the syntax of the statement is
displayed. In this first version of the program, help is available for only the if and
switch statements. The other control statements are added in subsequent projects.

1. Create a file called Help.java.
2. The program begins by displaying the following menu:

To accomplish this, you will use the statement sequence shown here:

3. Next, the program obtains the user’s selection by calling System.in.read(), as
shown here:
choice = (char) System.in.read();

4. Once the selection has been obtained, the program uses the switch statement
shown here to display the syntax for the selected statement.

Notice how the default clause catches invalid choices. For example, if the user
enters 3, no case constants will match, causing the default sequence to execute.

5. Here is the entire Help.java program listing:

6. Here is a sample run.

The for Loop
You have been using a simple form of the for loop since Chapter 1. You might be
surprised at just how powerful and flexible the for loop is. Let’s begin by reviewing
the basics, starting with the most traditional forms of the for.

The general form of the for loop for repeating a single statement is

for(initialization; condition; iteration) statement;

For repeating a block, the general form is

Ask the Expert
Q: Under what conditions should I use an if-else-if ladder rather than a

switch when coding a multiway branch?
A: In general, use an if-else-if ladder when the conditions controlling the

selection process do not rely upon a single value. For example, consider
the following if-else-if sequence:

This sequence cannot be recoded into a switch because all three conditions
involve different variables—and differing types. What variable would
control the switch? Also, you will need to use an if-else-if ladder when
testing floating-point values or other objects that are not of types valid for
use in a switch expression.

The initialization is usually an assignment statement that sets the initial value of the
loop control variable, which acts as the counter that controls the loop. The condition
is a Boolean expression that determines whether or not the loop will repeat. The
iteration expression defines the amount by which the loop control variable will
change each time the loop is repeated. Notice that these three major sections of the
loop must be separated by semicolons. The for loop will continue to execute as long
as the condition tests true. Once the condition becomes false, the loop will exit, and
program execution will resume on the statement following the for.

The following program uses a for loop to print the square roots of the numbers
between 1 and 99. It also displays the rounding error present for each square root.

Notice that the rounding error is computed by squaring the square root of each
number. This result is then subtracted from the original number, thus yielding the
rounding error.

The for loop can proceed in a positive or negative fashion, and it can change the

loop control variable by any amount. For example, the following program prints the
numbers 100 to –95, in decrements of 5:

An important point about for loops is that the conditional expression is always
tested at the top of the loop. This means that the code inside the loop may not be
executed at all if the condition is false to begin with. Here is an example:

This loop will never execute because its control variable, count, is greater than 5
when the loop is first entered. This makes the conditional expression, count < 5,
false from the outset; thus, not even one iteration of the loop will occur.

Some Variations on the for Loop
The for is one of the most versatile statements in the Java language because it allows
a wide range of variations. For example, multiple loop control variables can be used.
Consider the following program:

The output from the program is shown here:

Here, commas separate the two initialization statements and the two iteration
expressions. When the loop begins, both i and j are initialized. Each time the loop
repeats, i is incremented and j is decremented. Multiple loop control variables are
often convenient and can simplify certain algorithms. You can have any number of
initialization and iteration statements, but in practice, more than two or three make
the for loop unwieldy.

The condition controlling the loop can be any valid Boolean expression. It does
not need to involve the loop control variable. In the next example, the loop continues
to execute until the user types the letter S at the keyboard:

Missing Pieces
Some interesting for loop variations are created by leaving pieces of the loop
definition empty. In Java, it is possible for any or all of the initialization, condition,
or iteration portions of the for loop to be blank. For example, consider the following
program:

Here, the iteration expression of the for is empty. Instead, the loop control variable i
is incremented inside the body of the loop. This means that each time the loop
repeats, i is tested to see whether it equals 10, but no further action takes place. Of
course, since i is still incremented within the body of the loop, the loop runs
normally, displaying the following output:

In the next example, the initialization portion is also moved out of the for:

In this version, i is initialized before the loop begins, rather than as part of the for.
Normally, you will want to initialize the loop control variable inside the for. Placing
the initialization outside of the loop is generally done only when the initial value is
derived through a complex process that does not lend itself to containment inside the
for statement.

The Infinite Loop
You can create an infinite loop (a loop that never terminates) using the for by
leaving the conditional expression empty. For example, the following fragment
shows the way many Java programmers create an infinite loop:

This loop will run forever. Although there are some programming tasks, such as
operating system command processors, that require an infinite loop, most “infinite
loops” are really just loops with special termination requirements. Near the end of
this chapter, you will see how to halt a loop of this type. (Hint: It’s done using the
break statement.)

Loops with No Body
In Java, the body associated with a for loop (or any other loop) can be empty. This is
because a null statement is syntactically valid. Body-less loops are often useful. For
example, the following program uses one to sum the numbers 1 through 5:

The output from the program is shown here:

Sum is 15

Notice that the summation process is handled entirely within the for statement, and
no body is needed. Pay special attention to the iteration expression:

sum += i++

Don’t be intimidated by statements like this. They are common in professionally
written Java programs and are easy to understand if you break them down into their
parts. In other words, this statement says, “Add to sum the value of sum plus i, then
increment i.” Thus, it is the same as this sequence of statements:

sum = sum + i;
i++;

Declaring Loop Control Variables Inside the for
Loop
Often the variable that controls a for loop is needed only for the purposes of the loop
and is not used elsewhere. When this is the case, it is possible to declare the variable
inside the initialization portion of the for. For example, the following program
computes both the summation and the factorial of the numbers 1 through 5. It
declares its loop control variable i inside the for.

When you declare a variable inside a for loop, there is one important point to
remember: the scope of that variable ends when the for statement does. (That is, the
scope of the variable is limited to the for loop.) Outside the for loop, the variable
will cease to exist. Thus, in the preceding example, i is not accessible outside the for
loop. If you need to use the loop control variable elsewhere in your program, you
will not be able to declare it inside the for loop.

Before moving on, you might want to experiment with your own variations on the
for loop. As you will find, it is a fascinating loop.

The Enhanced for Loop
There is another form of the for loop, called the enhanced for. The enhanced for
provides a streamlined way to cycle through the contents of a collection of objects,
such as an array. The enhanced for loop is discussed in Chapter 5, after arrays have
been introduced.

The while Loop
Another of Java’s loops is the while. The general form of the while loop is

while(condition) statement;

where statement may be a single statement or a block of statements, and condition
defines the condition that controls the loop. The condition may be any valid Boolean
expression. The loop repeats while the condition is true. When the condition
becomes false, program control passes to the line immediately following the loop.

Here is a simple example in which a while is used to print the alphabet:

Here, ch is initialized to the letter a. Each time through the loop, ch is output and
then incremented. This process continues until ch is greater than z.

As with the for loop, the while checks the conditional expression at the top of the
loop, which means that the loop code may not execute at all. This eliminates the
need for performing a separate test before the loop. The following program
illustrates this characteristic of the while loop. It computes the integer powers of 2,
from 0 to 9.

The output from the program is shown here:

Notice that the while loop executes only when e is greater than 0. Thus, when e is
zero, as it is in the first iteration of the for loop, the while loop is skipped.

Ask the Expert
Q: Given the flexibility inherent in all of Java’s loops, what criteria

should I use when selecting a loop? That is, how do I choose the right
loop for a specific job?

A: Use a for loop when performing a known number of iterations based on
the value of a loop control variable. Use the do-while when you need a
loop that will always perform at least one iteration. The while is best used
when the loop will repeat until some condition becomes false.

The do-while Loop
The last of Java’s loops is the do-while. Unlike the for and the while loops, in which
the condition is tested at the top of the loop, the do-while loop checks its condition at
the bottom of the loop. This means that a do-while loop will always execute at least
once. The general form of the do-while loop is

Although the braces are not necessary when only one statement is present, they are
often used to improve readability of the do-while construct, thus preventing
confusion with the while. The do-while loop executes as long as the conditional
expression is true.

The following program loops until the user enters the letter q:

Using a do-while loop, we can further improve the guessing game program from
earlier in this chapter. This time, the program loops until you guess the letter.

Here is a sample run:

Notice one other thing of interest in this program. There are two do-while loops in
the program. The first loops until the user guesses the letter. Its operation and
meaning should be clear. The second do-while loop, shown again here, warrants
some explanation:

As explained earlier, console input is line buffered—you have to press ENTER before
characters are sent. Pressing ENTER causes a carriage return and a line feed (newline)
sequence to be generated. These characters are left pending in the input buffer. Also,
if you typed more than one key before pressing ENTER, they too would still be in the
input buffer. This loop discards those characters by continuing to read input until the
end of the line is reached. If they were not discarded, then those characters would
also be sent to the program as guesses, which is not what is wanted. (To see the
effect of this, you might try removing the inner do-while loop.) In Chapter 10, after
you have learned more about Java, some other, higher-level ways of handling
console input are described. However, the use of read() here gives you insight into
how the foundation of Java's I/O system operates. It also shows another example of
Java's loops in action.

Try This 3-2 Improve the Java Help System

This project expands on the Java help system that was created in Try This 3-1. This
version adds the syntax for the for, while, and do-while loops. It also checks the
user’s menu selection, looping until a valid response is entered.

1. Copy Help.java to a new file called Help2.java.
2. Change the first part of main() so that it uses a loop to display the choices, as

shown here:

Notice that a nested do-while loop is used to discard any unwanted characters
remaining in the input buffer. After making this change, the program will loop,
displaying the menu until the user enters a response that is between 1 and 5.

3. Expand the switch statement to include the for, while, and do-while loops, as
shown here:

Notice that no default statement is present in this version of the switch. Since
the menu loop ensures that a valid response will be entered, it is no longer
necessary to include a default statement to handle an invalid choice.

4. Here is the entire Help2.java program listing:

Use break to Exit a Loop
It is possible to force an immediate exit from a loop, bypassing any remaining code
in the body of the loop and the loop’s conditional test, by using the break statement.
When a break statement is encountered inside a loop, the loop is terminated and
program control resumes at the next statement following the loop. Here is a simple
example:

This program generates the following output:

0 1 2 3 4 5 6 7 8 9 Loop complete.

As you can see, although the for loop is designed to run from 0 to num (which in
this case is 100), the break statement causes it to terminate early, when i squared is
greater than or equal to num.

The break statement can be used with any of Java’s loops, including intentionally
infinite loops. For example, the following program simply reads input until the user
types the letter q:

When used inside a set of nested loops, the break statement will break out of only
the innermost loop. For example:

This program generates the following output:

As you can see, the break statement in the inner loop causes the termination of only
that loop. The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break
statement may appear in a loop. However, be careful. Too many break statements
have the tendency to destructure your code. Second, the break that terminates a
switch statement affects only that switch statement and not any enclosing loops.

Use break as a Form of goto
In addition to its uses with the switch statement and loops, the break statement can
be employed by itself to provide a “civilized” form of the goto statement. Java does
not have a goto statement, because it provides an unstructured way to alter the flow
of program execution. Programs that make extensive use of the goto are usually hard
to understand and hard to maintain. There are, however, a few places where the goto
is a useful and legitimate device. For example, the goto can be helpful when exiting
from a deeply nested set of loops. To handle such situations, Java defines an
expanded form of the break statement. By using this form of break, you can, for
example, break out of one or more blocks of code. These blocks need not be part of a
loop or a switch. They can be any block. Further, you can specify precisely where
execution will resume, because this form of break works with a label. As you will
see, break gives you the benefits of a goto without its problems.

The general form of the labeled break statement is shown here:

break label;

Typically, label is the name of a label that identifies a block of code. When this form
of break executes, control is transferred out of the named block of code. The labeled
block of code must enclose the break statement, but it does not need to be the
immediately enclosing block. This means that you can use a labeled break statement
to exit from a set of nested blocks. But you cannot use break to transfer control to a
block of code that does not enclose the break statement.

To name a block, put a label at the start of it. The block being labeled can be a

stand-alone block, or a statement that has a block as its target. A label is any valid
Java identifier followed by a colon. Once you have labeled a block, you can then use
this label as the target of a break statement. Doing so causes execution to resume at
the end of the labeled block. For example, the following program shows three nested
blocks:

The output from the program is shown here:

Let’s look closely at the program to understand precisely why this output is
produced. When i is 1, the first if statement succeeds, causing a break to the end of
the block of code defined by label one. This causes After block one. to print. When
i is 2, the second if succeeds, causing control to be transferred to the end of the block
labeled by two. This causes the messages After block two. and After block one. to
be printed, in that order. When i is 3, the third if succeeds, and control is transferred
to the end of the block labeled by three. Now, all three messages are displayed.

Here is another example. This time, break is being used to jump outside of a
series of nested for loops. When the break statement in the inner loop is executed,
program control jumps to the end of the block defined by the outer for loop, which is
labeled by done. This causes the remainder of all three loops to be bypassed.

The output from the program is shown here:

Precisely where you put a label is very important—especially when working with
loops. For example, consider the following program:

The output from this program is shown here:

In the program, both sets of nested loops are the same except for one point. In the
first set, the label precedes the outer for loop. In this case, when the break executes,
it transfers control to the end of the entire for block, skipping the rest of the outer
loop’s iterations. In the second set, the label precedes the outer for’s opening curly
brace. Thus, when break stop2 executes, control is transferred to the end of the
outer for’s block, causing the next iteration to occur.

Keep in mind that you cannot break to any label that is not defined for an
enclosing block. For example, the following program is invalid and will not compile:

Since the loop labeled one does not enclose the break statement, it is not possible to
transfer control to that block.

Ask the Expert
Q: You say that the goto is unstructured and that the break with a label

offers a better alternative. But really, doesn’t breaking to a label,
which might be many lines of code and levels of nesting removed
from the break, also destructure code?

A: The short answer is yes! However, in those cases in which a jarring
change in program flow is required, breaking to a label still retains some
structure. A goto has none!

Use continue
It is possible to force an early iteration of a loop, bypassing the loop’s normal control
structure. This is accomplished using continue. The continue statement forces the
next iteration of the loop to take place, skipping any code between itself and the
conditional expression that controls the loop. Thus, continue is essentially the
complement of break. For example, the following program uses continue to help
print the even numbers between 0 and 100:

Only even numbers are printed, because an odd one will cause the loop to iterate
early, bypassing the call to println().

In while and do-while loops, a continue statement will cause control to go
directly to the conditional expression and then continue the looping process. In the
case of the for, the iteration expression of the loop is evaluated, then the conditional
expression is executed, and then the loop continues.

As with the break statement, continue may specify a label to describe which
enclosing loop to continue. Here is an example program that uses continue with a
label:

The output from the program is shown here:

As the output shows, when the continue executes, control passes to the outer loop,
skipping the remainder of the inner loop.

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements that fit most applications. However, for those special circumstances in
which early iteration is needed, the continue statement provides a structured way to
accomplish it.

Try This 3-3 Finish the Java Help System

This project puts the finishing touches on the Java help system that was created in

the previous projects. This version adds the syntax for break and continue. It also
allows the user to request the syntax for more than one statement. It does this by
adding an outer loop that runs until the user enters q as a menu selection.

1. Copy Help2.java to a new file called Help3.java.
2. Surround all of the program code with an infinite for loop. Break out of this

loop, using break, when a letter q is entered. Since this loop surrounds all of the
program code, breaking out of this loop causes the program to terminate.

3. Change the menu loop as shown here:

Notice that this loop now includes the break and continue statements. It also
accepts the letter q as a valid choice.

4. Expand the switch statement to include the break and continue statements, as
shown here:

5. Here is the entire Help3.java program listing:

6. Here is a sample run:

Nested Loops
As you have seen in some of the preceding examples, one loop can be nested inside
of another. Nested loops are used to solve a wide variety of programming problems
and are an essential part of programming. So, before leaving the topic of Java’s loop
statements, let’s look at one more nested loop example. The following program uses
a nested for loop to find the factors of the numbers from 2 to 100:

Here is a portion of the output produced by the program:

In the program, the outer loop runs i from 2 through 100. The inner loop
successively tests all numbers from 2 up to i, printing those that evenly divide i.
Extra challenge: The preceding program can be made more efficient. Can you see
how? (Hint: The number of iterations in the inner loop can be reduced.)

 Chapter 3 Self Test

1. Write a program that reads characters from the keyboard until a period is
received. Have the program count the number of spaces. Report the total at the
end of the program.

2. Show the general form of the if-else-if ladder.
3. Given

to what if does the last else associate?
4. Show the for statement for a loop that counts from 1000 to 0 by –2.
5. Is the following fragment valid?

6. Explain what break does. Be sure to explain both of its forms.
7. In the following fragment, after the break statement executes, what is

displayed?

8. What does the following fragment print?

9. The iteration expression in a for loop need not always alter the loop control
variable by a fixed amount. Instead, the loop control variable can change in any
arbitrary way. Using this concept, write a program that uses a for loop to
generate and display the progression 1, 2, 4, 8, 16, 32, and so on.

10. The ASCII lowercase letters are separated from the uppercase letters by 32.
Thus, to convert a lowercase letter to uppercase, subtract 32 from it. Use this
information to write a program that reads characters from the keyboard. Have it

convert all lowercase letters to uppercase, and all uppercase letters to
lowercase, displaying the result. Make no changes to any other character. Have
the program stop when the user enters a period. At the end, have the program
display the number of case changes that have taken place.

11. What is an infinite loop?
12. When using break with a label, must the label be on a block that contains the

break?

B

Chapter 4

Introducing Classes, Objects, and Methods

Key Skills & Concepts
 Know the fundamentals of the class

 Understand how objects are created

 Understand how reference variables are assigned

 Create methods, return values, and use parameters

 Use the return keyword

 Return a value from a method

 Add parameters to a method

 Utilize constructors

 Create parameterized constructors

 Understand new

 Understand garbage collection

 Use the this keyword

efore you can go much further in your study of Java, you need to learn about
the class. The class is the essence of Java. It is the foundation upon which the
entire Java language is built because the class defines the nature of an object.

As such, the class forms the basis for object-oriented programming in Java. Within a
class are defined data and code that acts upon that data. The code is contained in
methods. Because classes, objects, and methods are fundamental to Java, they are
introduced in this chapter. Having a basic understanding of these features will allow
you to write more sophisticated programs and better understand certain key Java

elements described in the following chapter.

Class Fundamentals
Since all Java program activity occurs within a class, we have been using classes
since the start of this book. Of course, only extremely simple classes have been used,
and we have not taken advantage of the majority of their features. As you will see,
classes are substantially more powerful than the limited ones presented so far.

Let’s begin by reviewing the basics. A class is a template that defines the form of
an object. It specifies both the data and the code that will operate on that data. Java
uses a class specification to construct objects. Objects are instances of a class. Thus,
a class is essentially a set of plans that specify how to build an object. It is important
to be clear on one issue: a class is a logical abstraction. It is not until an object of that
class has been created that a physical representation of that class exists in memory.

One other point: Recall that the methods and variables that constitute a class are
called members of the class. The data members are also referred to as instance
variables.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by
specifying the instance variables that it contains and the methods that operate on
them. Although very simple classes might contain only methods or only instance
variables, most real-world classes contain both.

A class is created by using the keyword class. A simplified general form of a class
definition is shown here:

Although there is no syntactic rule that enforces it, a well-designed class should
define one and only one logical entity. For example, a class that stores names and
telephone numbers will not normally also store information about the stock market,
average rainfall, sunspot cycles, or other unrelated information. The point here is that
a well-designed class groups logically connected information. Putting unrelated
information into the same class will quickly destructure your code!

Up to this point, the classes that we have been using have had only one method:
main(). Soon you will see how to create others. However, notice that the general
form of a class does not specify a main() method. A main() method is required
only if that class is the starting point for your program. Also, some types of Java
applications don’t require a main().

Defining a Class
To illustrate classes, we will develop a class that encapsulates information about
vehicles, such as cars, vans, and trucks. This class is called Vehicle, and it will store
three items of information about a vehicle: the number of passengers that it can
carry, its fuel capacity, and its average fuel consumption (in miles per gallon).

The first version of Vehicle is shown next. It defines three instance variables:

passengers, fuelcap, and mpg. Notice that Vehicle does not contain any methods.
Thus, it is currently a data-only class. (Subsequent sections will add methods to it.)

A class definition creates a new data type. In this case, the new data type is called
Vehicle. You will use this name to declare objects of type Vehicle. Remember that a
class declaration is only a type description; it does not create an actual object. Thus,
the preceding code does not cause any objects of type Vehicle to come into
existence.

To actually create a Vehicle object, you will use a statement like the following:

Vehicle minivan = new Vehicle(); // create a Vehicle object called
minivan

After this statement executes, minivan refers to an instance of Vehicle. Thus, it will
have “physical” reality. For the moment, don’t worry about the details of this
statement.

Each time you create an instance of a class, you are creating an object that
contains its own copy of each instance variable defined by the class. Thus, every
Vehicle object will contain its own copies of the instance variables passengers,
fuelcap, and mpg. To access these variables, you will use the dot (.) operator. The
dot operator links the name of an object with the name of a member. The general
form of the dot operator is shown here:
object.member
Thus, the object is specified on the left, and the member is put on the right. For
example, to assign the fuelcap variable of minivan the value 16, use the following
statement:

minivan.fuelcap = 16;

In general, you can use the dot operator to access both instance variables and
methods.

Here is a complete program that uses the Vehicle class:

You should call the file that contains this program VehicleDemo.java because the
main() method is in the class called VehicleDemo, not the class called Vehicle.
When you compile this program, you will find that two .class files have been
created, one for Vehicle and one for VehicleDemo. The Java compiler automatically
puts each class into its own .class file. It is not necessary for both the Vehicle and
the VehicleDemo class to be in the same source file. You could put each class in its
own file, called Vehicle.java and VehicleDemo.java, respectively.

To run this program, you must execute VehicleDemo.class. The following output
is displayed:

Minivan can carry 7 with a range of 336

Before moving on, let’s review a fundamental principle: each object has its own
copies of the instance variables defined by its class. Thus, the contents of the

variables in one object can differ from the contents of the variables in another. There
is no connection between the two objects except for the fact that they are both
objects of the same type. For example, if you have two Vehicle objects, each has its
own copy of passengers, fuelcap, and mpg, and the contents of these can differ
between the two objects. The following program demonstrates this fact. (Notice that
the class with main() is now called TwoVehicles.)

The output produced by this program is shown here:

Minivan can carry 7 with a range of 336
Sportscar can carry 2 with a range of 168

As you can see, minivan’s data is completely separate from the data contained in
sportscar. The following illustration depicts this situation.

How Objects Are Created
In the preceding programs, the following line was used to declare an object of type
Vehicle:

Vehicle minivan = new Vehicle();

This declaration performs two functions. First, it declares a variable called minivan
of the class type Vehicle. This variable does not define an object. Instead, it is
simply a variable that can refer to an object. Second, the declaration creates an
instance of the object and assigns to minivan a reference to that object. This is done
by using the new operator.

The new operator dynamically allocates (that is, allocates at run time) memory for
an object and returns a reference to it. This reference is, essentially, the address in
memory of the object allocated by new. This reference is then stored in a variable.
Thus, in Java, all class objects must be dynamically allocated.

The two steps combined in the preceding statement can be rewritten like this to
show each step individually:

Vehicle minivan; // declare reference to object
minivan = new Vehicle(); // allocate a Vehicle object

The first line declares minivan as a reference to an object of type Vehicle. Thus,
minivan is a variable that can refer to an object, but it is not an object itself. At this
point, minivan does not refer to an object. The next line creates a new Vehicle
object and assigns a reference to it to minivan. Now, minivan is linked with an
object.

Reference Variables and Assignment
In an assignment operation, object reference variables act differently than do

variables of a primitive type, such as int. When you assign one primitive-type
variable to another, the situation is straightforward. The variable on the left receives
a copy of the value of the variable on the right. When you assign one object
reference variable to another, the situation is a bit more complicated because you are
changing the object that the reference variable refers to. The effect of this difference
can cause some counterintuitive results. For example, consider the following
fragment:

Vehicle car1 = new Vehicle();
Vehicle car2 = car1;

At first glance, it is easy to think that car1 and car2 refer to different objects, but
this is not the case. Instead, car1 and car2 will both refer to the same object. The
assignment of car1 to car2 simply makes car2 refer to the same object as does car1.
Thus, the object can be acted upon by either car1 or car2. For example, after the
assignment

car1.mpg = 26;

executes, both of these println() statements

System.out.println(car1.mpg);
System.out.println(car2.mpg);

display the same value: 26.
Although car1 and car2 both refer to the same object, they are not linked in any

other way. For example, a subsequent assignment to car2 simply changes the object
to which car2 refers. For example:

After this sequence executes, car2 refers to the same object as car3. The object
referred to by car1 is unchanged.

Methods
As explained, instance variables and methods are constituents of classes. So far, the
Vehicle class contains data, but no methods. Although data-only classes are perfectly
valid, most classes will have methods. Methods are subroutines that manipulate the

data defined by the class and, in many cases, provide access to that data. In most
cases, other parts of your program will interact with a class through its methods.

A method contains one or more statements. In well-written Java code, each
method performs only one task. Each method has a name, and it is this name that is
used to call the method. In general, you can give a method whatever name you
please. However, remember that main() is reserved for the method that begins
execution of your program. Also, don’t use Java’s keywords for method names.

When denoting methods in text, this book has used and will continue to use a
convention that has become common when writing about Java. A method will have
parentheses after its name. For example, if a method’s name is getval, it will be
written getval() when its name is used in a sentence. This notation will help you
distinguish variable names from method names in this book.

The general form of a method is shown here:

Here, ret-type specifies the type of data returned by the method. This can be any
valid type, including class types that you create. If the method does not return a
value, its return type must be void. The name of the method is specified by name.
This can be any legal identifier other than those already used by other items within
the current scope. The parameter-list is a sequence of type and identifier pairs
separated by commas. Parameters are essentially variables that receive the value of
the arguments passed to the method when it is called. If the method has no
parameters, the parameter list will be empty.

Adding a Method to the Vehicle Class
As just explained, the methods of a class typically manipulate and provide access to
the data of the class. With this in mind, recall that main() in the preceding examples
computed the range of a vehicle by multiplying its fuel consumption rate by its fuel
capacity. While technically correct, this is not the best way to handle this
computation. The calculation of a vehicle’s range is something that is best handled
by the Vehicle class itself. The reason for this conclusion is easy to understand: the
range of a vehicle is dependent upon the capacity of the fuel tank and the rate of fuel
consumption, and both of these quantities are encapsulated by Vehicle. By adding a
method to Vehicle that computes the range, you are enhancing its object-oriented
structure. To add a method to Vehicle, specify it within Vehicle’s declaration. For
example, the following version of Vehicle contains a method called range() that

displays the range of the vehicle.

This program generates the following output:

Minivan can carry 7. Range is 336
Sportscar can carry 2. Range is 168

Let’s look at the key elements of this program, beginning with the range()
method itself. The first line of range() is
void range() {

This line declares a method called range that has no parameters. Its return type is
void. Thus, range() does not return a value to the caller. The line ends with the
opening curly brace of the method body.

The body of range() consists solely of this line:

System.out.println("Range is " + fuelcap * mpg);

This statement displays the range of the vehicle by multiplying fuelcap by mpg.
Since each object of type Vehicle has its own copy of fuelcap and mpg, when
range() is called, the range computation uses the calling object’s copies of those
variables.

The range() method ends when its closing curly brace is encountered. This causes
program control to transfer back to the caller.

Next, look closely at this line of code from inside main():
minivan.range();

This statement invokes the range() method on minivan. That is, it calls range()
relative to the minivan object, using the object’s name followed by the dot operator.
When a method is called, program control is transferred to the method. When the
method terminates, control is transferred back to the caller, and execution resumes
with the line of code following the call.

In this case, the call to minivan.range() displays the range of the vehicle defined
by minivan. In similar fashion, the call to sportscar.range() displays the range of
the vehicle defined by sportscar. Each time range() is invoked, it displays the range
for the specified object.

There is something very important to notice inside the range() method: the
instance variables fuelcap and mpg are referred to directly, without preceding them
with an object name or the dot operator. When a method uses an instance variable
that is defined by its class, it does so directly, without explicit reference to an object
and without use of the dot operator. This is easy to understand if you think about it.
A method is always invoked relative to some object of its class. Once this invocation

has occurred, the object is known. Thus, within a method, there is no need to specify
the object a second time. This means that fuelcap and mpg inside range() implicitly
refer to the copies of those variables found in the object that invokes range().

Returning from a Method
In general, there are two conditions that cause a method to return—first, as the
range() method in the preceding example shows, when the method’s closing curly
brace is encountered. The second is when a return statement is executed. There are
two forms of return—one for use in void methods (those that do not return a value)
and one for returning values. The first form is examined here. The next section
explains how to return values.

In a void method, you can cause the immediate termination of a method by using
this form of return:

return ;

When this statement executes, program control returns to the caller, skipping any
remaining code in the method. For example, consider this method:

Here, the for loop will only run from 0 to 5, because once i equals 5, the method
returns. It is permissible to have multiple return statements in a method, especially
when there are two or more routes out of it. For example:

Here, the method returns if it is done or if an error occurs. Be careful, however,
because having too many exit points in a method can destructure your code; so avoid
using them casually. A well-designed method has well-defined exit points.

To review: A void method can return in one of two ways—its closing curly brace
is reached, or a return statement is executed.

Returning a Value
Although methods with a return type of void are not rare, most methods will return a
value. In fact, the ability to return a value is one of the most useful features of a
method. You have already seen one example of a return value: when we used the
sqrt() function to obtain a square root.

Return values are used for a variety of purposes in programming. In some cases,
such as with sqrt(), the return value contains the outcome of some calculation. In
other cases, the return value may simply indicate success or failure. In still others, it
may contain a status code. Whatever the purpose, using method return values is an
integral part of Java programming.

Methods return a value to the calling routine using this form of return:

return value;

Here, value is the value returned. This form of return can be used only with
methods that have a non-void return type. Furthermore, a non-void method must
return a value by using this form of return.

You can use a return value to improve the implementation of range(). Instead of
displaying the range, a better approach is to have range() compute the range and
return this value. Among the advantages to this approach is that you can use the
value for other calculations. The following example modifies range() to return the
range rather than displaying it.

The output is shown here:

Minivan can carry 7 with range of 336 Miles
Sportscar can carry 2 with range of 168 miles

In the program, notice that when range() is called, it is put on the right side of an
assignment statement. On the left is a variable that will receive the value returned by
range(). Thus, after

range1 = minivan.range();

executes, the range of the minivan object is stored in range1.
Notice that range() now has a return type of int. This means that it will return an

integer value to the caller. The return type of a method is important because the type
of data returned by a method must be compatible with the return type specified by
the method. Thus, if you want a method to return data of type double, its return type
must be type double.

Although the preceding program is correct, it is not written as efficiently as it
could be. Specifically, there is no need for the range1 or range2 variables. A call to
range() can be used in the println() statement directly, as shown here:

In this case, when println() is executed, minivan.range() is called automatically
and its value will be passed to println(). Furthermore, you can use a call to range()
whenever the range of a Vehicle object is needed. For example, this statement
compares the ranges of two vehicles:

if(v1.range() > v2.range()) System.out.println("v1 has greater range");

Using Parameters

It is possible to pass one or more values to a method when the method is called.
Recall that a value passed to a method is called an argument. Inside the method, the
variable that receives the argument is called a parameter. Parameters are declared
inside the parentheses that follow the method’s name. The parameter declaration
syntax is the same as that used for variables. A parameter is within the scope of its
method, and aside from its special task of receiving an argument, it acts like any
other local variable.

Here is a simple example that uses a parameter. Inside the ChkNum class, the
method isEven() returns true if the value that it is passed is even. It returns false
otherwise. Therefore, isEven() has a return type of boolean.

Here is the output produced by the program:

10 is even.
8 is even.

In the program, isEven() is called three times, and each time a different value is
passed. Let’s look at this process closely. First, notice how isEven() is called. The
argument is specified between the parentheses. When isEven() is called the first

time, it is passed the value 10. Thus, when isEven() begins executing, the parameter
x receives the value 10. In the second call, 9 is the argument, and x, then, has the
value 9. In the third call, the argument is 8, which is the value that x receives. The
point is that the value passed as an argument when isEven() is called is the value
received by its parameter, x.

A method can have more than one parameter. Simply declare each parameter,
separating one from the next with a comma. For example, the Factor class defines a
method called isFactor() that determines whether the first parameter is a factor of
the second.

Notice that when isFactor() is called, the arguments are also separated by commas.
When using multiple parameters, each parameter specifies its own type, which can

differ from the others. For example, this is perfectly valid:

int myMeth(int a, double b, float c) {
// ...

Adding a Parameterized Method to Vehicle
You can use a parameterized method to add a new feature to the Vehicle class: the
ability to compute the amount of fuel needed for a given distance. This new method
is called fuelneeded(). This method takes the number of miles that you want to
drive and returns the number of gallons of gas required. The fuelneeded() method is
defined like this:

Notice that this method returns a value of type double. This is useful since the
amount of fuel needed for a given distance might not be a whole number. The entire
Vehicle class that includes fuelneeded() is shown here:

The output from the program is shown here:

To go 252 miles minivan needs 12.0 gallons of fuel.
To go 252 miles sportscar needs 21.0 gallons of fuel.

Try This 4-1 Creating a Help Class

If one were to try to summarize the essence of the class in one sentence, it might be
this: a class encapsulates functionality. Of course, sometimes the trick is knowing
where one “functionality” ends and another begins. As a general rule, you will want
your classes to be the building blocks of your larger application. In order to do this,
each class must represent a single functional unit that performs clearly delineated
actions. Thus, you will want your classes to be as small as possible—but no smaller!
That is, classes that contain extraneous functionality confuse and destructure code,
but classes that contain too little functionality are fragmented. What is the balance? It
is at this point that the science of programming becomes the art of programming.
Fortunately, most programmers find that this balancing act becomes easier with
experience.

To begin to gain that experience you will convert the help system from Try This
3-3 in the preceding chapter into a Help class. Let’s examine why this is a good idea.
First, the help system defines one logical unit. It simply displays the syntax for
Java’s control statements. Thus, its functionality is compact and well defined.
Second, putting help in a class is an esthetically pleasing approach. Whenever you
want to offer the help system to a user, simply instantiate a help-system object.
Finally, because help is encapsulated, it can be upgraded or changed without causing
unwanted side effects in the programs that use it.

1. Create a new file called HelpClassDemo.java. To save you some typing, you
might want to copy the file from Try This 3-3, Help3.java, into
HelpClassDemo.java.

2. To convert the help system into a class, you must first determine precisely what
constitutes the help system. For example, in Help3.java, there is code to display
a menu, input the user’s choice, check for a valid response, and display
information about the item selected. The program also loops until the letter q is
pressed. If you think about it, it is clear that the menu, the check for a valid
response, and the display of the information are integral to the help system. How

user input is obtained, and whether repeated requests should be processed, are
not. Thus, you will create a class that displays the help information, the help
menu, and checks for a valid selection. Its methods will be called helpOn(),
showMenu(), and isValid(), respectively.

3. Create the helpOn() method as shown here:

4. Next, create the showMenu() method:

5. Create the isValid() method, shown here:

6. Assemble the foregoing methods into the Help class, shown here:

7. Finally, rewrite the main() method from Try This 3-3 so that it uses the new
Help class. Call this class HelpClassDemo.java. The entire listing for
HelpClassDemo.java is shown here:

When you try the program, you will find that it is functionally the same as before.
The advantage to this approach is that you now have a help system component that
can be reused whenever it is needed.

Constructors
In the preceding examples, the instance variables of each Vehicle object had to be
set manually using a sequence of statements, such as:

An approach like this would never be used in professionally written Java code. Aside
from being error prone (you might forget to set one of the fields), there is simply a
better way to accomplish this task: the constructor.

A constructor initializes an object when it is created. It has the same name as its
class and is syntactically similar to a method. However, constructors have no explicit
return type. Typically, you will use a constructor to give initial values to the instance
variables defined by the class, or to perform any other startup procedures required to
create a fully formed object.

All classes have constructors, whether you define one or not, because Java
automatically provides a default constructor. In this case, non-initialized member
variables have their default values, which are zero, null, and false, for numeric types,
reference types, and booleans, respectively. Once you define your own constructor,
the default constructor is no longer used.

Here is a simple example that uses a constructor:

In this example, the constructor for MyClass is

This constructor assigns the instance variable x of MyClass the value 10. This
constructor is called by new when an object is created. For example, in the line

MyClass t1 = new MyClass();

the constructor MyClass() is called on the t1 object, giving t1.x the value 10. The
same is true for t2. After construction, t2.x has the value 10. Thus, the output from
the program is

10 10

Parameterized Constructors
In the preceding example, a parameter-less constructor was used. Although this is
fine for some situations, most often you will need a constructor that accepts one or
more parameters. Parameters are added to a constructor in the same way that they are
added to a method: just declare them inside the parentheses after the constructor’s

name. For example, here, MyClass is given a parameterized constructor:

The output from this program is shown here:

10 88

In this version of the program, the MyClass() constructor defines one parameter
called i, which is used to initialize the instance variable, x. Thus, when the line

MyClass t1 = new MyClass(10);

executes, the value 10 is passed to i, which is then assigned to x.

Adding a Constructor to the Vehicle Class
We can improve the Vehicle class by adding a constructor that automatically
initializes the passengers, fuelcap, and mpg fields when an object is constructed.
Pay special attention to how Vehicle objects are created.

Both minivan and sportscar are initialized by the Vehicle() constructor when

they are created. Each object is initialized as specified in the parameters to its
constructor. For example, in the following line,

Vehicle minivan = new Vehicle(7, 16, 21);

the values 7, 16, and 21 are passed to the Vehicle() constructor when new creates
the object. Thus, minivan’s copy of passengers, fuelcap, and mpg will contain the
values 7, 16, and 21, respectively. The output from this program is the same as the
previous version.

The new Operator Revisited
Now that you know more about classes and their constructors, let’s take a closer look
at the new operator. In the context of an assignment, the new operator has this
general form:

class-var = new class-name(arg-list);

Here, class-var is a variable of the class type being created. The class-name is the
name of the class that is being instantiated. The class name followed by a
parenthesized argument list (which can be empty) specifies the constructor for the
class. If a class does not define its own constructor, new will use the default
constructor supplied by Java. Thus, new can be used to create an object of any class
type. The new operator returns a reference to the newly created object, which (in this
case) is assigned to class-var.

Since memory is finite, it is possible that new will not be able to allocate memory
for an object because insufficient memory exists. If this happens, a run-time
exception will occur. (You will learn about exceptions in Chapter 9.) For the sample
programs in this book, you won’t need to worry about running out of memory, but
you will need to consider this possibility in real-world programs that you write.

Garbage Collection
As you have seen, objects are dynamically allocated from a pool of free memory by
using the new operator. As explained, memory is not infinite, and the free memory
can be exhausted. Thus, it is possible for new to fail because there is insufficient free
memory to create the desired object. For this reason, a key component of any
dynamic allocation scheme is the recovery of free memory from unused objects,
making that memory available for subsequent reallocation. In some programming
languages, the release of previously allocated memory is handled manually.

However, Java uses a different, more trouble-free approach: garbage collection.
Java’s garbage collection system reclaims objects automatically—occurring

transparently, behind the scenes, without any programmer intervention. It works like
this: When no references to an object exist, that object is assumed to be no longer
needed, and the memory occupied by the object is released. This recycled memory
can then be used for a subsequent allocation.

Ask the Expert
Q: Why don’t I need to use new for variables of the primitive types, such

as int or float?
A: Java’s primitive types are not implemented as objects. Rather, because of

efficiency concerns, they are implemented as “normal” variables. A
variable of a primitive type actually contains the value that you have
given it. As explained, object variables are references to the object. This
layer of indirection (and other object features) adds overhead to an object
that is avoided by a primitive type.

Garbage collection occurs only sporadically during the execution of your program.
It will not occur simply because one or more objects exist that are no longer used.
For efficiency, the garbage collector will usually run only when two conditions are
met: there are objects to recycle, and there is a reason to recycle them. Remember,
garbage collection takes time, so the Java run-time system does it only when it is
appropriate. Thus, you can’t know precisely when garbage collection will take place.

The this Keyword
Before concluding this chapter, it is necessary to introduce this. When a method is
called, it is automatically passed an implicit argument that is a reference to the
invoking object (that is, the object on which the method is called). This reference is
called this. To understand this, first consider a program that creates a class called
Pwr that computes the result of a number raised to some integer power:

As you know, within a method, the other members of a class can be accessed
directly, without any object or class qualification. Thus, inside get_pwr(), the
statement

return val;

means that the copy of val associated with the invoking object will be returned.
However, the same statement can also be written like this:

return this.val;

Here, this refers to the object on which get_pwr() was called. Thus, this.val refers
to that object’s copy of val. For example, if get_pwr() had been invoked on x, then
this in the preceding statement would have been referring to x. Writing the statement
without using this is really just shorthand.

Here is the entire Pwr class written using the this reference:

Actually, no Java programmer would write Pwr as just shown because nothing is
gained, and the standard form is easier. However, this has some important uses. For
example, the Java syntax permits the name of a parameter or a local variable to be
the same as the name of an instance variable. When this happens, the local name
hides the instance variable. You can gain access to the hidden instance variable by
referring to it through this. For example, the following is a syntactically valid way to
write the Pwr() constructor.

In this version, the names of the parameters are the same as the names of the instance
variables, thus hiding them. However, this is used to “uncover” the instance
variables.

 Chapter 4 Self Test

1. What is the difference between a class and an object?
2. How is a class defined?
3. What does each object have its own copy of?
4. Using two separate statements, show how to declare an object called counter of

a class called MyCounter.
5. Show how a method called myMeth() is declared if it has a return type of

double and has two int parameters called a and b.
6. How must a method return if it returns a value?
7. What name does a constructor have?
8. What does new do?
9. What is garbage collection, and how does it work?
10. What is this?
11. Can a constructor have one or more parameters?
12. If a method returns no value, what must its return type be?

T

Chapter 5

More Data Types and Operators

Key Skills & Concepts
 Understand and create arrays

 Create multidimensional arrays

 Create irregular arrays

 Know the alternative array declaration syntax

 Assign array references

 Use the length array member

 Use the for-each style for loop

 Work with strings

 Apply command-line arguments

 Use the bitwise operators

 Apply the ? operator

his chapter returns to the subject of Java’s data types and operators. It
discusses arrays, the String type, the bitwise operators, and the ? ternary
operator. It also covers Java’s for-each style for loop. Along the way,

command-line arguments are described.

Arrays
An array is a collection of variables of the same type, referred to by a common
name. In Java, arrays can have one or more dimensions, although the one-
dimensional array is the most common. Arrays are used for a variety of purposes

because they offer a convenient means of grouping together related variables. For
example, you might use an array to hold a record of the daily high temperature for a
month, a list of stock price averages, or a list of your collection of programming
books.

The principal advantage of an array is that it organizes data in such a way that it
can be easily manipulated. For example, if you have an array containing the incomes
for a selected group of households, it is easy to compute the average income by
cycling through the array. Also, arrays organize data in such a way that it can be
easily sorted.

Although arrays in Java can be used just like arrays in other programming
languages, they have one special attribute: they are implemented as objects. This fact
is one reason that a discussion of arrays was deferred until objects had been
introduced. By implementing arrays as objects, several important advantages are
gained, not the least of which is that unused arrays can be garbage collected.

One-Dimensional Arrays
A one-dimensional array is a list of related variables. Such lists are common in
programming. For example, you might use a one-dimensional array to store the
account numbers of the active users on a network. Another array might be used to
store the current batting averages for a baseball team.

To declare a one-dimensional array, you can use this general form:

type array-name[] = new type[size];

Here, type declares the element type of the array. (The element type is also
commonly referred to as the base type.) The element type determines the data type of
each element contained in the array. The number of elements that the array will hold
is determined by size. Since arrays are implemented as objects, the creation of an
array is a two-step process. First, you declare an array reference variable. Second,
you allocate memory for the array, assigning a reference to that memory to the array
variable. Thus, arrays in Java are dynamically allocated using the new operator.

Here is an example. The following creates an int array of 10 elements and links it
to an array reference variable named sample:

int sample[] = new int[10];

This declaration works just like an object declaration. The sample variable holds a
reference to the memory allocated by new. This memory is large enough to hold 10
elements of type int. As with objects, it is possible to break the preceding declaration
in two. For example:

int sample[];
sample = new int[10];

In this case, when sample is first created, it refers to no physical object. It is only
after the second statement executes that sample is linked with an array.

An individual element within an array is accessed by use of an index. An index
describes the position of an element within an array. In Java, all arrays have zero as
the index of their first element. Because sample has 10 elements, it has index values
of 0 through 9. To index an array, specify the number of the element you want,
surrounded by square brackets. Thus, the first element in sample is sample[0], and
the last element is sample[9]. For example, the following program loads sample
with the numbers 0 through 9:

The output from the program is shown here:

Conceptually, the sample array looks like this:

Arrays are common in programming because they let you deal easily with large
numbers of related variables. For example, the following program finds the
minimum and maximum values stored in the nums array by cycling through the
array using a for loop:

The output from the program is shown here:

min and max: -978 100123

In the preceding program, the nums array was given values by hand, using 10
separate assignment statements. Although perfectly correct, there is an easier way to
accomplish this. Arrays can be initialized when they are created. The general form
for initializing a one-dimensional array is shown here:

type array-name[] = { val1, val2, val3, ... , valN };

Here, the initial values are specified by val1 through valN. They are assigned in
sequence, left to right, in index order. Java automatically allocates an array large
enough to hold the initializers that you specify. There is no need to explicitly use the
new operator. For example, here is a better way to write the MinMax program:

Array boundaries are strictly enforced in Java; it is a run-time error to overrun or
underrun the end of an array. If you want to confirm this for yourself, try the
following program that purposely overruns an array:

As soon as i reaches 10, an ArrayIndexOutOfBoundsException is generated and
the program is terminated.

Try This 5-1 Sorting an Array

Because a one-dimensional array organizes data into an indexable linear list, it is the
perfect data structure for sorting. In this project you will learn a simple way to sort
an array. As you may know, there are a number of different sorting algorithms.
There are the quick sort, the shaker sort, and the shell sort, to name just three.
However, the best known, simplest, and easiest to understand is called the Bubble
sort. Although the Bubble sort is not very efficient—in fact, its performance is
unacceptable for sorting large arrays—it may be used effectively for sorting small
arrays.

1. Create a file called Bubble.java.
2. The Bubble sort gets its name from the way it performs the sorting operation. It

uses the repeated comparison and, if necessary, exchange of adjacent elements in
the array. In this process, small values move toward one end and large ones
toward the other end. The process is conceptually similar to bubbles finding their
own level in a tank of water. The Bubble sort operates by making several passes
through the array, exchanging out-of-place elements when necessary. The
number of passes required to ensure that the array is sorted is equal to one less
than the number of elements in the array.

Here is the code that forms the core of the Bubble sort. The array being sorted is
called nums.

Notice that sort relies on two for loops. The inner loop checks adjacent
elements in the array, looking for out-of-order elements. When an out-of-order
element pair is found, the two elements are exchanged. With each pass, the
smallest of the remaining elements moves into its proper location. The outer
loop causes this process to repeat until the entire array has been sorted.

3. Here is the entire Bubble program:

The output from the program is shown here:

4. Although the Bubble sort is good for small arrays, it is not efficient when used on
larger ones. The best general-purpose sorting algorithm is the Quicksort. The
Quicksort, however, relies on features of Java that you have not yet learned
about.

Multidimensional Arrays
Although the one-dimensional array is the most commonly used array in
programming, multidimensional arrays (arrays of two or more dimensions) are
certainly not rare. In Java, a multidimensional array is an array of arrays.

Two-Dimensional Arrays
The simplest form of the multidimensional array is the two-dimensional array. A
two-dimensional array is, in essence, a list of one-dimensional arrays. To declare a
two-dimensional integer array table of size 10, 20 you would write

int table[][] = new int[10][20];

Pay careful attention to the declaration. Unlike some other computer languages,
which use commas to separate the array dimensions, Java places each dimension in
its own set of brackets. Similarly, to access point 3, 5 of array table, you would use
table[3][5].

In the next example, a two-dimensional array is loaded with the numbers 1
through 12.

In this example, table[0][0] will have the value 1, table[0][1] the value 2, table[0]
[2] the value 3, and so on. The value of table[2][3] will be 12. Conceptually, the
array will look like that shown in Figure 5-1.

Figure 5-1 Conceptual view of the table array by the TwoD program

Irregular Arrays
When you allocate memory for a multidimensional array, you need to specify only
the memory for the first (leftmost) dimension. You can allocate the remaining
dimensions separately. For example, the following code allocates memory for the
first dimension of table when it is declared. It allocates the second dimension
manually.

Although there is no advantage to individually allocating the second dimension
arrays in this situation, there may be in others. For example, when you allocate
dimensions separately, you do not need to allocate the same number of elements for
each index. Since multidimensional arrays are implemented as arrays of arrays, the
length of each array is under your control. For example, assume you are writing a
program that stores the number of passengers that ride an airport shuttle. If the
shuttle runs 10 times a day during the week and twice a day on Saturday and Sunday,
you could use the riders array shown in the following program to store the
information. Notice that the length of the second dimension for the first five indices
is 10 and the length of the second dimension for the last two indices is 2.

The use of irregular (or ragged) multidimensional arrays is not recommended for
most applications, because it runs contrary to what people expect to find when a

multidimensional array is encountered. However, irregular arrays can be used
effectively in some situations. For example, if you need a very large two-
dimensional array that is sparsely populated (that is, one in which not all of the
elements will be used), an irregular array might be a perfect solution.

Arrays of Three or More Dimensions
Java allows arrays with more than two dimensions. Here is the general form of a
multidimensional array declaration:
type name[][]...[] = new type[size1][size2]...[sizeN];
For example, the following declaration creates a 4 × 10 × 3 three-dimensional
integer array.

int multidim[][][] = new int[4][10][3];

Initializing Multidimensional Arrays
A multidimensional array can be initialized by enclosing each dimension’s initializer
list within its own set of curly braces. For example, the general form of array
initialization for a two-dimensional array is shown here:

Here, val indicates an initialization value. Each inner block designates a row. Within
each row, the first value will be stored in the first position of the subarray, the second
value in the second position, and so on. Notice that commas separate the initializer
blocks and that a semicolon follows the closing }.

For example, the following program initializes an array called sqrs with the
numbers 1 through 10 and their squares:

Here is the output from the program:

Alternative Array Declaration Syntax
There is a second form that can be used to declare an array:

type[] var-name;
Here, the square brackets follow the type specifier, not the name of the array
variable. For example, the following two declarations are equivalent:

int counter[] = new int[3];
int[] counter = new int[3];

The following declarations are also equivalent:

char table[][] = new char[3][4];
char[][] table = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays
at the same time. For example,

int[] nums, nums2, nums3; // create three arrays

This creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // also, create three arrays

The alternative declaration form is also useful when specifying an array as a return
type for a method. For example,

int[] someMeth() { ...

This declares that someMeth() returns an array of type int.
Because both forms of array declarations are in widespread use, both are used in

this book.

Assigning Array References
As with other objects, when you assign one array reference variable to another, you
are simply changing what object that variable refers to. You are not causing a copy
of the array to be made, nor are you causing the contents of one array to be copied to
the other. For example, consider this program:

The output from the program is shown here:

As the output shows, after the assignment of nums1 to nums2, both array reference
variables refer to the same object.

Using the length Member
Because arrays are implemented as objects, each array has associated with it a length
instance variable that contains the number of elements that the array can hold. (In
other words, length contains the size of the array.) Here is a program that
demonstrates this property:

This program displays the following output:

Pay special attention to the way length is used with the two-dimensional array table.
As explained, a two-dimensional array is an array of arrays. Thus, when the
expression

table.length

is used, it obtains the number of arrays stored in table, which is 3 in this case. To

obtain the length of any individual array in table, you will use an expression such as
this,

table[0].length

which, in this case, obtains the length of the first array.
One other thing to notice in LengthDemo is the way that list.length is used by the

for loops to govern the number of iterations that take place. Since each array carries
with it its own length, you can use this information rather than manually keeping
track of an array’s size. Keep in mind that the value of length has nothing to do with
the number of elements that are actually in use. It contains the number of elements
that the array is capable of holding.

The inclusion of the length member simplifies many algorithms by making certain
types of array operations easier—and safer—to perform. For example, the following
program uses length to copy one array to another while preventing an array overrun
and its attendant run-time exception.

Here, length helps perform two important functions. First, it is used to confirm that
the target array is large enough to hold the contents of the source array. Second, it
provides the termination condition of the for loop that performs the copy. Of course,
in this simple example, the sizes of the arrays are easily known, but this same
approach can be applied to a wide range of more challenging situations.

Try This 5-2 A Queue Class

As you may know, a data structure is a means of organizing data. The simplest data
structure is the array, which is a linear list that supports random access to its
elements. Arrays are often used as the underpinning for more sophisticated data
structures, such as stacks and queues. A stack is a list in which elements can be
accessed in first-in, last-out (FILO) order only. A queue is a list in which elements
can be accessed in first-in, first-out (FIFO) order only. Thus, a stack is like a stack of
plates on a table—the first down is the last to be used. A queue is like a line at a
bank—the first in line is the first served.

What makes data structures such as stacks and queues interesting is that they
combine storage for information with the methods that access that information. Thus,
stacks and queues are data engines in which storage and retrieval are provided by the
data structure itself, not manually by your program. Such a combination is,
obviously, an excellent choice for a class, and in this project you will create a simple
queue class.

In general, queues support two basic operations: put and get. Each put operation
places a new element on the end of the queue. Each get operation retrieves the next
element from the front of the queue. Queue operations are consumptive: once an
element has been retrieved, it cannot be retrieved again. The queue can also become
full, if there is no space available to store an item, and it can become empty, if all of
the elements have been removed.

One last point: There are two basic types of queues—circular and noncircular. A
circular queue reuses locations in the underlying array when elements are removed.
A noncircular queue does not reuse locations and eventually becomes exhausted. For
the sake of simplicity, this example creates a noncircular queue, but with a little
thought and effort, you can easily transform it into a circular queue.

1. Create a file called QDemo.java.
2. Although there are other ways to support a queue, the method we will use is

based upon an array. That is, an array will provide the storage for the items put
into the queue. This array will be accessed through two indices. The put index
determines where the next element of data will be stored. The get index indicates
at what location the next element of data will be obtained. Keep in mind that the
get operation is consumptive, and it is not possible to retrieve the same element

twice. Although the queue that we will be creating stores characters, the same
logic can be used to store any type of object. Begin creating the Queue class with
these lines:

3. The constructor for the Queue class creates a queue of a given size. Here is the
Queue constructor:

Notice that the put and get indices are initially set to zero.
4. The put() method, which stores elements, is shown next:

The method begins by checking for a queue-full condition. If putloc is equal to
one past the last location in the q array, there is no more room in which to store
elements. Otherwise, the new element is stored at that location and putloc is
incremented. Thus, putloc is always the index where the next element will be
stored.

5. To retrieve elements, use the get() method, shown next:

Notice first the check for queue-empty. If getloc and putloc both index the
same element, the queue is assumed to be empty. This is why getloc and putloc
were both initialized to zero by the Queue constructor. Then, the next element
is returned. In the process, getloc is incremented. Thus, getloc always indicates
the location of the next element to be retrieved.

6. Here is the entire QDemo.java program:

7. The output produced by the program is shown here:

8. On your own, try modifying Queue so that it stores other types of objects. For
example, have it store ints or doubles.

The For-Each Style for Loop
When working with arrays, it is common to encounter situations in which each
element in an array must be examined, from start to finish. For example, to compute
the sum of the values held in an array, each element in the array must be examined.
The same situation occurs when computing an average, searching for a value,
copying an array, and so on. Because such “start to finish” operations are so
common, Java defines a second form of the for loop that streamlines this operation.

The second form of the for implements a “for-each” style loop. A for-each loop
cycles through a collection of objects, such as an array, in strictly sequential fashion,
from start to finish. In recent years, for-each style loops have gained popularity

among both computer language designers and programmers. Originally, Java did not
offer a for-each style loop. However, with the release of JDK 5, the for loop was
enhanced to provide this option. The for-each style of for is also referred to as the
enhanced for loop. Both terms are used in this book.

The general form of the for-each style for is shown here.

for(type itr-var : collection) statement-block

Here, type specifies the type, and itr-var specifies the name of an iteration variable
that will receive the elements from a collection, one at a time, from beginning to end.
The collection being cycled through is specified by collection. There are various
types of collections that can be used with the for, but the only type used in this book
is the array. With each iteration of the loop, the next element in the collection is
retrieved and stored in itr-var. The loop repeats until all elements in the collection
have been obtained. Thus, when iterating over an array of size N, the enhanced for
obtains the elements in the array in index order, from 0 to N–1.

Because the iteration variable receives values from the collection, type must be the
same as (or compatible with) the elements stored in the collection. Thus, when
iterating over arrays, type must be compatible with the element type of the array.

To understand the motivation behind a for-each style loop, consider the type of for
loop that it is designed to replace. The following fragment uses a traditional for loop
to compute the sum of the values in an array:

To compute the sum, each element in nums is read, in order, from start to finish.
Thus, the entire array is read in strictly sequential order. This is accomplished by
manually indexing the nums array by i, the loop control variable. Furthermore, the
starting and ending value for the loop control variable, and its increment, must be
explicitly specified.

Ask the Expert
Q: Aside from arrays, what other types of collections can the for-each

style for loop cycle through?

A: One of the most important uses of the for-each style for is to cycle
through the contents of a collection defined by the Collections
Framework. The Collections Framework is a set of classes that
implement various data structures, such as lists, vectors, sets, and maps.
A discussion of the Collections Framework is beyond the scope of this
book, but detailed coverage of the Collections Framework can be found
in my book Java: The Complete Reference, Tenth Edition (Oracle
Press/McGraw-Hill Education, 2018).

The for-each style for automates the preceding loop. Specifically, it eliminates the
need to establish a loop counter, specify a starting and ending value, and manually
index the array. Instead, it automatically cycles through the entire array, obtaining
one element at a time, in sequence, from beginning to end. For example, here is the
preceding fragment rewritten using a for-each version of the for:

With each pass through the loop, x is automatically given a value equal to the next
element in nums. Thus, on the first iteration, x contains 1, on the second iteration, x
contains 2, and so on. Not only is the syntax streamlined, it also prevents boundary
errors.

Here is an entire program that demonstrates the for-each version of the for just
described:

The output from the program is shown here:

As this output shows, the for-each style for automatically cycles through an array in
sequence from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been
examined, it is possible to terminate the loop early by using a break statement. For
example, this loop sums only the first five elements of nums:

There is one important point to understand about the for-each style for loop. Its
iteration variable is “read-only” as it relates to the underlying array. An assignment
to the iteration variable has no effect on the underlying array. In other words, you
can’t change the contents of the array by assigning the iteration variable a new value.
For example, consider this program:

The first for loop increases the value of the iteration variable by a factor of 10.
However, this assignment has no effect on the underlying array nums, as the second
for loop illustrates. The output, shown here, proves this point:

1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

Iterating Over Multidimensional Arrays
The enhanced for also works on multidimensional arrays. Remember, however, that
in Java, multidimensional arrays consist of arrays of arrays. (For example, a two-
dimensional array is an array of one-dimensional arrays.) This is important when
iterating over a multidimensional array because each iteration obtains the next array,
not an individual element. Furthermore, the iteration variable in the for loop must be
compatible with the type of array being obtained. For example, in the case of a two-
dimensional array, the iteration variable must be a reference to a one-dimensional
array. In general, when using the for-each for to iterate over an array of N

dimensions, the objects obtained will be arrays of N–1 dimensions. To understand
the implications of this, consider the following program. It uses nested for loops to
obtain the elements of a two-dimensional array in row order, from first to last.

The output from this program is shown here:

In the program, pay special attention to this line:

for(int x[] : nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers.
This is necessary because each iteration of the for obtains the next array in nums,
beginning with the array specified by nums[0]. The inner for loop then cycles
through each of these arrays, displaying the values of each element.

Applying the Enhanced for
Since the for-each style for can only cycle through an array sequentially, from start
to finish, you might think that its use is limited. However, this is not true. A large
number of algorithms require exactly this mechanism. One of the most common is
searching. For example, the following program uses a for loop to search an unsorted
array for a value. It stops if the value is found.

The for-each style for is an excellent choice in this application because searching
an unsorted array involves examining each element in sequence. (Of course, if the
array were sorted, a binary search could be used, which would require a different
style loop.) Other types of applications that benefit from for-each style loops include
computing an average, finding the minimum or maximum of a set, looking for
duplicates, and so on.

Now that the for-each style for has been introduced, it will be used where
appropriate throughout the remainder of this book.

Strings
From a day-to-day programming standpoint, one of the most important of Java’s data
types is String. String defines and supports character strings. In some other
programming languages, a string is an array of characters. This is not the case with
Java. In Java, strings are objects.

Actually, you have been using the String class since Chapter 1, but you did not
know it. When you create a string literal, you are actually creating a String object.
For example, in the statement

System.out.println("In Java, strings are objects.");

the string "In Java, strings are objects." is automatically made into a String object by
Java. Thus, the use of the String class has been “below the surface” in the preceding
programs. In the following sections, you will learn to handle it explicitly. Be aware,
however, that the String class is quite large, and we will only scratch its surface
here. It is a class that you will want to explore on its own.

Constructing Strings
You can construct a String just like you construct any other type of object: by using
new and calling the String constructor. For example:

String str = new String("Hello");

This creates a String object called str that contains the character string "Hello". You
can also construct a String from another String. For example:

String str = new String("Hello");
String str2 = new String(str);

After this sequence executes, str2 will also contain the character string "Hello".
Another easy way to create a String is shown here:

String str = "Java strings are powerful.";

In this case, str is initialized to the character sequence "Java strings are powerful."
Once you have created a String object, you can use it anywhere that a quoted

string is allowed. For example, you can use a String object as an argument to
println(), as shown in this example:

The output from the program is shown here:

Java strings are objects.
They are constructed various ways.
They are constructed various ways.

Operating on Strings
The String class contains several methods that operate on strings. Here are the
general forms for a few:

Here is a program that demonstrates these methods:

This program generates the following output:

You can concatenate (join together) two strings using the + operator. For
example, this statement

initializes str4 with the string "OneTwoThree".

Ask the Expert
Q: Why does String define the equals() method? Can’t I just use ==?
A: The equals() method compares the character sequences of two String

objects for equality. Applying the == to two String references simply
determines whether the two references refer to the same object.

Arrays of Strings
Like any other data type, strings can be assembled into arrays. For example:

Here is the output from this program:

Strings Are Immutable
The contents of a String object are immutable. That is, once created, the character
sequence that makes up the string cannot be altered. This restriction allows Java to
implement strings more efficiently. Even though this probably sounds like a serious
drawback, it isn’t. When you need a string that is a variation on one that already
exists, simply create a new string that contains the desired changes. Since unused
String objects are automatically garbage collected, you don’t even need to worry
about what happens to the discarded strings. It must be made clear, however, that
String reference variables may, of course, change the object to which they refer. It is
just that the contents of a specific String object cannot be changed after it is created.

Ask the Expert
Q: You say that once created, String objects are immutable. I

understand that, from a practical point of view, this is not a serious
restriction, but what if I want to create a string that can be changed?

A: You’re in luck. Java offers a class called StringBuffer, which creates
string objects that can be changed. For example, in addition to the
charAt() method, which obtains the character at a specific location,
StringBuffer defines setCharAt(), which sets a character within the
string. Java also supplies StringBuilder, which is related to
StringBuffer, and also supports strings that can be changed. However,
for most purposes you will want to use String, not StringBuffer or
StringBuilder.

To fully understand why immutable strings are not a hindrance, we will use
another of String’s methods: substring(). The substring() method returns a new
string that contains a specified portion of the invoking string. Because a new String

object is manufactured that contains the substring, the original string is unaltered,
and the rule of immutability remains intact. The form of substring() that we will be
using is shown here:
String substring(int startIndex, int endIndex)
Here, startIndex specifies the beginning index, and endIndex specifies the stopping
point. Here is a program that demonstrates substring() and the principle of
immutable strings:

Here is the output from the program:

orgstr: Java makes the Web move.
substr: makes the Web

As you can see, the original string orgstr is unchanged, and substr contains the
substring.

Using a String to Control a switch Statement
As explained in Chapter 3, prior to JDK 7, a switch had to be controlled by an
integer type, such as int or char. This precluded the use of a switch in situations in
which one of several actions is selected based on the contents of a string. Instead, an
if-else-if ladder was the typical solution. Although an if-else-if ladder is semantically
correct, a switch statement would be the more natural idiom for such a selection.
Fortunately, this situation has been remedied. Today, you can use a String to control
a switch. This results in more readable, streamlined code in many situations.

Here is an example that demonstrates controlling a switch with a String:

As you would expect, the output from the program is

Canceling

The string contained in command (which is "cancel" in this program) is tested
against the case constants. When a match is found (as it is in the second case), the
code sequence associated with that sequence is executed.

Being able to use strings in a switch statement can be very convenient and can
improve the readability of some code. For example, using a string-based switch is an
improvement over using the equivalent sequence of if/else statements. However,
switching on strings can be less efficient than switching on integers. Therefore, it is
best to switch on strings only in cases in which the controlling data is already in
string form. In other words, don’t use strings in a switch unnecessarily.

Using Command-Line Arguments
Now that you know about the String class, you can understand the args parameter to

main() that has been in every program shown so far. Many programs accept what
are called command-line arguments. A command-line argument is the information
that directly follows the program’s name on the command line when it is executed.
To access the command-line arguments inside a Java program is quite easy—they
are stored as strings in the String array passed to main(). For example, the
following program displays all of the command-line arguments that it is called with:

If CLDemo is executed like this,

java CLDemo one two three

you will see the following output:

Notice that the first argument is stored at index 0, the second argument is stored at
index 1, and so on.

To get a taste of the way command-line arguments can be used, consider the next
program. It takes one command-line argument that specifies a person’s name. It then
searches through a two-dimensional array of strings for that name. If it finds a match,
it displays that person’s telephone number.

Here is a sample run:

java Phone Mary
Mary: 555-8976

The Bitwise Operators
In Chapter 2 you learned about Java’s arithmetic, relational, and logical operators.
Although these are the most commonly used, Java provides additional operators that
expand the set of problems to which Java can be applied: the bitwise operators. The
bitwise operators can be used on values of type long, int, short, char, or byte.
Bitwise operations cannot be used on boolean, float, or double, or class types. They
are called the bitwise operators because they are used to test, set, or shift the
individual bits that make up a value. Bitwise operations are important to a wide

variety of systems-level programming tasks in which status information from a
device must be interrogated or constructed. Table 5-1 lists the bitwise operators.

Table 5-1 The Bitwise Operators

The Bitwise AND, OR, XOR, and NOT Operators
The bitwise operators AND, OR, XOR, and NOT are &, |, ^, and ~. They perform
the same operations as their Boolean logical equivalents described in Chapter 2. The
difference is that the bitwise operators work on a bit-by-bit basis. The following
table shows the outcome of each operation using 1’s and 0’s:

In terms of its most common usage, you can think of the bitwise AND as a way to
turn bits off. That is, any bit that is 0 in either operand will cause the corresponding
bit in the outcome to be set to 0. For example:

The following program demonstrates the & by turning any lowercase letter into
uppercase by resetting the 6th bit to 0. As the Unicode/ASCII character set is
defined, the lowercase letters are the same as the uppercase ones except that the
lowercase ones are greater in value by exactly 32. Therefore, to transform a
lowercase letter to uppercase, just turn off the 6th bit, as this program illustrates:

The output from this program is shown here:

aA bB cC dD eE fF gG hH iI jJ

The value 65,503 used in the AND statement is the decimal representation of 1111
1111 1101 1111. Thus, the AND operation leaves all bits in ch unchanged except for
the 6th one, which is set to 0.

The AND operator is also useful when you want to determine whether a bit is on
or off. For example, this statement determines whether bit 4 in status is set:

if((status & 8)!= 0) System.out.println("bit 4 is on");

The number 8 is used because it translates into a binary value that has only the 4th
bit set. Therefore, the if statement can succeed only when bit 4 of status is also on.
An interesting use of this concept is to show the bits of a byte value in binary format.

The output is shown here:

0 1 1 1 1 0 1 1

The for loop successively tests each bit in val, using the bitwise AND, to determine
whether it is on or off. If the bit is on, the digit 1 is displayed; otherwise, 0 is
displayed. In Try This 5-3, you will see how this basic concept can be expanded to
create a class that will display the bits in any type of integer.

The bitwise OR, as the reverse of AND, can be used to turn bits on. Any bit that is
set to 1 in either operand will cause the corresponding bit in the result to be set to 1.
For example:

We can make use of the OR to change the uppercasing program into a lowercasing
program, as shown here:

The output from this program is shown here:

Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj

The program works by ORing each character with the value 32, which is 0000 0000
0010 0000 in binary. Thus, 32 is the value that produces a value in binary in which
only the 6th bit is set. When this value is ORed with any other value, it produces a
result in which the 6th bit is set and all other bits remain unchanged. As explained,
for characters this means that each uppercase letter is transformed into its lowercase
equivalent.

An exclusive OR, usually abbreviated XOR, will result in a set bit if, and only if,
the bits being compared are different, as illustrated here:

The XOR operator has an interesting property that makes it a simple way to
encode a message. When some value X is XORed with another value Y, and then
that result is XORed with Y again, X is produced. That is, given the sequence

then R2 is the same value as X. Thus, the outcome of a sequence of two XORs can
produce the original value.

You can use this principle to create a simple cipher program in which some

integer is the key that is used to both encode and decode a message by XORing the
characters in that message. To encode, the XOR operation is applied the first time,
yielding the cipher text. To decode, the XOR is applied a second time, yielding the
plain text. Of course, such a cipher has no practical value, being trivially easy to
break. It does, however, provide an interesting way to demonstrate the XOR. Here is
a program that uses this approach to encode and decode a short message:

Here is the output:

As you can see, the result of two XORs using the same key produces the decoded
message.

The unary one’s complement (NOT) operator reverses the state of all the bits of
the operand. For example, if some integer called A has the bit pattern 1001 0110,
then ~A produces a result with the bit pattern 0110 1001.

The following program demonstrates the NOT operator by displaying a number
and its complement in binary:

Here is the output:

1 1 0 1 1 1 1 0
0 0 1 0 0 0 0 1

The Shift Operators
In Java it is possible to shift the bits that make up a value to the left or to the right by
a specified amount. Java defines the three bit-shift operators shown here:

The general forms for these operators are shown here:

value << num-bits
value >> num-bits
value >>> num-bits

Here, value is the value being shifted by the number of bit positions specified by
num-bits.

Each left shift causes all bits within the specified value to be shifted left one
position and a 0 bit to be brought in on the right. Each right shift shifts all bits to the
right one position and preserves the sign bit. As you may know, negative numbers
are usually represented by setting the high-order bit of an integer value to 1, and this
is the approach used by Java. Thus, if the value being shifted is negative, each right
shift brings in a 1 on the left. If the value is positive, each right shift brings in a 0 on
the left.

In addition to the sign bit, there is something else to be aware of when right
shifting. Java uses two’s complement to represent negative values. In this approach
negative values are stored by first reversing the bits in the value and then adding 1.
Thus, the byte value for –1 in binary is 1111 1111. Right shifting this value will
always produce –1!

If you don’t want to preserve the sign bit when shifting right, you can use an
unsigned right shift (>>>), which always brings in a 0 on the left. For this reason, the
>>> is also called the zero-fill right shift. You will use the unsigned right shift when
shifting bit patterns, such as status codes, that do not represent integers.

For all of the shifts, the bits shifted out are lost. Thus, a shift is not a rotate, and
there is no way to retrieve a bit that has been shifted out.

Shown next is a program that graphically illustrates the effect of a left and right
shift. Here, an integer is given an initial value of 1, which means that its low-order
bit is set. Then, a series of eight shifts are performed on the integer. After each shift,
the lower 8 bits of the value are shown. The process is then repeated, except that a 1
is put in the 8th bit position, and right shifts are performed.

The output from the program is shown here:

You need to be careful when shifting byte and short values because Java will
automatically promote these types to int when evaluating an expression. For
example, if you right shift a byte value, it will first be promoted to int and then
shifted. The result of the shift will also be of type int. Often this conversion is of no
consequence. However, if you shift a negative byte or short value, it will be sign-
extended when it is promoted to int. Thus, the high-order bits of the resulting integer
value will be filled with ones. This is fine when performing a normal right shift. But
when you perform a zero-fill right shift, there are 24 ones to be shifted before the
byte value begins to see zeros.

Bitwise Shorthand Assignments
All of the binary bitwise operators have a shorthand form that combines an
assignment with the bitwise operation. For example, the following two statements
both assign to x the outcome of an XOR of x with the value 127.

Ask the Expert
Q: Since binary is based on powers of two, can the shift operators be

used as a shortcut for multiplying or dividing an integer by two?
A: Yes. The bitwise shift operators can be used to perform very fast

multiplication or division by two. A shift left doubles a value. A shift
right halves it.

Try This 5-3 A ShowBits Class

This project creates a class called ShowBits that enables you to display in binary the
bit pattern for any integer value. Such a class can be quite useful in programming.
For example, if you are debugging device-driver code, then being able to monitor the
data stream in binary is often a benefit.

1. Create a file called ShowBitsDemo.java.
2. Begin the ShowBits class as shown here:

ShowBits creates objects that display a specified number of bits. For example,
to create an object that will display the low-order 8 bits of some value, use
ShowBits byteval = new ShowBits(8)
The number of bits to display is stored in numbits.

3. To actually display the bit pattern, ShowBits provides the method show(), which
is shown here:

Notice that show() specifies one long parameter. This does not mean that you
always have to pass show() a long value, however. Because of Java’s
automatic type promotions, any integer type can be passed to show(). The
number of bits displayed is determined by the value stored in numbits. After
each group of 8 bits, show() outputs a space. This makes it easier to read the
binary values of long bit patterns.

4. The ShowBitsDemo program is shown here:

5. The output from ShowBitsDemo is shown here:

The ? Operator
One of Java’s most fascinating operators is the ?. The ? operator is often used to
replace if-else statements of this general form:

Here, the value assigned to var depends upon the outcome of the condition
controlling the if.

The ? is called a ternary operator because it requires three operands. It takes the
general form
Exp1 ? Exp2 : Exp3;
where Exp1 is a boolean expression, and Exp2 and Exp3 are expressions of any type
other than void. The type of Exp2 and Exp3 must be the same (or compatible),
though. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true,
then Exp2 is evaluated and becomes the value of the entire ? expression. If Exp1 is
false, then Exp3 is evaluated and its value becomes the value of the expression.
Consider this example, which assigns absval the absolute value of val:
absval = val < 0 ? -val : val; // get absolute value of val

Here, absval will be assigned the value of val if val is zero or greater. If val is
negative, then absval will be assigned the negative of that value (which yields a
positive value). The same code written using the if-else structure would look like
this:

if(val < 0) absval = -val;
else absval = val;

Here is another example of the ? operator. This program divides two numbers, but
will not allow a division by zero.

The output from the program is shown here:

Pay special attention to this line from the program:

result = i != 0 ? 100 / i : 0;

Here, result is assigned the outcome of the division of 100 by i. However, this
division takes place only if i is not zero. When i is zero, a placeholder value of zero
is assigned to result.

You don’t actually have to assign the value produced by the ? to some variable.
For example, you could use the value as an argument in a call to a method. Or, if the
expressions are all of type boolean, the ? can be used as the conditional expression
in a loop or if statement. For example, here is the preceding program rewritten a bit
more efficiently. It produces the same output as before.

Notice the if statement. If i is zero, then the outcome of the if is false, the division by
zero is prevented, and no result is displayed. Otherwise, the division takes place.

 Chapter 5 Self Test

1. Show two ways to declare a one-dimensional array of 12 doubles.
2. Show how to initialize a one-dimensional array of integers to the values 1

through 5.
3. Write a program that uses an array to find the average of 10 double values. Use

any 10 values you like.
4. Change the sort in Try This 5-1 so that it sorts an array of strings. Demonstrate

that it works.
5. What is the difference between the String methods indexOf() and lastIndexOf(

)?
6. Since all strings are objects of type String, show how you can call the length()

and charAt() methods on this string literal: "I like Java".
7. Expanding on the Encode cipher class, modify it so that it uses an eight-

character string as the key.
8. Can the bitwise operators be applied to the double type?
9. Show how this sequence can be rewritten using the ? operator.

if(x < 0) y = 10;
else y = 20;

10. In the following fragment, is the & a bitwise or logical operator? Why?

11. Is it an error to overrun the end of an array? Is it an error to index an array with
a negative value?

12. What is the unsigned right-shift operator?
13. Rewrite the MinMax class shown earlier in this chapter so that it uses a for-

each style for loop.
14. Can the for loops that perform sorting in the Bubble class shown in Try This 5-

1 be converted into for-each style loops? If not, why not?
15. Can a String control a switch statement?

T

Chapter 6

A Closer Look at Methods and Classes

Key Skills & Concepts
 Control access to members

 Pass objects to a method

 Return objects from a method

 Overload methods

 Overload constructors

 Use recursion

 Apply static

 Use inner classes

 Use varargs

his chapter resumes our examination of classes and methods. It begins by
explaining how to control access to the members of a class. It then discusses
the passing and returning of objects, method overloading, recursion, and the

use of the keyword static. Also described are nested classes and variable-length
arguments.

Controlling Access to Class Members
In its support for encapsulation, the class provides two major benefits. First, it links
data with the code that manipulates it. You have been taking advantage of this aspect
of the class since Chapter 4. Second, it provides the means by which access to
members can be controlled. It is this feature that is examined here.

Although Java’s approach is a bit more sophisticated, in essence, there are two

basic types of class members: public and private. A public member can be freely
accessed by code defined outside of its class. A private member can be accessed only
by other methods defined by its class. It is through the use of private members that
access is controlled.

Restricting access to a class’ members is a fundamental part of object-oriented
programming because it helps prevent the misuse of an object. By allowing access to
private data only through a well-defined set of methods, you can prevent improper
values from being assigned to that data—by performing a range check, for example.
It is not possible for code outside the class to set the value of a private member
directly. You can also control precisely how and when the data within an object is
used. Thus, when correctly implemented, a class creates a “black box” that can be
used, but the inner workings of which are not open to tampering.

Up to this point, you haven’t had to worry about access control because Java
provides a default access setting in which, for the types of programs shown earlier,
the members of a class are freely available to the other code in the program. (Thus,
for the preceding examples, the default access setting is essentially public.) Although
convenient for simple classes (and example programs in books such as this one), this
default setting is inadequate for many real-world situations. Here we introduce
Java’s other access control features.

Java’s Access Modifiers
Member access control is achieved through the use of three access modifiers: public,
private, and protected. As explained, if no access modifier is used, the default
access setting is assumed. In this chapter, we will be concerned with public and
private. The protected modifier applies only when inheritance is involved and is
described in Chapter 8.

When a member of a class is modified by the public specifier, that member can be
accessed by any other code in your program. This includes by methods defined
inside other classes.

When a member of a class is specified as private, that member can be accessed
only by other members of its class. Thus, methods in other classes cannot access a
private member of another class.

The default access setting (in which no access modifier is used) is the same as
public unless your program is broken down into packages. A package is, essentially,
a grouping of classes. Packages are both an organizational and an access control
feature, but a discussion of packages must wait until Chapter 8. For the types of
programs shown in this and the preceding chapters, public access is the same as
default access.

An access modifier precedes the rest of a member’s type specification. That is, it

must begin a member’s declaration statement. Here are some examples:

To understand the effects of public and private, consider the following program:

As you can see, inside the MyClass class, alpha is specified as private, beta is
explicitly specified as public, and gamma uses the default access, which for this
example is the same as specifying public. Because alpha is private, it cannot be
accessed by code outside of its class. Therefore, inside the AccessDemo class, alpha
cannot be used directly. It must be accessed through its public accessor methods:
setAlpha() and getAlpha(). If you were to remove the comment symbol from the
beginning of the following line,

// ob.alpha = 10; // Wrong! alpha is private!

you would not be able to compile this program because of the access violation.
Although access to alpha by code outside of MyClass is not allowed, methods
defined within MyClass can freely access it, as the setAlpha() and getAlpha()
methods show.

The key point is this: A private member can be used freely by other members of
its class, but it cannot be accessed by code outside its class.

To see how access control can be applied to a more practical example, consider
the following program that implements a “fail-soft” int array, in which boundary

errors are prevented, thus avoiding a run-time exception from being generated. This
is accomplished by encapsulating the array as a private member of a class, allowing
access to the array only through member methods. With this approach, any attempt
to access the array beyond its boundaries can be prevented, with such an attempt
failing gracefully (resulting in a “soft” landing rather than a “crash”). The fail-soft
array is implemented by the FailSoftArray class, shown here:

The output from the program is shown here:

Let’s look closely at this example. Inside FailSoftArray are defined three private
members. The first is a, which stores a reference to the array that will actually hold
information. The second is errval, which is the value that will be returned when a
call to get() fails. The third is the private method indexOK(), which determines
whether an index is within bounds. Thus, these three members can be used only by
other members of the FailSoftArray class. Specifically, a and errval can be used

only by other methods in the class, and indexOK() can be called only by other
members of FailSoftArray. The rest of the class members are public and can be
called by any other code in a program that uses FailSoftArray.

When a FailSoftArray object is constructed, you must specify the size of the
array and the value that you want to return if a call to get() fails. The error value
must be a value that would otherwise not be stored in the array. Once constructed,
the actual array referred to by a and the error value stored in errval cannot be
accessed by users of the FailSoftArray object. Thus, they are not open to misuse.
For example, the user cannot try to index a directly, possibly exceeding its bounds.
Access is available only through the get() and put() methods.

The indexOK() method is private mostly for the sake of illustration. It would be
harmless to make it public because it does not modify the object. However, since it
is used internally by the FailSoftArray class, it can be private.

Notice that the length instance variable is public. This is in keeping with the way
Java implements arrays. To obtain the length of a FailSoftArray, simply use its
length member.

To use a FailSoftArray array, call put() to store a value at the specified index.
Call get() to retrieve a value from a specified index. If the index is out-of-bounds,
put() returns false and get() returns errval.

For the sake of convenience, the majority of the examples in this book will
continue to use default access for most members. Remember, however, that in the
real world, restricting access to members—especially instance variables—is an
important part of successful object-oriented programming. As you will see in
Chapter 7, access control is even more vital when inheritance is involved.

NOTE
The new modules feature added by JDK 9 can also play a role in accessibility.
Modules are discussed in Chapter 15.

Try This 6-1 Improving the Queue Class

You can use the private modifier to make a rather important improvement to the
Queue class developed in Chapter 5, Try This 5-2. In that version, all members of
the Queue class use the default access. This means that it would be possible for a
program that uses a Queue to directly access the underlying array, possibly

accessing its elements out of turn. Since the entire point of a queue is to provide a
first-in, first-out list, allowing out-of-order access is not desirable. It would also be
possible for a malicious programmer to alter the values stored in the putloc and
getloc indices, thus corrupting the queue. Fortunately, these types of problems are
easy to prevent by applying the private specifier.

1. Copy the original Queue class in Try This 5-2 to a new file called Queue.java.
2. In the Queue class, add the private modifier to the q array, and the indices

putloc and getloc, as shown here:

3. Changing q, putloc, and getloc from default access to private access has no effect
on a program that properly uses Queue. For example, it still works fine with the
QDemo class from Try This 5-2. However, it prevents the improper use of a
Queue. For example, the following types of statements are illegal:

4. Now that q, putloc, and getloc are private, the Queue class strictly enforces the
first-in, first-out attribute of a queue.

Pass Objects to Methods
Up to this point, the examples in this book have been using simple types as
parameters to methods. However, it is both correct and common to pass objects to
methods. For example, the following program defines a class called Block that stores
the dimensions of a three-dimensional block:

This program generates the following output:

The sameBlock() and sameVolume() methods compare the Block object passed

as a parameter to the invoking object. For sameBlock(), the dimensions of the
objects are compared and true is returned only if the two blocks are the same. For
sameVolume(), the two blocks are compared only to determine whether they have
the same volume. In both cases, notice that the parameter ob specifies Block as its
type. Although Block is a class type created by the program, it is used in the same
way as Java’s built-in types.

How Arguments Are Passed
As the preceding example demonstrated, passing an object to a method is a
straightforward task. However, there are some nuances of passing an object that are
not shown in the example. In certain cases, the effects of passing an object will be
different from those experienced when passing non-object arguments. To see why,
you need to understand in a general sense the two ways in which an argument can be
passed to a subroutine.

The first way is call-by-value. This approach copies the value of an argument into
the formal parameter of the subroutine. Therefore, changes made to the parameter of
the subroutine have no effect on the argument in the call. The second way an
argument can be passed is call-by-reference. In this approach, a reference to an
argument (not the value of the argument) is passed to the parameter. Inside the
subroutine, this reference is used to access the actual argument specified in the call.
This means that changes made to the parameter will affect the argument used to call
the subroutine. As you will see, although Java uses call-by-value to pass arguments,
the precise effect differs between whether a primitive type or a reference type is
passed.

When you pass a primitive type, such as int or double, to a method, it is passed by
value. Thus, a copy of the argument is made, and what occurs to the parameter that
receives the argument has no effect outside the method. For example, consider the
following program:

The output from this program is shown here:

a and b before call: 15 20
a and b after call: 15 20

As you can see, the operations that occur inside noChange() have no effect on the
values of a and b used in the call.

When you pass an object to a method, the situation changes dramatically, because
objects are implicitly passed by reference. Keep in mind that when you create a
variable of a class type, you are creating a reference to an object. It is the reference,
not the object itself, that is actually passed to the method. As a result, when you pass
this reference to a method, the parameter that receives it will refer to the same object
as that referred to by the argument. This effectively means that objects are passed to
methods by use of call-by-reference. Changes to the object inside the method do
affect the object used as an argument. For example, consider the following program:

This program generates the following output:

ob.a and ob.b before call: 15 20
ob.a and ob.b after call: 35 -20

As you can see, in this case, the actions inside change() have affected the object
used as an argument.

Ask the Expert

Q: Is there any way that I can pass a primitive type by reference?
A: Not directly. However, Java defines a set of classes that wrap the

primitive types in objects. These are Double, Float, Byte, Short,
Integer, Long, and Character. In addition to allowing a primitive type to
be passed by reference, these wrapper classes define several methods that
enable you to manipulate their values. For example, the numeric type
wrappers include methods that convert a numeric value from its binary
form into its human-readable String form, and vice versa.

Remember, when an object reference is passed to a method, the reference itself is
passed by use of call-by-value. However, since the value being passed refers to an
object, the copy of that value will still refer to the same object referred to by its
corresponding argument.

Returning Objects
A method can return any type of data, including class types. For example, the class
ErrorMsg shown here could be used to report errors. Its method, getErrorMsg(),
returns a String object that contains a description of an error based upon the error
code that it is passed.

Its output is shown here:

Disk Full
Invalid Error Code

You can, of course, also return objects of classes that you create. For example,
here is a reworked version of the preceding program that creates two error classes.
One is called Err, and it encapsulates an error message along with a severity code.
The second is called ErrorInfo. It defines a method called getErrorInfo(), which
returns an Err object.

Here is the output:

Disk Full severity: 2
Invalid Error Code severity: 0

Each time getErrorInfo() is invoked, a new Err object is created, and a reference
to it is returned to the calling routine. This object is then used within main() to
display the error message and severity code.

When an object is returned by a method, it remains in existence until there are no
more references to it. At that point, it is subject to garbage collection. Thus, an object
won’t be destroyed just because the method that created it terminates.

Method Overloading
In this section, you will learn about one of Java’s most exciting features: method
overloading. In Java, two or more methods within the same class can share the same
name, as long as their parameter declarations are different. When this is the case, the
methods are said to be overloaded, and the process is referred to as method
overloading. Method overloading is one of the ways that Java implements
polymorphism.

In general, to overload a method, simply declare different versions of it. The
compiler takes care of the rest. You must observe one important restriction: the type
and/or number of the parameters of each overloaded method must differ. It is not
sufficient for two methods to differ only in their return types. (Return types do not
provide sufficient information in all cases for Java to decide which method to use.)
Of course, overloaded methods may differ in their return types, too. When an
overloaded method is called, the version of the method whose parameters match the
arguments is executed.

Here is a simple example that illustrates method overloading:

This program generates the following output:

As you can see, ovlDemo() is overloaded four times. The first version takes no
parameters, the second takes one integer parameter, the third takes two integer
parameters, and the fourth takes two double parameters. Notice that the first two
versions of ovlDemo() return void, and the second two return a value. This is
perfectly valid, but as explained, overloading is not affected one way or the other by
the return type of a method. Thus, attempting to use the following two versions of
ovlDemo() will cause an error:

As the comments suggest, the difference in their return types is insufficient for the
purposes of overloading.

As you will recall from Chapter 2, Java provides certain automatic type
conversions. These conversions also apply to parameters of overloaded methods. For
example, consider the following:

The output from the program is shown here:

In this example, only two versions of f() are defined: one that has an int parameter
and one that has a double parameter. However, it is possible to pass f() a byte,

short, or float value. In the case of byte and short, Java automatically converts them
to int. Thus, f(int) is invoked. In the case of float, the value is converted to double
and f(double) is called.

It is important to understand, however, that the automatic conversions apply only
if there is no direct match between a parameter and an argument. For example, here
is the preceding program with the addition of a version of f() that specifies a byte
parameter:

Now when the program is run, the following output is produced:

In this version, since there is a version of f() that takes a byte argument, when f() is
called with a byte argument, f(byte) is invoked and the automatic conversion to int
does not occur.

Method overloading supports polymorphism because it is one way that Java
implements the “one interface, multiple methods” paradigm. To understand how,
consider the following: In languages that do not support method overloading, each
method must be given a unique name. However, frequently you will want to
implement essentially the same method for different types of data. Consider the
absolute value function. In languages that do not support overloading, there are
usually three or more versions of this function, each with a slightly different name.
For instance, in C, the function abs() returns the absolute value of an integer, labs()
returns the absolute value of a long integer, and fabs() returns the absolute value of
a floating-point value. Since C does not support overloading, each function has to
have its own name, even though all three functions do essentially the same thing.
This makes the situation more complex, conceptually, than it actually is. Although
the underlying concept of each function is the same, you still have three names to
remember. This situation does not occur in Java, because each absolute value method
can use the same name. Indeed, Java’s standard class library includes an absolute
value method, called abs(). This method is overloaded by Java’s Math class to
handle all of the numeric types. Java determines which version of abs() to call based
upon the type of argument.

The value of overloading is that it allows related methods to be accessed by use of
a common name. Thus, the name abs represents the general action that is being

performed. It is left to the compiler to choose the correct specific version for a
particular circumstance. You, the programmer, need only remember the general
operation being performed. Through the application of polymorphism, several names
have been reduced to one. Although this example is fairly simple, if you expand the
concept, you can see how overloading can help manage greater complexity.

When you overload a method, each version of that method can perform any
activity you desire. There is no rule stating that overloaded methods must relate to
one another. However, from a stylistic point of view, method overloading implies a
relationship. Thus, while you can use the same name to overload unrelated methods,
you should not. For example, you could use the name sqr to create methods that
return the square of an integer and the square root of a floating-point value. But
these two operations are fundamentally different. Applying method overloading in
this manner defeats its original purpose. In practice, you should overload only
closely related operations.

Ask the Expert
Q: I’ve heard the term signature used by Java programmers. What is it?
A: As it applies to Java, a signature is the name of a method plus its

parameter list. Thus, for the purposes of overloading, no two methods
within the same class can have the same signature. Notice that a signature
does not include the return type, since it is not used by Java for overload
resolution.

Overloading Constructors
Like methods, constructors can also be overloaded. Doing so allows you to construct
objects in a variety of ways. For example, consider the following program:

The output from the program is shown here:

MyClass() is overloaded four ways, each constructing an object differently. The
proper constructor is called based upon the parameters specified when new is
executed. By overloading a class’ constructor, you give the user of your class
flexibility in the way objects are constructed.

One of the most common reasons that constructors are overloaded is to allow one
object to initialize another. For example, consider this program that uses the
Summation class to compute the summation of an integer value:

The output is shown here:

s1.sum: 15s
2.sum: 15

Often, as this example shows, an advantage of providing a constructor that uses one
object to initialize another is efficiency. In this case, when s2 is constructed, it is not
necessary to recompute the summation. Of course, even in cases when efficiency is
not an issue, it is often useful to provide a constructor that makes a copy of an object.

Try This 6-2 Overloading the Queue Constructor

In this project, you will enhance the Queue class by giving it two additional
constructors. The first will construct a new queue from another queue. The second
will construct a queue, giving it initial values. As you will see, adding these
constructors enhances the usability of Queue substantially.

1. Create a file called QDemo2.java and copy the updated Queue class from Try
This 6-1 into it.

2. First, add the following constructor, which constructs a queue from a queue.

Look closely at this constructor. It initializes putloc and getloc to the values
contained in the ob parameter. It then allocates a new array to hold the queue
and copies the elements from ob into that array. Once constructed, the new
queue will be an identical copy of the original, but both will be completely
separate objects.

3. Now add the constructor that initializes the queue from a character array, as
shown here:

This constructor creates a queue large enough to hold the characters in a and
then stores those characters in the queue.

4. Here is the complete updated Queue class along with the QDemo2 class, which
demonstrates it:

Recursion
In Java, a method can call itself. This process is called recursion, and a method that
calls itself is said to be recursive. In general, recursion is the process of defining
something in terms of itself and is somewhat similar to a circular definition. The key
component of a recursive method is a statement that executes a call to itself.
Recursion is a powerful control mechanism.

The classic example of recursion is the computation of the factorial of a number.
The factorial of a number N is the product of all the whole numbers between 1 and

N. For example, 3 factorial is 1 × 2 × 3, or 6. The following program shows a
recursive way to compute the factorial of a number. For comparison purposes, a
nonrecursive equivalent is also included.

The output from this program is shown here:

The operation of the nonrecursive method factI() should be clear. It uses a loop
starting at 1 and progressively multiplies each number by the moving product.

The operation of the recursive factR() is a bit more complex. When factR() is
called with an argument of 1, the method returns 1; otherwise, it returns the product
of factR(n–1)*n. To evaluate this expression, factR() is called with n–1. This
process repeats until n equals 1 and the calls to the method begin returning. For
example, when the factorial of 2 is calculated, the first call to factR() will cause a
second call to be made with an argument of 1. This call will return 1, which is then
multiplied by 2 (the original value of n). The answer is then 2. You might find it
interesting to insert println() statements into factR() that show at what level each
call is, and what the intermediate results are.

When a method calls itself, new local variables and parameters are allocated
storage on the stack, and the method code is executed with these new variables from
the start. A recursive call does not make a new copy of the method. Only the
arguments are new. As each recursive call returns, the old local variables and
parameters are removed from the stack, and execution resumes at the point of the
call inside the method. Recursive methods could be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than their
iterative equivalents because of the added overhead of the additional method calls.
Too many recursive calls to a method could cause a stack overrun. Because storage
for parameters and local variables is on the stack and each new call creates a new
copy of these variables, it is possible that the stack could be exhausted. If this occurs,
the Java run-time system will cause an exception. However, you probably will not
have to worry about this unless a recursive routine runs wild. The main advantage to
recursion is that some types of algorithms can be implemented more clearly and
simply recursively than they can be iteratively. For example, the Quicksort sorting
algorithm is quite difficult to implement in an iterative way. Also, some problems,
especially AI-related ones, seem to lend themselves to recursive solutions. When
writing recursive methods, you must have a conditional statement, such as an if,

somewhere to force the method to return without the recursive call being executed. If
you don’t do this, once you call the method, it will never return. This type of error is
very common when working with recursion. Use println() statements liberally so
that you can watch what is going on and abort execution if you see that you have
made a mistake.

Understanding static
There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally a class member must be accessed
through an object of its class, but it is possible to create a member that can be used
by itself, without reference to a specific instance. To create such a member, precede
its declaration with the keyword static. When a member is declared static, it can be
accessed before any objects of its class are created, and without reference to any
object. You can declare both methods and variables to be static. The most common
example of a static member is main(). main() is declared as static because it must
be called by the JVM when your program begins. Outside the class, to use a static
member, you need only specify the name of its class followed by the dot operator.
No object needs to be created. For example, if you want to assign the value 10 to a
static variable called count that is part of the Timer class, use this line:

Timer.count = 10;

This format is similar to that used to access normal instance variables through an
object, except that the class name is used. A static method can be called in the same
way—by use of the dot operator on the name of the class.

Variables declared as static are, essentially, global variables. When an object is
declared, no copy of a static variable is made. Instead, all instances of the class share
the same static variable. Here is an example that shows the differences between a
static variable and an instance variable:

The output from the program is shown here:

As you can see, the static variable y is shared by both ob1 and ob2. Changing it
affects the entire class, not just an instance.

The difference between a static method and a normal method is that the static
method is called through its class name, without any object of that class being
created. You have seen an example of this already: the sqrt() method, which is a
static method within Java’s standard Math class. Here is an example that creates a
static method:

The output is shown here:

Methods declared as static have several restrictions:

 They can directly call only other static methods in their class.
 They can directly access only static variables in their class.
 They do not have a this reference.

For example, in the following class, the static method valDivDenom() is illegal:

Here, denom is a normal instance variable that cannot be accessed within a static
method.

Static Blocks
Sometimes a class will require some type of initialization before it is ready to create
objects. For example, it might need to establish a connection to a remote site. It also
might need to initialize certain static variables before any of the class’ static
methods are used. To handle these types of situations, Java allows you to declare a
static block. A static block is executed when the class is first loaded. Thus, it is
executed before the class can be used for any other purpose. Here is an example of a
static block:

The output is shown here:

As you can see, the static block is executed before any objects are constructed.

Try This 6-3 The Quicksort

In Chapter 5 you were shown a simple sorting method called the Bubble sort. It was
mentioned at the time that substantially better sorts exist. Here you will develop a
version of one of the best: the Quicksort. The Quicksort, invented and named by
C.A.R. Hoare, is arguably the best general-purpose sorting algorithm currently
available. The reason it could not be shown in Chapter 5 is that the best
implementations of the Quicksort rely on recursion. The version we will develop
sorts a character array, but the logic can be adapted to sort any type of object you
like.

The Quicksort is built on the idea of partitions. The general procedure is to select a

value, called the comparand, and then to partition the array into two sections. All
elements greater than or equal to the partition value are put on one side, and those
less than the value are put on the other. This process is then repeated for each
remaining section until the array is sorted. For example, given the array fedacb and
using the value d as the comparand, the first pass of the Quicksort would rearrange
the array as follows:

This process is then repeated for each section—that is, bca and def. As you can
see, the process is essentially recursive in nature, and indeed, the cleanest
implementation of Quicksort is recursive.

You can select the comparand value in two ways. You can either choose it at
random, or you can select it by averaging a small set of values taken from the array.
For optimal sorting, you should select a value that is precisely in the middle of the
range of values. However, this is not easy to do for most sets of data. In the worst
case, the value chosen is at one extremity. Even in this case, however, Quicksort still
performs correctly. The version of Quicksort that we will develop selects the middle
element of the array as the comparand.
1. Create a file called QSDemo.java.
2. First, create the Quicksort class shown here:

To keep the interface to the Quicksort simple, the Quicksort class provides the
qsort() method, which sets up a call to the actual Quicksort method, qs(). This
enables the Quicksort to be called with just the name of the array to be sorted,
without having to provide an initial partition. Since qs() is only used internally,
it is specified as private.

3. To use the Quicksort, simply call Quicksort.qsort(). Since qsort() is specified

as static, it can be called through its class rather than on an object. Thus, there is
no need to create a Quicksort object. After the call returns, the array will be
sorted. Remember, this version works only for character arrays, but you can
adapt the logic to sort any type of arrays you want.

4. Here is a program that demonstrates Quicksort:

Introducing Nested and Inner Classes
In Java, you can define a nested class. This is a class that is declared within another
class. Frankly, the nested class is a somewhat advanced topic. In fact, nested classes
were not even allowed in the first version of Java. It was not until Java 1.1 that they
were added. However, it is important that you know what they are and the mechanics
of how they are used because they play an important role in many real-world
programs.

A nested class does not exist independently of its enclosing class. Thus, the scope
of a nested class is bounded by its outer class. A nested class that is declared directly
within its enclosing class scope is a member of its enclosing class. It is also possible
to declare a nested class that is local to a block.

There are two general types of nested classes: those that are preceded by the static
modifier and those that are not. The only type that we are concerned about in this
book is the non-static variety. This type of nested class is also called an inner class.
It has access to all of the variables and methods of its outer class and may refer to
them directly in the same way that other non-static members of the outer class do.

Sometimes an inner class is used to provide a set of services that is used only by
its enclosing class. Here is an example that uses an inner class to compute various

values for its enclosing class:

The output from the program is shown here:

Minimum: 1
Maximum: 9
Average: 5

In this example, the inner class Inner computes various values from the array
nums, which is a member of Outer. As explained, an inner class has access to the
members of its enclosing class, so it is perfectly acceptable for Inner to access the
nums array directly. Of course, the opposite is not true. For example, it would not be
possible for analyze() to invoke the min() method directly, without creating an
Inner object.

As mentioned, it is possible to nest a class within a block scope. Doing so simply
creates a localized class that is not known outside its block. The following example
adapts the ShowBits class developed in Try This 5-3 for use as a local class.

The output from this version of the program is shown here:

In this example, the ShowBits class is not known outside of main(), and any
attempt to access it by any method other than main() will result in an error.

One last point: You can create an inner class that does not have a name. This is
called an anonymous inner class. An object of an anonymous inner class is
instantiated when the class is declared, using new. Anonymous inner classes are
discussed further in Chapter 16.

Varargs: Variable-Length Arguments
Sometimes you will want to create a method that takes a variable number of
arguments, based on its precise usage. For example, a method that opens an Internet
connection might take a user name, password, file name, protocol, and so on, but
supply defaults if some of this information is not provided. In this situation, it would
be convenient to pass only the arguments to which the defaults did not apply. To
create such a method implies that there must be some way to create a list of
arguments that is variable in length, rather than fixed.

In the past, methods that required a variable-length argument list could be handled
two ways, neither of which was particularly pleasing. First, if the maximum number
of arguments was small and known, then you could create overloaded versions of the
method, one for each way the method could be called. Although this works and is
suitable for some situations, it applies to only a narrow class of situations. In cases
where the maximum number of potential arguments is larger, or unknowable, a
second approach was used in which the arguments were put into an array, and then
the array was passed to the method. Frankly, both of these approaches often resulted
in clumsy solutions, and it was widely acknowledged that a better approach was
needed.

Ask the Expert
Q: What makes a static nested class different from a non-static one?
A: A static nested class is one that has the static modifier applied. Because it

is static, it can access only other static members of the enclosing class
directly. It must access other members of its outer class through an object
reference.

Beginning with JDK 5, this need was addressed by the inclusion of a feature that
simplified the creation of methods that require a variable number of arguments. This
feature is called varargs, which is short for variable-length arguments. A method that
takes a variable number of arguments is called a variable-arity method, or simply a
varargs method. The parameter list for a varargs method is not fixed, but rather
variable in length. Thus, a varargs method can take a variable number of arguments.

Varargs Basics
A variable-length argument is specified by three periods (...). For example, here is
how to write a method called vaTest() that takes a variable number of arguments:

Notice that v is declared as shown here:

int ... v

This syntax tells the compiler that vaTest() can be called with zero or more
arguments. Furthermore, it causes v to be implicitly declared as an array of type int[
]. Thus, inside vaTest(), v is accessed using the normal array syntax.

Here is a complete program that demonstrates vaTest():

The output from the program is shown here:

There are two important things to notice about this program. First, as explained,

inside vaTest(), v is operated on as an array. This is because v is an array. The ...
syntax simply tells the compiler that a variable number of arguments will be used,
and that these arguments will be stored in the array referred to by v. Second, in
main(), vaTest() is called with different numbers of arguments, including no
arguments at all. The arguments are automatically put in an array and passed to v. In
the case of no arguments, the length of the array is zero.

A method can have “normal” parameters along with a variable-length parameter.
However, the variable-length parameter must be the last parameter declared by the
method. For example, this method declaration is perfectly acceptable:

int doIt(int a, int b, double c, int ... vals) {

In this case, the first three arguments used in a call to doIt() are matched to the first
three parameters. Then, any remaining arguments are assumed to belong to vals.

Here is a reworked version of the vaTest() method that takes a regular argument
and a variable-length argument:

The output from this program is shown here:

Remember, the varargs parameter must be last. For example, the following
declaration is incorrect:

int doIt(int a, int b, double c, int ... vals, boolean stopFlag) { //
Error!

Here, there is an attempt to declare a regular parameter after the varargs parameter,
which is illegal. There is one more restriction to be aware of: there must be only one
varargs parameter. For example, this declaration is also invalid:

int doIt(int a, int b, double c, int ... vals, double ... morevals) {
// Error!

The attempt to declare the second varargs parameter is illegal.

Overloading Varargs Methods
You can overload a method that takes a variable-length argument. For example, the
following program overloads vaTest() three times:

The output produced by this program is shown here:

This program illustrates both ways that a varargs method can be overloaded. First,
the types of its vararg parameter can differ. This is the case for vaTest(int ...) and
vaTest(boolean ...). Remember, the ... causes the parameter to be treated as an array
of the specified type. Therefore, just as you can overload methods by using different
types of array parameters, you can overload varargs methods by using different types
of varargs. In this case, Java uses the type difference to determine which overloaded
method to call.

The second way to overload a varargs method is to add one or more normal
parameters. This is what was done with vaTest(String, int ...). In this case, Java uses
both the number of arguments and the type of the arguments to determine which
method to call.

Varargs and Ambiguity
Somewhat unexpected errors can result when overloading a method that takes a
variable-length argument. These errors involve ambiguity because it is possible to
create an ambiguous call to an overloaded varargs method. For example, consider the
following program:

In this program, the overloading of vaTest() is perfectly correct. However, this
program will not compile because of the following call:

vaTest(); // Error: Ambiguous!

Because the vararg parameter can be empty, this call could be translated into a call to
vaTest(int ...) or to vaTest(boolean ...). Both are equally valid. Thus, the call is
inherently ambiguous.

Here is another example of ambiguity. The following overloaded versions of
vaTest() are inherently ambiguous even though one takes a normal parameter:

Although the parameter lists of vaTest() differ, there is no way for the compiler to
resolve the following call:

vaTest(1)
Does this translate into a call to vaTest(int ...), with one varargs argument, or into a
call to vaTest(int, int ...) with no varargs arguments? There is no way for the
compiler to answer this question. Thus, the situation is ambiguous.

Because of ambiguity errors like those just shown, sometimes you will need to
forego overloading and simply use two different method names. Also, in some cases,
ambiguity errors expose a conceptual flaw in your code, which you can remedy by
more carefully crafting a solution.

 Chapter 6 Self Test

1. Given this fragment,

is the following fragment correct?

2. An access modifier must __________ a member’s declaration.
3. The complement of a queue is a stack. It uses first-in, last-out accessing and is

often likened to a stack of plates. The first plate put on the table is the last plate
used. Create a stack class called Stack that can hold characters. Call the
methods that access the stack push() and pop(). Allow the user to specify the
size of the stack when it is created. Keep all other members of the Stack class
private. (Hint: You can use the Queue class as a model; just change the way the
data is accessed.)

4. Given this class,

write a method called swap() that exchanges the contents of the objects

referred to by two Test object references.
5. Is the following fragment correct?

6. Write a recursive method that displays the contents of a string backwards.
7. If all objects of a class need to share the same variable, how must you declare

that variable?
8. Why might you need to use a static block?
9. What is an inner class?
10. To make a member accessible by only other members of its class, what access

modifier must be used?
11. The name of a method plus its parameter list constitutes the method’s

_______________.
12. An int argument is passed to a method by using call-by-_______________.
13. Create a varargs method called sum() that sums the int values passed to it.

Have it return the result. Demonstrate its use.
14. Can a varargs method be overloaded?
15. Show an example of an overloaded varargs method that is ambiguous.

I

Chapter 7

Inheritance

Key Skills & Concepts
 Understand inheritance basics

 Call superclass constructors

 Use super to access superclass members

 Create a multilevel class hierarchy

 Know when constructors are called

 Understand superclass references to subclass objects

 Override methods

 Use overridden methods to achieve dynamic method dispatch

 Use abstract classes

 Use final

 Know the Object class

nheritance is one of the three foundation principles of object-oriented
programming because it allows the creation of hierarchical classifications. Using
inheritance, you can create a general class that defines traits common to a set of

related items. This class can then be inherited by other, more specific classes, each
adding those things that are unique to it.

In the language of Java, a class that is inherited is called a superclass. The class
that does the inheriting is called a subclass. Therefore, a subclass is a specialized
version of a superclass. It inherits all of the variables and methods defined by the
superclass and adds its own, unique elements.

Inheritance Basics
Java supports inheritance by allowing one class to incorporate another class into its
declaration. This is done by using the extends keyword. Thus, the subclass adds to
(extends) the superclass.

Let’s begin with a short example that illustrates several of the key features of
inheritance. The following program creates a superclass called TwoDShape, which
stores the width and height of a two-dimensional object, and a subclass called
Triangle. Notice how the keyword extends is used to create a subclass.

The output from this program is shown here:

Here, TwoDShape defines the attributes of a “generic” two-dimensional shape,
such as a square, rectangle, triangle, and so on. The Triangle class creates a specific
type of TwoDShape, in this case, a triangle. The Triangle class includes all of
TwoDObject and adds the field style, the method area(), and the method
showStyle(). The triangle’s style is stored in style. This can be any string that
describes the triangle, such as "filled", "outlined", "transparent", or even something
like "warning symbol", "isosceles", or "rounded". The area() method computes and
returns the area of the triangle, and showStyle() displays the triangle style.

Because Triangle includes all of the members of its superclass, TwoDShape, it
can access width and height inside area(). Also, inside main(), objects t1 and t2
can refer to width and height directly, as if they were part of Triangle. Figure 7-1
depicts conceptually how TwoDShape is incorporated into Triangle.

Figure 7-1 A conceptual depiction of the Triangle class

Even though TwoDShape is a superclass for Triangle, it is also a completely
independent, stand-alone class. Being a superclass for a subclass does not mean that

the superclass cannot be used by itself. For example, the following is perfectly valid:

Of course, an object of TwoDShape has no knowledge of or access to any
subclasses of TwoDShape.

The general form of a class declaration that inherits a superclass is shown here:

You can specify only one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. (This differs
from C++, in which you can inherit multiple base classes. Be aware of this when
converting C++ code to Java.) You can, however, create a hierarchy of inheritance in
which a subclass becomes a superclass of another subclass. Of course, no class can
be a superclass of itself.

A major advantage of inheritance is that once you have created a superclass that
defines the attributes common to a set of objects, it can be used to create any number
of more specific subclasses. Each subclass can precisely tailor its own classification.
For example, here is another subclass of TwoDShape that encapsulates rectangles:

The Rectangle class includes TwoDShape and adds the methods isSquare(), which
determines if the rectangle is square, and area(), which computes the area of a

rectangle.

Member Access and Inheritance
As you learned in Chapter 6, often an instance variable of a class will be declared
private to prevent its unauthorized use or tampering. Inheriting a class does not
overrule the private access restriction. Thus, even though a subclass includes all of
the members of its superclass, it cannot access those members of the superclass that
have been declared private. For example, if, as shown here, width and height are
made private in TwoDShape, then Triangle will not be able to access them:

The Triangle class will not compile because the reference to width and height
inside the area() method causes an access violation. Since width and height are

declared private, they are accessible only by other members of their own class.
Subclasses have no access to them.

Remember that a class member that has been declared private will remain private
to its class. It is not accessible by any code outside its class, including subclasses.

At first, you might think that the fact that subclasses do not have access to the
private members of superclasses is a serious restriction that would prevent the use of
private members in many situations. However, this is not true. As explained in
Chapter 6, Java programmers typically use accessor methods to provide access to the
private members of a class. Here is a rewrite of the TwoDShape and Triangle
classes that uses methods to access the private instance variables width and height:

Ask the Expert
Q: When should I make an instance variable private?
A: There are no hard and fast rules, but here are two general principles. If an

instance variable is to be used only by methods defined within its class,
then it should be made private. If an instance variable must be within
certain bounds, then it should be private and made available only through
accessor methods. This way, you can prevent invalid values from being
assigned.

Constructors and Inheritance
In a hierarchy, it is possible for both superclasses and subclasses to have their own
constructors. This raises an important question: What constructor is responsible for
building an object of the subclass—the one in the superclass, the one in the subclass,
or both? The answer is this: The constructor for the superclass constructs the
superclass portion of the object, and the constructor for the subclass constructs the
subclass part. This makes sense because the superclass has no knowledge of or
access to any element in a subclass. Thus, their construction must be separate. The
preceding examples have relied upon the default constructors created automatically
by Java, so this was not an issue. However, in practice, most classes will have
explicit constructors. Here you will see how to handle this situation.

When only the subclass defines a constructor, the process is straightforward:
simply construct the subclass object. The superclass portion of the object is
constructed automatically using its default constructor. For example, here is a
reworked version of Triangle that defines a constructor. It also makes style private,
since it is now set by the constructor.

Here, Triangle’s constructor initializes the members of TwoDClass that it inherits

along with its own style field.
When both the superclass and the subclass define constructors, the process is a bit

more complicated because both the superclass and subclass constructors must be
executed. In this case, you must use another of Java’s keywords, super, which has
two general forms. The first calls a superclass constructor. The second is used to
access a member of the superclass that has been hidden by a member of a subclass.
Here, we will look at its first use.

Using super to Call Superclass Constructors
A subclass can call a constructor defined by its superclass by use of the following
form of super:

super(parameter-list);

Here, parameter-list specifies any parameters needed by the constructor in the
superclass. super() must always be the first statement executed inside a subclass
constructor. To see how super() is used, consider the version of TwoDShape in the
following program. It defines a constructor that initializes width and height.

Here, Triangle() calls super() with the parameters w and h. This causes the
TwoDShape() constructor to be called, which initializes width and height using
these values. Triangle no longer initializes these values itself. It need only initialize
the value unique to it: style. This leaves TwoDShape free to construct its subobject
in any manner that it so chooses. Furthermore, TwoDShape can add functionality
about which existing subclasses have no knowledge, thus preventing existing code
from breaking.

Any form of constructor defined by the superclass can be called by super(). The
constructor executed will be the one that matches the arguments. For example, here
are expanded versions of both TwoDShape and Triangle that include default
constructors and constructors that take one argument:

Here is the output from this version:

Let’s review the key concepts behind super(). When a subclass calls super(), it
is calling the constructor of its immediate superclass. Thus, super() always refers to
the superclass immediately above the calling class. This is true even in a multilevel
hierarchy. Also, super() must always be the first statement executed inside a
subclass constructor.

Using super to Access Superclass Members
There is a second form of super that acts somewhat like this, except that it always
refers to the superclass of the subclass in which it is used. This usage has the
following general form:

super.member

Here, member can be either a method or an instance variable.
This form of super is most applicable to situations in which member names of a

subclass hide members by the same name in the superclass. Consider this simple
class hierarchy:

This program displays the following:

i in superclass: 1
i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i
defined in the superclass. super can also be used to call methods that are hidden by a
subclass.

Try This 7-1 Extending the Vehicle Class

To illustrate the power of inheritance, we will extend the Vehicle class first
developed in Chapter 4. As you should recall, Vehicle encapsulates information
about vehicles, including the number of passengers they can carry, their fuel
capacity, and their fuel consumption rate. We can use the Vehicle class as a starting
point from which more specialized classes are developed. For example, one type of
vehicle is a truck. An important attribute of a truck is its cargo capacity. Thus, to
create a Truck class, you can extend Vehicle, adding an instance variable that stores
the carrying capacity. Here is a version of Truck that does this. In the process, the
instance variables in Vehicle will be made private, and accessor methods are
provided to get and set their values.
1. Create a file called TruckDemo.java and copy the last implementation of

Vehicle from Chapter 4 into the file:
2. Create the Truck class as shown here:

Here, Truck inherits Vehicle, adding cargocap, getCargo(), and putCargo().
Thus, Truck includes all of the general vehicle attributes defined by Vehicle. It
need add only those items that are unique to its own class.

3. Next, make the instance variables of Vehicle private, as shown here:

4. Here is an entire program that demonstrates the Truck class:

5. The output from this program is shown here:
Semi can carry 44000 pounds.
To go 252 miles semi needs 36.0 gallons of fuel.
Pickup can carry 2000 pounds.
To go 252 miles pickup needs 16.8 gallons of fuel.

6. Many other types of classes can be derived from Vehicle. For example, the
following skeleton creates an off-road class that stores the ground clearance of
the vehicle.

The key point is that once you have created a superclass that defines the general
aspects of an object, that superclass can be inherited to form specialized classes.
Each subclass simply adds its own, unique attributes. This is the essence of
inheritance.

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a
superclass and a subclass. However, you can build hierarchies that contain as many
layers of inheritance as you like. As mentioned, it is perfectly acceptable to use a
subclass as a superclass of another. For example, given three classes called A, B, and
C, C can be a subclass of B, which is a subclass of A. When this type of situation
occurs, each subclass inherits all of the traits found in all of its superclasses. In this
case, C inherits all aspects of B and A.

To see how a multilevel hierarchy can be useful, consider the following program.
In it, the subclass Triangle is used as a superclass to create the subclass called
ColorTriangle. ColorTriangle inherits all of the traits of Triangle and
TwoDShape and adds a field called color, which holds the color of the triangle.

The output of this program is shown here:

Because of inheritance, ColorTriangle can make use of the previously defined
classes of Triangle and TwoDShape, adding only the extra information it needs for
its own, specific application. This is part of the value of inheritance; it allows the
reuse of code.

This example illustrates one other important point: super() always refers to the
constructor in the closest superclass. The super() in ColorTriangle calls the
constructor in Triangle. The super() in Triangle calls the constructor in
TwoDShape. In a class hierarchy, if a superclass constructor requires parameters,

then all subclasses must pass those parameters “up the line.” This is true whether or
not a subclass needs parameters of its own.

When Are Constructors Executed?
In the foregoing discussion of inheritance and class hierarchies, an important
question may have occurred to you: When a subclass object is created, whose
constructor is executed first, the one in the subclass or the one defined by the
superclass? For example, given a subclass called B and a superclass called A, is A’s
constructor executed before B’s, or vice versa? The answer is that in a class
hierarchy, constructors complete their execution in order of derivation, from
superclass to subclass. Further, since super() must be the first statement executed in
a subclass’ constructor, this order is the same whether or not super() is used. If
super() is not used, then the default (parameterless) constructor of each superclass
will be executed. The following program illustrates when constructors are executed:

The output from this program is shown here:

Constructing A.
Constructing B.
Constructing C.

As you can see, the constructors are executed in order of derivation.
If you think about it, it makes sense that constructors are executed in order of

derivation. Because a superclass has no knowledge of any subclass, any initialization
it needs to perform is separate from and possibly prerequisite to any initialization
performed by the subclass. Therefore, it must complete its execution first.

Superclass References and Subclass Objects
As you know, Java is a strongly typed language. Aside from the standard
conversions and automatic promotions that apply to its primitive types, type
compatibility is strictly enforced. Therefore, a reference variable for one class type
cannot normally refer to an object of another class type. For example, consider the
following program:

Here, even though class X and class Y are structurally the same, it is not possible to
assign an X reference to a Y object because they have different types. In general, an
object reference variable can refer only to objects of its type.

There is, however, an important exception to Java’s strict type enforcement. A
reference variable of a superclass can be assigned a reference to an object of any
subclass derived from that superclass. In other words, a superclass reference can
refer to a subclass object. Here is an example:

Here, Y is now derived from X; thus, it is permissible for x2 to be assigned a
reference to a Y object.

It is important to understand that it is the type of the reference variable—not the
type of the object that it refers to—that determines what members can be accessed.
That is, when a reference to a subclass object is assigned to a superclass reference
variable, you will have access only to those parts of the object defined by the
superclass. This is why x2 can’t access b even when it refers to a Y object. If you

think about it, this makes sense, because the superclass has no knowledge of what a
subclass adds to it. This is why the last line of code in the program is commented
out.

Although the preceding discussion may seem a bit esoteric, it has some important
practical applications. One is described here. The other is discussed later in this
chapter, when method overriding is covered.

An important place where subclass references are assigned to superclass variables
is when constructors are called in a class hierarchy. As you know, it is common for a
class to define a constructor that takes an object of the class as a parameter. This
allows the class to construct a copy of an object. Subclasses of such a class can take
advantage of this feature. For example, consider the following versions of
TwoDShape and Triangle. Both add constructors that take an object as a parameter.

In this program, t2 is constructed from t1 and is, thus, identical. The output is
shown here:

Pay special attention to this Triangle constructor:

It receives an object of type Triangle and it passes that object (through super) to this
TwoDShape constructor:

The key point is that TwoDshape() is expecting a TwoDShape object. However,
Triangle() passes it a Triangle object. The reason this works is because, as
explained, a superclass reference can refer to a subclass object. Thus, it is perfectly
acceptable to pass TwoDShape() a reference to an object of a class derived from
TwoDShape. Because the TwoDShape() constructor is initializing only those
portions of the subclass object that are members of TwoDShape, it doesn’t matter
that the object might also contain other members added by derived classes.

Method Overriding
In a class hierarchy, when a method in a subclass has the same return type and
signature as a method in its superclass, then the method in the subclass is said to
override the method in the superclass. When an overridden method is called from

within a subclass, it will always refer to the version of that method defined by the
subclass. The version of the method defined by the superclass will be hidden.
Consider the following:

The output produced by this program is shown here:

k: 3

When show() is invoked on an object of type B, the version of show() defined
within B is used. That is, the version of show() inside B overrides the version
declared in A.

If you want to access the superclass version of an overridden method, you can do
so by using super. For example, in this version of B, the superclass version of show(
) is invoked within the subclass’ version. This allows all instance variables to be
displayed.

If you substitute this version of show() into the previous program, you will see
the following output:

i and j: 1 2
k: 3

Here, super.show() calls the superclass version of show().
Method overriding occurs only when the signatures of the two methods are

identical. If they are not, then the two methods are simply overloaded. For example,
consider this modified version of the preceding example:

The output produced by this program is shown here:

This is k: 3
i and j: 1 2

The version of show() in B takes a string parameter. This makes its signature
different from the one in A, which takes no parameters. Therefore, no overriding (or
name hiding) takes place.

Overridden Methods Support Polymorphism
While the examples in the preceding section demonstrate the mechanics of method
overriding, they do not show its power. Indeed, if there were nothing more to method
overriding than a namespace convention, then it would be, at best, an interesting
curiosity but of little real value. However, this is not the case. Method overriding
forms the basis for one of Java’s most powerful concepts: dynamic method dispatch.
Dynamic method dispatch is the mechanism by which a call to an overridden method
is resolved at run time rather than compile time. Dynamic method dispatch is
important because this is how Java implements run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can
refer to a subclass object. Java uses this fact to resolve calls to overridden methods at
run time. Here’s how. When an overridden method is called through a superclass
reference, Java determines which version of that method to execute based upon the
type of the object being referred to at the time the call occurs. Thus, this
determination is made at run time. When different types of objects are referred to,
different versions of an overridden method will be called. In other words, it is the
type of the object being referred to (not the type of the reference variable) that
determines which version of an overridden method will be executed. Therefore, if a
superclass contains a method that is overridden by a subclass, then when different
types of objects are referred to through a superclass reference variable, different
versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

The output from the program is shown here:

who() in Sup

who() in Sub1
who() in Sub2

This program creates a superclass called Sup and two subclasses of it, called Sub1
and Sub2. Sup declares a method called who(), and the subclasses override it.
Inside the main() method, objects of type Sup, Sub1, and Sub2 are declared. Also,
a reference of type Sup, called supRef, is declared. The program then assigns a
reference to each type of object to supRef and uses that reference to call who(). As
the output shows, the version of who() executed is determined by the type of object
being referred to at the time of the call, not by the class type of supRef.

Ask the Expert
Q: Overridden methods in Java look a lot like virtual functions in C++.

Is there a similarity?
A: Yes. Readers familiar with C++ will recognize that overridden methods in

Java are equivalent in purpose and similar in operation to virtual
functions in C++.

Why Overridden Methods?
As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those
methods. Overridden methods are another way that Java implements the “one
interface, multiple methods” aspect of polymorphism. Part of the key to successfully
applying polymorphism is understanding that the superclasses and subclasses form a
hierarchy that moves from lesser to greater specialization. Used correctly, the
superclass provides all elements that a subclass can use directly. It also defines those
methods that the derived class must implement on its own. This allows the subclass
the flexibility to define its own methods, yet still enforces a consistent interface.
Thus, by combining inheritance with overridden methods, a superclass can define the
general form of the methods that will be used by all of its subclasses.

Applying Method Overriding to TwoDShape
To better understand the power of method overriding, we will apply it to the
TwoDShape class. In the preceding examples, each class derived from TwoDShape
defines a method called area(). This suggests that it might be better to make area()
part of the TwoDShape class, allowing each subclass to override it, defining how the
area is calculated for the type of shape that the class encapsulates. The following
program does this. For convenience, it also adds a name field to TwoDShape. (This
makes it easier to write demonstration programs.)

The output from the program is shown here:

Let’s examine this program closely. First, as explained, area() is now part of the
TwoDShape class and is overridden by Triangle and Rectangle. Inside
TwoDShape, area() is given a placeholder implementation that simply informs the
user that this method must be overridden by a subclass. Each override of area()
supplies an implementation that is suitable for the type of object encapsulated by the

subclass. Thus, if you were to implement an ellipse class, for example, then area()
would need to compute the area() of an ellipse.

There is one other important feature in the preceding program. Notice in main()
that shapes is declared as an array of TwoDShape objects. However, the elements of
this array are assigned Triangle, Rectangle, and TwoDShape references. This is
valid because, as explained, a superclass reference can refer to a subclass object. The
program then cycles through the array, displaying information about each object.
Although quite simple, this illustrates the power of both inheritance and method
overriding. The type of object referred to by a superclass reference variable is
determined at run time and acted on accordingly. If an object is derived from
TwoDShape, then its area can be obtained by calling area(). The interface to this
operation is the same no matter what type of shape is being used.

Using Abstract Classes
Sometimes you will want to create a superclass that defines only a generalized form
that will be shared by all of its subclasses, leaving it to each subclass to fill in the
details. Such a class determines the nature of the methods that the subclasses must
implement but does not, itself, provide an implementation of one or more of these
methods. One way this situation can occur is when a superclass is unable to create a
meaningful implementation for a method. This is the case with the version of
TwoDShape used in the preceding example. The definition of area() is simply a
placeholder. It will not compute and display the area of any type of object.

As you will see as you create your own class libraries, it is not uncommon for a
method to have no meaningful definition in the context of its superclass. You can
handle this situation in two ways. One way, as shown in the previous example, is to
simply have it report a warning message. While this approach can be useful in
certain situations—such as debugging—it is not usually appropriate. You may have
methods which must be overridden by the subclass in order for the subclass to have
any meaning. Consider the class Triangle. It is incomplete if area() is not defined.
In this case, you want some way to ensure that a subclass does, indeed, override all
necessary methods. Java’s solution to this problem is the abstract method.

An abstract method is created by specifying the abstract type modifier. An
abstract method contains no body and is, therefore, not implemented by the
superclass. Thus, a subclass must override it—it cannot simply use the version
defined in the superclass. To declare an abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present. The abstract modifier can be used only
on instance methods. It cannot be applied to static methods or to constructors.

A class that contains one or more abstract methods must also be declared as
abstract by preceding its class declaration with the abstract modifier. Since an
abstract class does not define a complete implementation, there can be no objects of
an abstract class. Thus, attempting to create an object of an abstract class by using
new will result in a compile-time error.

When a subclass inherits an abstract class, it must implement all of the abstract
methods in the superclass. If it doesn’t, then the subclass must also be specified as
abstract. Thus, the abstract attribute is inherited until such time as a complete
implementation is achieved.

Using an abstract class, you can improve the TwoDShape class. Since there is no
meaningful concept of area for an undefined two-dimensional figure, the following
version of the preceding program declares area() as abstract inside TwoDShape,
and TwoDShape as abstract. This, of course, means that all classes derived from
TwoDShape must override area().

As the program illustrates, all subclasses of TwoDShape must override area().

To prove this to yourself, try creating a subclass that does not override area(). You
will receive a compile-time error. Of course, it is still possible to create an object
reference of type TwoDShape, which the program does. However, it is no longer
possible to declare objects of type TwoDShape. Because of this, in main() the
shapes array has been shortened to 4, and a TwoDShape object is no longer created.

One last point: Notice that TwoDShape still includes the showDim() and
getName() methods and that these are not modified by abstract. It is perfectly
acceptable—indeed, quite common—for an abstract class to contain concrete
methods which a subclass is free to use as is. Only those methods declared as
abstract need be overridden by subclasses.

Using final
As powerful and useful as method overriding and inheritance are, sometimes you
will want to prevent them. For example, you might have a class that encapsulates
control of some hardware device. Further, this class might offer the user the ability to
initialize the device, making use of private, proprietary information. In this case, you
don’t want users of your class to be able to override the initialization method.
Whatever the reason, in Java it is easy to prevent a method from being overridden or
a class from being inherited by using the keyword final.

final Prevents Overriding
To prevent a method from being overridden, specify final as a modifier at the start of
its declaration. Methods declared as final cannot be overridden. The following
fragment illustrates final:

Because meth() is declared as final, it cannot be overridden in B. If you attempt to
do so, a compile-time error will result.

final Prevents Inheritance
You can prevent a class from being inherited by preceding its declaration with final.
Declaring a class as final implicitly declares all of its methods as final, too. As you
might expect, it is illegal to declare a class as both abstract and final since an
abstract class is incomplete by itself and relies upon its subclasses to provide
complete implementations.

Here is an example of a final class:

As the comments imply, it is illegal for B to inherit A since A is declared as final.

Using final with Data Members
In addition to the uses of final just shown, final can also be applied to member
variables to create what amounts to named constants. If you precede a class
variable’s name with final, its value cannot be changed throughout the lifetime of
your program. You can, of course, give that variable an initial value. For example, in
Chapter 6 a simple error-management class called ErrorMsg was shown. That class
mapped a human-readable string to an error code. Here, that original class is
improved by the addition of final constants which stand for the errors. Now, instead
of passing getErrorMsg() a number such as 2, you can pass the named integer
constant DISKERR.

Notice how the final constants are used in main(). Since they are members of the
ErrorMsg class, they must be accessed via an object of that class. Of course, they
can also be inherited by subclasses and accessed directly inside those subclasses.

As a point of style, many Java programmers use uppercase identifiers for final
constants, as does the preceding example. But this is not a hard and fast rule.

Ask the Expert
Q: Can final member variables be made static? Can final be used on

method parameters and local variables?
A: The answer to both is Yes. Making a final member variable static lets

you refer to the constant through its class name rather than through an
object. For example, if the constants in ErrorMsg were modified by
static, then the println() statements in main() could look like this:

System.out.println(err.getErrorMsg(ErrorMsg.OUTERR));
System.out.println(err.getErrorMsg(ErrorMsg.DISKERR));

Declaring a parameter final prevents it from being changed within the
method. Declaring a local variable final prevents it from being assigned a
value more than once.

The Object Class
Java defines one special class called Object that is an implicit superclass of all other
classes. In other words, all other classes are subclasses of Object. This means that a
reference variable of type Object can refer to an object of any other class. Also,
since arrays are implemented as classes, a variable of type Object can also refer to
any array.

Object defines the following methods, which means that they are available in
every object:

The methods getClass(), notify(), notifyAll(), and wait() are declared as final.
You can override the others. Several of these methods are described later in this
book. However, notice two methods now: equals() and toString(). The equals()
method compares two objects. It returns true if the objects are equivalent, and false
otherwise. The toString() method returns a string that contains a description of the
object on which it is called. Also, this method is automatically called when an object
is output using println(). Many classes override this method. Doing so allows them
to tailor a description specifically for the types of objects that they create.

One last point: Notice the unusual syntax in the return type for getClass(). This
relates to Java’s generics feature. Generics allow the type of data used by a class or
method to be specified as a parameter. Generics are discussed in Chapter 13.

 Chapter 7 Self Test

1. Does a superclass have access to the members of a subclass? Does a subclass
have access to the members of a superclass?

2. Create a subclass of TwoDShape called Circle. Include an area() method that
computes the area of the circle and a constructor that uses super to initialize the
TwoDShape portion.

3. How do you prevent a subclass from having access to a member of a superclass?
4. Describe the purpose and use of the two versions of super described in this

chapter.
5. Given the following hierarchy:

In what order do the constructors for these classes complete their execution
when a Gamma object is instantiated?

6. A superclass reference can refer to a subclass object. Explain why this is
important as it relates to method overriding.

7. What is an abstract class?
8. How do you prevent a method from being overridden? How do you prevent a

class from being inherited?
9. Explain how inheritance, method overriding, and abstract classes are used to

support polymorphism.
10. What class is a superclass of every other class?
11. A class that contains at least one abstract method must, itself, be declared

abstract. True or False?
12. What keyword is used to create a named constant?

T

Chapter 8

Packages and Interfaces

Key Skills & Concepts
 Use packages

 Understand how packages affect access

 Apply the protected access modifier

 Import packages

 Know Java’s standard packages

 Understand interface fundamentals

 Implement an interface

 Apply interface references

 Understand interface variables

 Extend interfaces

 Create default, static, and private interface methods

his chapter examines two of Java’s most innovative features: packages and
interfaces. Packages are groups of related classes. Packages help organize
your code and provide another layer of encapsulation. As you will see in

Chapter 15, packages also play an important role in the new modules feature added
by JDK 9. An interface defines a set of methods that will be implemented by a class.
Thus, an interface gives you a way to specify what a class will do, but not how it will
do it. Packages and interfaces give you greater control over the organization of your
program.

Packages
In programming, it is often helpful to group related pieces of a program together. In
Java, this can be accomplished by using a package. A package serves two purposes.
First, it provides a mechanism by which related pieces of a program can be
organized as a unit. Classes defined within a package must be accessed through their
package name. Thus, a package provides a way to name a collection of classes.
Second, a package participates in Java’s access control mechanism. Classes defined
within a package can be made private to that package and not accessible by code
outside the package. Thus, the package provides a means by which classes can be
encapsulated. Let’s examine each feature a bit more closely.

In general, when you name a class, you are allocating a name from the namespace.
A namespace defines a declarative region. In Java, no two classes can use the same
name from the same namespace. Thus, within a given namespace, each class name
must be unique. The examples shown in the preceding chapters have all used the
default (global) namespace. While this is fine for short sample programs, it becomes
a problem as programs grow and the default namespace becomes crowded. In large
programs, finding unique names for each class can be difficult. Furthermore, you
must avoid name collisions with code created by other programmers working on the
same project, and with Java’s library. The solution to these problems is the package
because it gives you a way to partition the namespace. When a class is defined
within a package, the name of that package is attached to each class, thus avoiding
name collisions with other classes that have the same name, but are in other
packages.

Since a package usually contains related classes, Java defines special access rights
to code within a package. In a package, you can define code that is accessible by
other code within the same package but not by code outside the package. This
enables you to create self-contained groups of related classes that keep their
operation private.

Defining a Package
All classes in Java belong to some package. When no package statement is
specified, the default (global) package is used. Furthermore, the default package has
no name, which makes the default package transparent. This is why you haven’t had
to worry about packages before now. While the default package is fine for short,
sample programs, it is inadequate for real applications. Most of the time, you will
define one or more packages for your code.

To create a package, put a package command at the top of a Java source file. The
classes declared within that file will then belong to the specified package. Since a

package defines a namespace, the names of the classes that you put into the file
become part of that package’s namespace.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a
package called mypack:

package mypack;

Java uses the file system to manage packages, with each package stored in its own
directory. For example, the .class files for any classes you declare to be part of
mypack must be stored in a directory called mypack.

Like the rest of Java, package names are case sensitive. This means that the
directory in which a package is stored must be precisely the same as the package
name. If you have trouble trying the examples in this chapter, remember to check
your package and directory names carefully. Lowercase is often used for package
names.

More than one file can include the same package statement. The package
statement simply specifies to which package the classes defined in a file belong. It
does not exclude other classes in other files from being part of that same package.
Most real-world packages are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package
name from the one above it by use of a period. The general form of a multileveled
package statement is shown here:

package pack1.pack2.pack3...packN;

Of course, you must create directories that support the package hierarchy that you
create. For example,

package alpha.beta.gamma;

must be stored in .../alpha/beta/gamma, where ... specifies the path to the specified
directories.

Finding Packages and CLASSPATH
As just explained, packages are mirrored by directories. This raises an important
question: How does the Java run-time system know where to look for packages that
you create? As it relates to the examples in this chapter, the answer has three parts.

First, by default, the Java run-time system uses the current working directory as its
starting point. Thus, if your package is in a subdirectory of the current directory, it
will be found. Second, you can specify a directory path or paths by setting the
CLASSPATH environmental variable. Third, you can use the -classpath option
with java and javac to specify the path to your classes. It is useful to point out that,
beginning with JDK 9, a package can be part of a module, and thus found on the
module path. However, a discussion of modules and module paths is deferred until
Chapter 15. For now, we will use only class paths.

For example, assuming the following package specification:

package mypack

In order for a program to find mypack, the program can be executed from a
directory immediately above mypack, or CLASSPATH must be set to include the
path to mypack, or the -classpath option must specify the path to mypack when the
program is run via java.

The easiest way to try the examples shown in this chapter is to simply create the
package directories below your current development directory, put the .class files
into the appropriate directories, and then execute the programs from the development
directory. This is the approach used by the following examples.

One last point: To avoid problems, it is best to keep all .java and .class files
associated with a package in that package’s directory. Also, compile each file from
the directory above the package directory.

A Short Package Example
Keeping the preceding discussion in mind, try this short package example. It creates
a simple book database that is contained within a package called bookpack.

Call this file BookDemo.java and put it in a directory called bookpack.
Next, compile the file. You can do this by specifying

javac bookpack/BookDemo.java

from the directory directly above bookpack. Then try executing the class, using the
following command line:

java bookpack.BookDemo

Remember, you will need to be in the directory above bookpack when you execute

this command. (Or, use one of the other two options described in the preceding
section to specify the path to bookpack.)

As explained, BookDemo and Book are now part of the package bookpack. This
means that BookDemo cannot be executed by itself. That is, you cannot use this
command line:

java BookDemo

Instead, BookDemo must be qualified with its package name.

Packages and Member Access
The preceding chapters have introduced the fundamentals of access control,
including the private and public modifiers, but they have not told the entire story.
One reason for this is that packages also participate in Java’s access control
mechanism, and this aspect of access control had to wait until packages were
covered. Before we continue, it is important to note that the new modules feature
added by JDK 9 also offers another dimension to accessibility, but here we focus
strictly on the interplay between packages and classes.

The visibility of an element is affected by its access specification—private,
public, protected, or default—and the package in which it resides. Thus, as it relates
to classes and packages, the visibility of an element is determined by its visibility
within a class and its visibility within a package. This multilayered approach to
access control supports a rich assortment of access privileges. Table 8-1 summarizes
the various access levels. Let’s examine each access option individually.

If a member of a class has no explicit access modifier, then it is visible within its
package but not outside its package. Therefore, you will use the default access
specification for elements that you want to keep private to a package but public
within that package.

Members explicitly declared public are the most visible, and can be accessed from
different classes and different packages. A private member is accessible only to the
other members of its class. A private member is unaffected by its membership in a
package. A member specified as protected is accessible within its package and to
subclasses in other packages.

Table 8-1 applies only to members of classes. A top-level class has only two
possible access levels: default and public. When a class is declared as public, it is
accessible outside its package. If a class has default access, it can be accessed only
by other code within its same package. Also, a class that is declared public must
reside in a file by the same name.

Table 8-1 Class Member Access

NOTE
Remember, the new modules feature added by JDK 9 can also affect accessibility.
Modules are discussed in Chapter 15.

A Package Access Example
In the package example shown earlier, both Book and BookDemo were in the same
package, so there was no problem with BookDemo using Book because the default
access privilege grants all members of the same package access. However, if Book
were in one package and BookDemo were in another, the situation would be
different. In this case, access to Book would be denied. To make Book available to
other packages, you must make three changes. First, Book needs to be declared
public. This makes Book visible outside of bookpack. Second, its constructor must
be made public, and finally, its show() method needs to be public. This allows them
to be visible outside of bookpack, too. Thus, to make Book usable by other
packages, it must be recoded as shown here:

To use Book from another package, either you must use the import statement
described in the next section, or you must fully qualify its name to include its full
package specification. For example, here is a class called UseBook, which is
contained in the bookpackext package. It fully qualifies Book in order to use it.

Notice how every use of Book is preceded with the bookpack qualifier. Without this
specification, Book would not be found when you tried to compile UseBook.

Understanding Protected Members
Newcomers to Java are sometimes confused by the meaning and use of protected.
As explained, the protected modifier creates a member that is accessible within its
package and to subclasses in other packages. Thus, a protected member is available
for all subclasses to use but is still protected from arbitrary access by code outside its
package.

To better understand the effects of protected, let’s work through an example.
First, change the Book class so that its instance variables are protected, as shown
here:

Next, create a subclass of Book, called ExtBook, and a class called ProtectDemo
that uses ExtBook. ExtBook adds a field that stores the name of the publisher and
several accessor methods. Both of these classes will be in their own package called
bookpackext. They are shown here:

Look first at the code inside ExtBook. Because ExtBook extends Book, it has
access to the protected members of Book, even though ExtBook is in a different
package. Thus, it can access title, author, and pubDate directly, as it does in the
accessor methods it creates for those variables. However, in ProtectDemo, access to
these variables is denied because ProtectDemo is not a subclass of Book. For
example, if you remove the comment symbol from the following line, the program
will not compile.

// books[0].title = "test title"; // Error – not accessible

Importing Packages
When you use a class from another package, you can fully qualify the name of the
class with the name of its package, as the preceding examples have done. However,
such an approach could easily become tiresome and awkward, especially if the
classes you are qualifying are deeply nested in a package hierarchy. Since Java was
invented by programmers for programmers—and programmers don’t like tedious

constructs—it should come as no surprise that a more convenient method exists for
using the contents of packages: the import statement. Using import you can bring
one or more members of a package into view. This allows you to use those members
directly, without explicit package qualification.

Here is the general form of the import statement:

import pkg.classname;

Here, pkg is the name of the package, which can include its full path, and classname
is the name of the class being imported. If you want to import the entire contents of a
package, use an asterisk (*) for the class name. Here are examples of both forms:

import mypack.MyClass
import mypack.*;

In the first case, the MyClass class is imported from mypack. In the second, all of
the classes in mypack are imported. In a Java source file, import statements occur
immediately following the package statement (if it exists) and before any class
definitions.

You can use import to bring the bookpack package into view so that the Book
class can be used without qualification. To do so, simply add this import statement
to the top of any file that uses Book.

import bookpack.*;

For example, here is the UseBook class recoded to use import:

Notice that you no longer need to qualify Book with its package name.

Java’s Class Library Is Contained in Packages
As explained earlier in this book, Java defines a large number of standard classes
that are available to all programs. This class library is often referred to as the Java
API (Application Programming Interface). The Java API is stored in packages. At
the top of the package hierarchy is java. Descending from java are several
subpackages. Here are a few examples:

Since the beginning of this book, you have been using java.lang. It contains,
among several others, the System class, which you have been using when
performing output using println(). The java.lang package is unique because it is
imported automatically into every Java program. This is why you did not have to
import java.lang in the preceding sample programs. However, you must explicitly
import the other packages. We will be examining several packages in subsequent
chapters.

Interfaces
In object-oriented programming, it is sometimes helpful to define what a class must
do but not how it will do it. You have already seen an example of this: the abstract
method. An abstract method defines the signature for a method but provides no
implementation. A subclass must provide its own implementation of each abstract
method defined by its superclass. Thus, an abstract method specifies the interface to
the method but not the implementation. While abstract classes and methods are
useful, it is possible to take this concept a step further. In Java, you can fully separate
a class’ interface from its implementation by using the keyword interface.

An interface is syntactically similar to an abstract class, in that you can specify
one or more methods that have no body. Those methods must be implemented by a
class in order for their actions to be defined. Thus, an interface specifies what must
be done, but not how to do it. Once an interface is defined, any number of classes
can implement it. Also, one class can implement any number of interfaces.

To implement an interface, a class must provide bodies (implementations) for the
methods described by the interface. Each class is free to determine the details of its
own implementation. Two classes might implement the same interface in different
ways, but each class still supports the same set of methods. Thus, code that has
knowledge of the interface can use objects of either class since the interface to those
objects is the same. By providing the interface keyword, Java allows you to fully

utilize the “one interface, multiple methods” aspect of polymorphism.
Before continuing an important point needs to be made. JDK 8 added a feature to

interface that made a significant change to its capabilities. Prior to JDK 8, an
interface could not define any implementation whatsoever. Thus, prior to JDK 8, an
interface could define only what, but not how, as just described. JDK 8 changed this.
Today, it is possible to add a default implementation to an interface method.
Furthermore, static interface methods are now supported, and beginning with JDK 9,
an interface can also include private methods. Thus, it is now possible for interface
to specify some behavior. However, such methods constitute what are, in essence,
special-use features, and the original intent behind interface still remains. Therefore,
as a general rule, you will still often create and use interfaces in which no use is
made of these new features. For this reason, we will begin by discussing the interface
in its traditional form. New interface features are described at the end of this chapter.

Here is a simplified general form of a traditional interface:
access interface name {
ret-type method-name1(param-list);
ret-type method-name2(param-list);
type var1 = value;
type var2 = value;
// ...
ret-type method-nameN(param-list);
type varN = value;

}

For a top-level interface, access is either public or not used. When no access
modifier is included, then default access results, and the interface is available only to
other members of its package. When it is declared as public, the interface can be
used by any other code. (When an interface is declared public, it must be in a file of
the same name.) name is the name of the interface and can be any valid identifier.

In the traditional form of an interface, methods are declared using only their return
type and signature. They are, essentially, abstract methods. Thus, each class that
includes such an interface must implement all of its methods. In an interface,
methods are implicitly public.

Variables declared in an interface are not instance variables. Instead, they are
implicitly public, final, and static and must be initialized. Thus, they are essentially
constants.

Here is an example of an interface definition. It specifies the interface to a class
that generates a series of numbers.

This interface is declared public so that it can be implemented by code in any
package.

Implementing Interfaces
Once an interface has been defined, one or more classes can implement that
interface. To implement an interface, include the implements clause in a class
definition and then create the methods required by the interface. The general form of
a class that includes the implements clause looks like this:
class classname extends superclass implements interface {

// class-body
}
To implement more than one interface, the interfaces are separated with a comma.
Of course, the extends clause is optional.

The methods that implement an interface must be declared public. Also, the type
signature of the implementing method must match exactly the type signature
specified in the interface definition.

Here is an example that implements the Series interface shown earlier. It creates a
class called ByTwos, which generates a series of numbers, each two greater than the
previous one.

Notice that the methods getNext(), reset(), and setStart() are declared using the
public access specifier. This is necessary. Whenever you implement a method
defined by an interface, it must be implemented as public because all members of an
interface are implicitly public.

Here is a class that demonstrates ByTwos:

The output from this program is shown here:

Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Resetting
Next value is 2
Next value is 4
Next value is 6
Next value is 8
Next value is 10

Starting at 100
Next value is 102
Next value is 104
Next value is 106
Next value is 108
Next value is 110

It is both permissible and common for classes that implement interfaces to define

additional members of their own. For example, the following version of ByTwos
adds the method getPrevious(), which returns the previous value:

Notice that the addition of getPrevious() required a change to the implementations
of the methods defined by Series. However, since the interface to those methods
stays the same, the change is seamless and does not break preexisting code. This is
one of the advantages of interfaces.

As explained, any number of classes can implement an interface. For example,
here is a class called ByThrees that generates a series that consists of multiples of
three:

One more point: If a class includes an interface but does not fully implement the
methods defined by that interface, then that class must be declared as abstract. No
objects of such a class can be created, but it can be used as an abstract superclass,
allowing subclasses to provide the complete implementation.

Using Interface References
You might be somewhat surprised to learn that you can declare a reference variable
of an interface type. In other words, you can create an interface reference variable.
Such a variable can refer to any object that implements its interface. When you call a
method on an object through an interface reference, it is the version of the method
implemented by the object that is executed. This process is similar to using a

superclass reference to access a subclass object, as described in Chapter 7.
The following example illustrates this process. It uses the same interface reference

variable to call methods on objects of both ByTwos and ByThrees.

In main(), ob is declared to be a reference to a Series interface. This means that it
can be used to store references to any object that implements Series. In this case, it is
used to refer to twoOb and threeOb, which are objects of type ByTwos and
ByThrees, respectively, which both implement Series. An interface reference

variable has knowledge only of the methods declared by its interface declaration.
Thus, ob could not be used to access any other variables or methods that might be
supported by the object.

Try This 8-1 Creating a Queue Interface

To see the power of interfaces in action, we will look at a practical example. In
earlier chapters, you developed a class called Queue that implemented a simple
fixed-size queue for characters. However, there are many ways to implement a
queue. For example, the queue can be of a fixed size or it can be “growable.” The
queue can be linear, in which case it can be used up, or it can be circular, in which
case elements can be put in as long as elements are being taken off. The queue can
also be held in an array, a linked list, a binary tree, and so on. No matter how the
queue is implemented, the interface to the queue remains the same, and the methods
put() and get() define the interface to the queue independently of the details of the
implementation. Because the interface to a queue is separate from its
implementation, it is easy to define a queue interface, leaving it to each
implementation to define the specifics.

In this project, you will create an interface for a character queue and three
implementations. All three implementations will use an array to store the characters.
One queue will be the fixed-size, linear queue developed earlier. Another will be a
circular queue. In a circular queue, when the end of the underlying array is
encountered, the get and put indices automatically loop back to the start. Thus, any
number of items can be stored in a circular queue as long as items are also being
taken out. The final implementation creates a dynamic queue, which grows as
necessary when its size is exceeded.
1. Create a file called ICharQ.java and put into that file the following interface

definition:

As you can see, this interface is very simple, consisting of only two methods.
Each class that implements ICharQ will need to implement these methods.

2. Create a file called IQDemo.java.
3. Begin creating IQDemo.java by adding the FixedQueue class shown here:

This implementation of ICharQ is adapted from the Queue class shown in
Chapter 5 and should already be familiar to you.

4. To IQDemo.java add the CircularQueue class shown here. It implements a
circular queue for characters.

The circular queue works by reusing space in the array that is freed when

elements are retrieved. Thus, it can store an unlimited number of elements as
long as elements are also being removed. While conceptually simple—just reset
the appropriate index to zero when the end of the array is reached—the boundary
conditions are a bit confusing at first. In a circular queue, the queue is full not
when the end of the underlying array is reached, but rather when storing an item
would cause an unretrieved item to be overwritten. Thus, put() must check
several conditions in order to determine if the queue is full. As the comments
suggest, the queue is full when either putloc is one less than getloc, or if putloc
is at the end of the array and getloc is at the beginning. As before, the queue is
empty when getloc and putloc are equal. To make these checks easier, the
underlying array is created one size larger than the queue size.

5. Put into IQDemo.java the DynQueue class shown next. It implements a
“growable” queue that expands its size when space is exhausted.

In this queue implementation, when the queue is full, an attempt to store another
element causes a new underlying array to be allocated that is twice as large as
the original, the current contents of the queue are copied into this array, and a
reference to the new array is stored in q.

6. To demonstrate the three ICharQ implementations, enter the following class into
IQDemo.java. It uses an ICharQ reference to access all three queues.

7. The output from this program is shown here:
Contents of fixed queue: ABCDEFGHIJ
Contents of dynamic queue: ZYXWVUTSRQ
Contents of circular queue: ABCDEFGHIJ
Contents of circular queue: KLMNOPQRST
Store and consume from circular queue.
ABCDEFGHIJKLMNOPQRST

8. Here are some things to try on your own. Create a circular version of DynQueue.
Add a reset() method to ICharQ, which resets the queue. Create a static method
that copies the contents of one type of queue into another.

Variables in Interfaces
As mentioned, variables can be declared in an interface, but they are implicitly
public, static, and final. At first glance, you might think that there would be very
limited use for such variables, but the opposite is true. Large programs typically
make use of several constant values that describe such things as array size, various
limits, special values, and the like. Since a large program is typically held in a
number of separate source files, there needs to be a convenient way to make these
constants available to each file. In Java, interface variables offer one solution.

To define a set of shared constants, create an interface that contains only these
constants, without any methods. Each file that needs access to the constants simply

“implements” the interface. This brings the constants into view. Here is an example:

NOTE
The technique of using an interface to define shared constants is controversial. It is
described here for completeness.

Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends. The syntax is the
same as for inheriting classes. When a class implements an interface that inherits
another interface, it must provide implementations for all methods required by the
interface inheritance chain. Following is an example:

As an experiment, you might try removing the implementation for meth1() in
MyClass. This will cause a compile-time error. As stated earlier, any class that
implements an interface must implement all methods required by that interface,
including any that are inherited from other interfaces.

Default Interface Methods
As explained earlier, prior to JDK 8, an interface could not define any
implementation whatsoever. This meant that for all previous versions of Java, the
methods specified by an interface were abstract, containing no body. This is the
traditional form of an interface and is the type of interface that the preceding
discussions have used. The release of JDK 8 changed this by adding a new capability
to interface called the default method. A default method lets you define a default
implementation for an interface method. In other words, by use of a default method,
it is possible for an interface method to provide a body, rather than being abstract.
During its development, the default method was also referred to as an extension
method, and you will likely see both terms used.

A primary motivation for the default method was to provide a means by which
interfaces could be expanded without breaking existing code. Recall that there must
be implementations for all methods defined by an interface. In the past, if a new
method were added to a popular, widely used interface, then the addition of that
method would break existing code because no implementation would be found for
that method. The default method solves this problem by supplying an
implementation that will be used if no other implementation is explicitly provided.
Thus, the addition of a default method will not cause preexisting code to break.

Another motivation for the default method was the desire to specify methods in an
interface that are, essentially, optional, depending on how the interface is used. For
example, an interface might define a group of methods that act on a sequence of
elements. One of these methods might be called remove(), and its purpose is to
remove an element from the sequence. However, if the interface is intended to
support both modifiable and non-modifiable sequences, then remove() is essentially
optional because it won’t be used by non-modifiable sequences. In the past, a class
that implemented a non-modifiable sequence would have had to define an empty
implementation of remove(), even though it was not needed. Today, a default
implementation for remove() can be specified in the interface that either does
nothing or reports an error. Providing this default prevents a class used for non-
modifiable sequences from having to define its own, placeholder version of remove(
). Thus, by providing a default, the interface makes the implementation of remove()
by a class optional.

It is important to point out that the addition of default methods does not change a
key aspect of interface: an interface still cannot have instance variables. Thus, the
defining difference between an interface and a class is that a class can maintain state
information, but an interface cannot. Furthermore, it is still not possible to create an
instance of an interface by itself. It must be implemented by a class. Therefore, even
though, beginning with JDK 8, an interface can define default methods, the interface

must still be implemented by a class if an instance is to be created.
One last point: As a general rule, default methods constitute a special-purpose

feature. Interfaces that you create will still be used primarily to specify what and not
how. However, the inclusion of the default method gives you added flexibility.

Default Method Fundamentals
An interface default method is defined similar to the way a method is defined by a
class. The primary difference is that the declaration is preceded by the keyword
default. For example, consider this simple interface:

MyIF declares two methods. The first, getUserID(), is a standard interface
method declaration. It defines no implementation whatsoever. The second method is
getAdminID(), and it does include a default implementation. In this case, it simply
returns 1. Pay special attention to the way getAdminID() is declared. Its declaration
is preceded by the default modifier. This syntax can be generalized. To define a
default method, precede its declaration with default.

Because getAdminID() includes a default implementation, it is not necessary for
an implementing class to override it. In other words, if an implementing class does
not provide its own implementation, the default is used. For example, the MyIFImp
class shown next is perfectly valid:

The following code creates an instance of MyIFImp and uses it to call both
getUserID() and getAdminID().

The output is shown here:

User ID is 100
Administrator ID is 1

As you can see, the default implementation of getAdminID() was automatically
used. It was not necessary for MyIFImp to define it. Thus, for getAdminID(),
implementation by a class is optional. (Of course, its implementation by a class will
be required if the class needs to return a different ID.)

It is both possible and common for an implementing class to define its own
implementation of a default method. For example, MyIFImp2 overrides
getAdminID(), as shown here:

Now, when getAdminID() is called, a value other than its default is returned.

A More Practical Example of a Default Method
Although the preceding shows the mechanics of using default methods, it doesn’t
illustrate their usefulness in a more practical setting. To do this, let’s return to the
Series interface shown earlier in this chapter. For the sake of discussion, assume that
Series is widely used and many programs rely on it. Further assume that through an
analysis of usage patterns, it was discovered that many implementations of Series
were adding a method that returned an array that contained the next n elements in the
series. Given this situation, you decide to enhance Series so that it includes such a
method, calling the new method getNextArray() and declaring it as shown here:

int[] getNextArray(int n)

Here, n specifies the number of elements to retrieve. Prior to default methods,
adding this method to Series would have broken preexisting code because existing
implementations would not have defined the method. However, by providing a
default for this new method, it can be added to Series without causing harm. Let’s
work through the process.

In some cases, when a default method is added to an existing interface, its
implementation simply reports an error if an attempt is made to use the default. This
approach is necessary in the case of default methods for which no implementation
can be provided that will work in all cases. These types of default methods define
what is, essentially, optional code. However, in some cases, you can define a default
method that will work in all cases. This is the situation for getNextArray(). Because
Series already requires that a class implement getNext(), the default version of
getNextArray() can use it. Thus, here is one way to implement the new version of
Series that includes the default getNextArray() method:

Pay special attention to the way that the default method getNextArray() is
implemented. Because getNext() was part of the original specification for Series,
any class that implements Series will provide that method. Thus, it can be used
inside getNextArray() to obtain the next n elements in the series. As a result, any
class that implements the enhanced version of Series will be able to use
getNextArray() as is, and no class is required to override it. Therefore, no
preexisting code is broken. Of course, it is still possible for a class to provide its own
implementation of getNextArray(), if you choose.

As the preceding example shows, the default method provides two major benefits:

 It gives you a way to gracefully evolve interfaces over time without breaking
existing code.

 It provides optional functionality without requiring that a class provide a
placeholder implementation when that functionality is not needed.

In the case of getNextArray(), the second point is especially important. If an
implementation of Series does not require the capability offered by getNextArray(
), it need not provide its own placeholder implementation. This allows cleaner code
to be created.

Multiple Inheritance Issues
As explained earlier in this book, Java does not support the multiple inheritance of

classes. Now that an interface can include default methods, you might be wondering
if an interface can provide a way around this restriction. The answer is, essentially,
no. Recall that there is still a key difference between a class and an interface: a class
can maintain state information (through the use of instance variables), but an
interface cannot.

The preceding notwithstanding, default methods do offer a bit of what one would
normally associate with the concept of multiple inheritance. For example, you might
have a class that implements two interfaces. If each of these interfaces provides
default methods, then some behavior is inherited from both. Thus, to a limited
extent, default methods do support multiple inheritance of behavior. As you might
guess, in such a situation, it is possible that a name conflict will occur.

For example, assume that two interfaces called Alpha and Beta are implemented
by a class called MyClass. What happens if both Alpha and Beta provide a method
called reset() for which both declare a default implementation? Is the version by
Alpha or the version by Beta used by MyClass? Or, consider a situation in which
Beta extends Alpha. Which version of the default method is used? Or, what if
MyClass provides its own implementation of the method? To handle these and other
similar types of situations, Java defines a set of rules that resolve such conflicts.

First, in all cases a class implementation takes priority over an interface default
implementation. Thus, if MyClass provides an override of the reset() default
method, MyClass’s version is used. This is the case even if MyClass implements
both Alpha and Beta. In this case, both defaults are overridden by MyClass’s
implementation.

Second, in cases in which a class inherits two interfaces that both have the same
default method, if the class does not override that method, then an error will result.
Continuing with the example, if MyClass inherits both Alpha and Beta, but does not
override reset(), then an error will occur.

In cases in which one interface inherits another, with both defining a common
default method, the inheriting interface’s version of the method takes precedence.
Therefore, continuing the example, if Beta extends Alpha, then Beta’s version of
reset() will be used.

It is possible to refer explicitly to a default implementation by using a new form of
super. Its general form is shown here:

InterfaceName.super.methodName()

For example, if Beta wants to refer to Alpha’s default for reset(), it can use this
statement:

Alpha.super.reset();

Use static Methods in an Interface
JDK 8 added another new capability to interface: the ability to define one or more
static methods. Like static methods in a class, a static method defined by an
interface can be called independently of any object. Thus, no implementation of the
interface is necessary, and no instance of the interface is required in order to call a
static method. Instead, a static method is called by specifying the interface name,
followed by a period, followed by the method name. Here is the general form:

InterfaceName.staticMethodName

Notice that this is similar to the way that a static method in a class is called.
The following shows an example of a static method in an interface by adding one

to MyIF, shown earlier. The static method is getUniversalID(). It returns zero.

The getUniversalID() method can be called, as shown here:

int uID = MyIF.getUniversalID();

As mentioned, no implementation or instance of MyIF is required to call
getUniversalID() because it is static.

One last point: static interface methods are not inherited by either an
implementing class or a subinterface.

Private Interface Methods
Beginning with JDK 9, an interface can include a private method. A private interface
method can be called only by a default method or another private method defined by
the same interface. Because a private interface method is specified private, it cannot
be used by code outside the interface in which it is defined. This restriction includes
subinterfaces because a private interface method is not inherited by a subinterface.

The key benefit of a private interface method is that it lets two or more default
methods use a common piece of code, thus avoiding code duplication. For example,
here is a further enhanced version of the Series interface that adds a second default
method called skipAndGetNextArray(). It skips a specified number of elements
and then returns an array that contains the subsequent elements. It uses a private
method called getArray() to obtain an element array of a specified size.

Notice that both getNextArray() and skipAndGetNextArray() use the private
getArray() method to obtain the array to return. This prevents both methods from
having to duplicate the same code sequence. Keep in mind that because getArray()
is private, it cannot be called by code outside Series. Thus, its use is limited to the
default methods inside Series.

Although the private interface method is a feature that you will seldom need, in
those cases in which you do need it, you will find it quite useful.

Final Thoughts on Packages and Interfaces
Although the examples we’ve included in this book do not make frequent use of
packages or interfaces, both of these tools are an important part of the Java
programming environment. Virtually all real programs that you write in Java will be
contained within packages. A number will probably implement interfaces as well. As
you will see in Chapter 15, packages play an important role in the new module
feature added by JDK 9. It is important, therefore, that you be comfortable with their
usage.

 Chapter 8 Self Test

1. Using the code from Try This 8-1, put the ICharQ interface and its three
implementations into a package called qpack. Keeping the queue demonstration
class IQDemo in the default package, show how to import and use the classes in
qpack.

2. What is a namespace? Why is it important that Java allows you to partition the
namespace?

3. Packages are stored in ______________.
4. Explain the difference between protected and default access.
5. Explain the two ways that the members of a package can be used by other

packages.
6. “One interface, multiple methods” is a key tenet of Java. What feature best

exemplifies it?
7. How many classes can implement an interface? How many interfaces can a class

implement?
8. Can interfaces be extended?
9. Create an interface for the Vehicle class from Chapter 7. Call the interface

IVehicle.
10. Variables declared in an interface are implicitly static and final. Can they be

shared with other parts of a program?
11. A package is, in essence, a container for classes. True or False?
12. What standard Java package is automatically imported into a program?
13. What keyword is used to declare a default interface method?
14. Beginning with JDK 8, is it possible to define a static method in an interface?
15. Assume that the ICharQ interface shown in Try This 8-1 has been in

widespread use for several years. Now, you want to add a method to it called
reset(), which will be used to reset the queue to its empty, starting condition.
Assuming JDK 8 or later, how can this be accomplished without breaking
preexisting code?

16. How is a static method in an interface called?
17. Can an interface have a private method?

T

Chapter 9

Exception Handling

Key Skills & Concepts
 Know the exception hierarchy

 Use try and catch

 Understand the effects of an uncaught exception

 Use multiple catch statements

 Catch subclass exceptions

 Nest try blocks

 Throw an exception

 Know the members of Throwable

 Use finally

 Use throws

 Know Java’s built-in exceptions

 Create custom exception classes

his chapter discusses exception handling. An exception is an error that occurs
at run time. Using Java’s exception handling subsystem you can, in a
structured and controlled manner, handle run-time errors. Although most

modern programming languages offer some form of exception handling, Java’s
support for it is both easy-to-use and flexible.

A principal advantage of exception handling is that it automates much of the error
handling code that previously had to be entered “by hand” into any large program.
For example, in some older computer languages, error codes are returned when a

method fails, and these values must be checked manually, each time the method is
called. This approach is both tedious and error-prone. Exception handling
streamlines error handling by allowing your program to define a block of code,
called an exception handler, that is executed automatically when an error occurs. It is
not necessary to manually check the success or failure of each specific operation or
method call. If an error occurs, it will be processed by the exception handler.

Another reason that exception handling is important is that Java defines standard
exceptions for common program errors, such as divide-by-zero or file-not-found. To
respond to these errors, your program must watch for and handle these exceptions.
Also, Java’s API library makes extensive use of exceptions.

In the final analysis, to be a successful Java programmer means that you are fully
capable of navigating Java’s exception handling subsystem.

The Exception Hierarchy
In Java, all exceptions are represented by classes. All exception classes are derived
from a class called Throwable. Thus, when an exception occurs in a program, an
object of some type of exception class is generated. There are two direct subclasses
of Throwable: Exception and Error. Exceptions of type Error are related to errors
that occur in the Java Virtual Machine itself, and not in your program. These types of
exceptions are beyond your control, and your program will not usually deal with
them. Thus, these types of exceptions are not described here.

Errors that result from program activity are represented by subclasses of
Exception. For example, divide-by-zero, array boundary, and file errors fall into this
category. In general, your program should handle exceptions of these types. An
important subclass of Exception is RuntimeException, which is used to represent
various common types of run-time errors.

Exception Handling Fundamentals
Java exception handling is managed via five keywords: try, catch, throw, throws,
and finally. They form an interrelated subsystem in which the use of one implies the
use of another. Throughout the course of this chapter, each keyword is examined in
detail. However, it is useful at the outset to have a general understanding of the role
each plays in exception handling. Briefly, here is how they work.

Program statements that you want to monitor for exceptions are contained within a
try block. If an exception occurs within the try block, it is thrown. Your code can
catch this exception using catch and handle it in some rational manner. System-
generated exceptions are automatically thrown by the Java run-time system. To

manually throw an exception, use the keyword throw. In some cases, an exception
that is thrown out of a method must be specified as such by a throws clause. Any
code that absolutely must be executed upon exiting from a try block is put in a
finally block.

Ask the Expert
Q: Just to be sure, could you review the conditions that cause an

exception to be generated?
A: Exceptions are generated in three different ways. First, the Java Virtual

Machine can generate an exception in response to some internal error
which is beyond your control. Normally, your program won’t handle
these types of exceptions. Second, standard exceptions, such as those
corresponding to divide-by-zero or array index out-of-bounds, are
generated by errors in program code. You need to handle these
exceptions. Third, you can manually generate an exception by using the
throw statement. No matter how an exception is generated, it is handled
in the same way.

Using try and catch
At the core of exception handling are try and catch. These keywords work together;
you can’t have a catch without a try. Here is the general form of the try/catch
exception handling blocks:

Here, ExcepType is the type of exception that has occurred. When an exception is

thrown, it is caught by its corresponding catch statement, which then processes the
exception. As the general form shows, there can be more than one catch statement
associated with a try. The type of the exception determines which catch statement is
executed. That is, if the exception type specified by a catch statement matches that
of the exception, then that catch statement is executed (and all others are bypassed).
When an exception is caught, exOb will receive its value.

Here is an important point: If no exception is thrown, then a try block ends
normally, and all of its catch statements are bypassed. Execution resumes with the
first statement following the last catch. Thus, catch statements are executed only if
an exception is thrown.

NOTE
There is another form of the try statement that supports automatic resource
management. This form of try is called try-with-resources. It is described in Chapter
10, in the context of managing I/O streams (such as those connected to a file)
because streams are some of the most commonly used resources.

A Simple Exception Example
Here is a simple example that illustrates how to watch for and catch an exception. As
you know, it is an error to attempt to index an array beyond its boundaries. When
this occurs, the JVM throws an ArrayIndexOutOfBoundsException. The
following program purposely generates such an exception and then catches it:

This program displays the following output:

Before exception is generated.
Index out-of-bounds!
After catch statement.

Although quite short, the preceding program illustrates several key points about
exception handling. First, the code that you want to monitor for errors is contained
within a try block. Second, when an exception occurs (in this case, because of the
attempt to index nums beyond its bounds), the exception is thrown out of the try
block and caught by the catch statement. At this point, control passes to the catch,
and the try block is terminated. That is, catch is not called. Rather, program
execution is transferred to it. Thus, the println() statement following the out-of-
bounds index will never execute. After the catch statement executes, program
control continues with the statements following the catch. Thus, it is the job of your
exception handler to remedy the problem that caused the exception so that program
execution can continue normally.

Remember, if no exception is thrown by a try block, no catch statements will be
executed and program control resumes after the catch statement. To confirm this, in
the preceding program, change the line

nums[7] = 10;

to

nums[0] = 10;

Now, no exception is generated, and the catch block is not executed.

It is important to understand that all code within a try block is monitored for
exceptions. This includes exceptions that might be generated by a method called
from within the try block. An exception thrown by a method called from within a
try block can be caught by the catch statements associated with that try block—
assuming, of course, that the method did not catch the exception itself. For example,
this is a valid program:

This program produces the following output, which is the same as that produced
by the first version of the program shown earlier:

Before exception is generated.
Index out-of-bounds!
After catch statement.

Since genException() is called from within a try block, the exception that it
generates (and does not catch) is caught by the catch in main(). Understand,
however, that if genException() had caught the exception itself, it never would have
been passed back to main().

The Consequences of an Uncaught Exception
Catching one of Java’s standard exceptions, as the preceding program does, has a
side benefit: It prevents abnormal program termination. When an exception is
thrown, it must be caught by some piece of code, somewhere. In general, if your
program does not catch an exception, then it will be caught by the JVM. The trouble
is that the JVM’s default exception handler terminates execution and displays a stack
trace and error message. For example, in this version of the preceding example, the
index out-of-bounds exception is not caught by the program.

When the array index error occurs, execution is halted, and the following error
message is displayed.

While such a message is useful for you while debugging, it would not be
something that you would want others to see, to say the least! This is why it is
important for your program to handle exceptions itself, rather than rely upon the
JVM.

As mentioned earlier, the type of the exception must match the type specified in a
catch statement. If it doesn’t, the exception won’t be caught. For example, the
following program tries to catch an array boundary error with a catch statement for
an ArithmeticException (another of Java’s built-in exceptions). When the array

boundary is overrun, an ArrayIndexOutOfBoundsException is generated, but it
won’t be caught by the catch statement. This results in abnormal program
termination.

The output is shown here.

As the output demonstrates, a catch for ArithmeticException won’t catch an
ArrayIndexOutOfBoundsException.

Exceptions Enable You to Handle Errors Gracefully
One of the key benefits of exception handling is that it enables your program to
respond to an error and then continue running. For example, consider the following
example that divides the elements of one array by the elements of another. If a
division by zero occurs, an ArithmeticException is generated. In the program, this

exception is handled by reporting the error and then continuing with execution. Thus,
attempting to divide by zero does not cause an abrupt run-time error resulting in the
termination of the program. Instead, it is handled gracefully, allowing program
execution to continue.

The output from the program is shown here:

This example makes another important point: Once an exception has been
handled, it is removed from the system. Therefore, in the program, each pass through
the loop enters the try block anew; any prior exceptions have been handled. This
enables your program to handle repeated errors.

Using Multiple catch Statements
As stated earlier, you can associate more than one catch statement with a try. In fact,

it is common to do so. However, each catch must catch a different type of exception.
For example, the program shown here catches both array boundary and divide-by-
zero errors:

This program produces the following output:

As the output confirms, each catch statement responds only to its own type of
exception.

In general, catch expressions are checked in the order in which they occur in a
program. Only a matching statement is executed. All other catch blocks are ignored.

Catching Subclass Exceptions
There is one important point about multiple catch statements that relates to
subclasses. A catch clause for a superclass will also match any of its subclasses. For
example, since the superclass of all exceptions is Throwable, to catch all possible
exceptions, catch Throwable. If you want to catch exceptions of both a superclass
type and a subclass type, put the subclass first in the catch sequence. If you don’t,
then the superclass catch will also catch all derived classes. This rule is self-
enforcing because putting the superclass first causes unreachable code to be created,
since the subclass catch clause can never execute. In Java, unreachable code is an
error.

For example, consider the following program:

The output from the program is shown here:

Ask the Expert
Q: Why would I want to catch superclass exceptions?
A: There are, of course, a variety of reasons. Here are a couple. First, if you

add a catch clause that catches exceptions of type Exception, then you
have effectively added a “catch all” clause to your exception handler that
deals with all program-related exceptions. Such a “catch all” clause might
be useful in a situation in which abnormal program termination must be
avoided no matter what occurs. Second, in some situations, an entire
category of exceptions can be handled by the same clause. Catching the
superclass of these exceptions allows you to handle all without duplicated
code.

In this case, catch(Throwable) catches all exceptions except for
ArrayIndexOutOfBounds-Exception. The issue of catching subclass exceptions
becomes more important when you create exceptions of your own.

Try Blocks Can Be Nested
One try block can be nested within another. An exception generated within the inner
try block that is not caught by a catch associated with that try is propagated to the
outer try block. For example, here the ArrayIndexOutOfBoundsException is not
caught by the inner catch, but by the outer catch:

The output from the program is shown here:

In this example, an exception that can be handled by the inner try—in this case, a
divide-by-zero error—allows the program to continue. However, an array boundary

error is caught by the outer try, which causes the program to terminate.
Although certainly not the only reason for nested try statements, the preceding

program makes an important point that can be generalized. Often nested try blocks
are used to allow different categories of errors to be handled in different ways. Some
types of errors are catastrophic and cannot be fixed. Some are minor and can be
handled immediately. You might use an outer try block to catch the most severe
errors, allowing inner try blocks to handle less serious ones.

Throwing an Exception
The preceding examples have been catching exceptions generated automatically by
the JVM. However, it is possible to manually throw an exception by using the throw
statement. Its general form is shown here:

throw exceptOb;

Here, exceptOb must be an object of an exception class derived from Throwable.
Here is an example that illustrates the throw statement by manually throwing an

ArithmeticException:

The output from the program is shown here:

Before throw.
Exception caught.
After try/catch block.

Notice how the ArithmeticException was created using new in the throw
statement. Remember, throw throws an object. Thus, you must create an object for it
to throw. That is, you can’t just throw a type.

Rethrowing an Exception
An exception caught by one catch statement can be rethrown so that it can be caught
by an outer catch. The most likely reason for rethrowing this way is to allow
multiple handlers access to the exception. For example, perhaps one exception
handler manages one aspect of an exception, and a second handler copes with
another aspect. Remember, when you rethrow an exception, it will not be recaught
by the same catch statement. It will propagate to the next catch statement. The
following program illustrates rethrowing an exception:

Ask the Expert
Q: Why would I want to manually throw an exception?
A: Most often, the exceptions that you will throw will be instances of

exception classes that you created. As you will see later in this chapter,
creating your own exception classes allows you to handle errors in your
code as part of your program’s overall exception handling strategy.

In this program, divide-by-zero errors are handled locally, by genException(),
but an array boundary error is rethrown. In this case, it is caught by main().

A Closer Look at Throwable
Up to this point, we have been catching exceptions, but we haven’t been doing
anything with the exception object itself. As the preceding examples all show, a
catch clause specifies an exception type and a parameter. The parameter receives the
exception object. Since all exceptions are subclasses of Throwable, all exceptions

support the methods defined by Throwable. Several commonly used ones are shown
in Table 9-1.

Table 9-1 Commonly Used Methods Defined by Throwable

Of the methods defined by Throwable, two of the most interesting are
printStackTrace() and toString(). You can display the standard error message
plus a record of the method calls that lead up to the exception by calling
printStackTrace(). You can use toString() to retrieve the standard error message.
The toString() method is also called when an exception is used as an argument to
println(). The following program demonstrates these methods:

The output from this program is shown here:

Using finally
Sometimes you will want to define a block of code that will execute when a
try/catch block is left. For example, an exception might cause an error that
terminates the current method, causing its premature return. However, that method
may have opened a file or a network connection that needs to be closed. Such types
of circumstances are common in programming, and Java provides a convenient way
to handle them: finally.

To specify a block of code to execute when a try/catch block is exited, include a
finally block at the end of a try/catch sequence. The general form of a try/catch that
includes finally is shown here.

The finally block will be executed whenever execution leaves a try/catch block,
no matter what conditions cause it. That is, whether the try block ends normally, or
because of an exception, the last code executed is that defined by finally. The finally
block is also executed if any code within the try block or any of its catch statements

return from the method.
Here is an example of finally:

Here is the output produced by the program:

Receiving 0
Can't divide by Zero!
Leaving try.

Receiving 1
No matching element found.
Leaving try.

Receiving 2
Leaving try.

As the output shows, no matter how the try block is exited, the finally block is
executed.

Using throws
In some cases, if a method generates an exception that it does not handle, it must
declare that exception in a throws clause. Here is the general form of a method that
includes a throws clause:

ret-type methName(param-list) throws except-list {
// body

}

Here, except-list is a comma-separated list of exceptions that the method might
throw outside of itself.

You might be wondering why you did not need to specify a throws clause for
some of the preceding examples, which threw exceptions outside of methods. The
answer is that exceptions that are subclasses of Error or RuntimeException don’t
need to be specified in a throws list. Java simply assumes that a method may throw
one. All other types of exceptions do need to be declared. Failure to do so causes a
compile-time error.

Actually, you saw an example of a throws clause earlier in this book. As you will
recall, when performing keyboard input, you needed to add the clause

throws java.io.IOException

to main(). Now you can understand why. An input statement might generate an
IOException, and at that time, we weren’t able to handle that exception. Thus, such
an exception would be thrown out of main() and needed to be specified as such.
Now that you know about exceptions, you can easily handle IOException.

Let’s look at an example that handles IOException. It creates a method called
prompt(), which displays a prompting message and then reads a character from the
keyboard. Since input is being performed, an IOException might occur. However,
the prompt() method does not handle IOException itself. Instead, it uses a throws
clause, which means that the calling method must handle it. In this example, the
calling method is main(), and it deals with the error.

On a related point, notice that IOException is fully qualified by its package name
java.io. As you will learn in Chapter 10, Java’s I/O system is contained in the
java.io package. Thus, the IOException is also contained there. It would also have
been possible to import java.io and then refer to IOException directly.

Three Additional Exception Features
Beginning with JDK 7, Java's exception handling mechanism has been expanded
with the addition of three features. The first supports automatic resource
management, which automates the process of releasing a resource, such as a file,
when it is no longer needed. It is based on an expanded form of try, called the try-
with-resources statement, and it is described in Chapter 10, when files are discussed.
The second new feature is called multi-catch, and the third is sometimes called final
rethrow or more precise rethrow. These two features are described here.

Multi-catch allows two or more exceptions to be caught by the same catch clause.
As you learned earlier, it is possible (indeed, common) for a try to be followed by
two or more catch clauses. Although each catch clause often supplies its own unique
code sequence, it is not uncommon to have situations in which two or more catch
clauses execute the same code sequence even though they catch different exceptions.
Instead of having to catch each exception type individually, you can use a single
catch clause to handle the exceptions without code duplication.

To create a multi-catch, specify a list of exceptions within a single catch clause.
You do this by separating each exception type in the list with the OR operator. Each
multi-catch parameter is implicitly final. (You can explicitly specify final, if desired,
but it is not necessary.) Because each multi-catch parameter is implicitly final, it
can't be assigned a new value.

Here is how you can use the multi-catch feature to catch both
ArithmeticException and ArrayIndexOutOfBoundsException with a single catch
clause:

catch(ArithmeticException | ArrayIndexOutOfBoundsException e) {

Here is a simple program that demonstrates the use of this multi-catch:

The program will generate an ArithmeticException when the division by zero is
attempted. It will generate an ArrayIndexOutOfBoundsException when the
attempt is made to access outside the bounds of chrs. Both exceptions are caught by
the single catch statement.

The more precise rethrow feature restricts the type of exceptions that can be
rethrown to only those checked exceptions that the associated try block throws, that
are not handled by a preceding catch clause, and that are a subtype or supertype of
the parameter. While this capability might not be needed often, it is now available
for use. For the final rethrow feature to be in force, the catch parameter must be
effectively final. This means that it must not be assigned a new value inside the
catch block. It can also be explicitly specified as final, but this is not necessary.

Java’s Built-in Exceptions

Inside the standard package java.lang, Java defines several exception classes. A few
have been used by the preceding examples. The most general of these exceptions are
subclasses of the standard type RuntimeException. Since java.lang is implicitly
imported into all Java programs, most exceptions derived from RuntimeException
are automatically available. Furthermore, they need not be included in any method’s
throws list. In the language of Java, these are called unchecked exceptions because
the compiler does not check to see if a method handles or throws these exceptions.
The unchecked exceptions defined in java.lang are listed in Table 9-2. Table 9-3
lists those exceptions defined by java.lang that must be included in a method’s
throws list if that method can generate one of these exceptions and does not handle
it itself. These are called checked exceptions. In addition to the exceptions in
java.lang, Java defines several other types of exceptions that relate to other
packages, such as IOException mentioned earlier.

Table 9-2 The Unchecked Exceptions Defined in java.lang

Table 9-3 The Checked Exceptions Defined in java.lang

Ask the Expert
Q: I have heard that Java supports something called chained exceptions.

What are they?
A: Chained exceptions were added to Java by JDK 1.4. The chained

exception feature allows you to specify one exception as the underlying
cause of another. For example, imagine a situation in which a method
throws an ArithmeticException because of an attempt to divide by zero.
However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must
certainly throw an ArithmeticException, since that is the error that
occurred, you might also want to let the calling code know that the
underlying cause was an I/O error. Chained exceptions let you handle
this, and any other situation, in which layers of exceptions exist.
To allow chained exceptions, two constructors and two methods were

added to Throwable. The constructors are shown here:

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception.
That is, causeExc is the underlying reason that an exception occurred. The
second form allows you to specify a description at the same time that you
specify a cause exception. These two constructors have also been added to
the Error, Exception, and RuntimeException classes.

The chained exception methods added to Throwable are getCause() and
initCause(). These methods are shown here:

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current
exception. If there is no underlying exception, null is returned. The
initCause() method associates causeExc with the invoking exception and
returns a reference to the exception. Thus, you can associate a cause with an
exception after the exception has been created. In general, initCause() is
used to set a cause for legacy exception classes that don’t support the two
additional constructors described earlier.

Chained exceptions are not something that every program will need.
However, in cases in which knowledge of an underlying cause is useful, they
offer an elegant solution.

Creating Exception Subclasses
Although Java’s built-in exceptions handle most common errors, Java’s exception
handling mechanism is not limited to these errors. In fact, part of the power of Java’s
approach to exceptions is its ability to handle exception types that you create.
Through the use of custom exceptions, you can manage errors that relate specifically
to your application. Creating an exception class is easy. Just define a subclass of
Exception (which is, of course, a subclass of Throwable). Your subclasses don’t
need to actually implement anything—it is their existence in the type system that
allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course,
inherit those methods provided by Throwable. Thus, all exceptions, including those
that you create, have the methods defined by Throwable available to them. Of
course, you can override one or more of these methods in exception subclasses that
you create.

Here is an example that creates an exception called NonIntResultException,

which is generated when the result of dividing two integer values produces a result
with a fractional component. NonIntResultException has two fields which hold the
integer values; a constructor; and an override of the toString() method, allowing the
description of the exception to be displayed using println().

The output from the program is shown here:

Ask the Expert
Q: When should I use exception handling in a program? When should I

create my own custom exception classes?
A: Since the Java API makes extensive use of exceptions to report errors,

nearly all real-world programs will make use of exception handling. This
is the part of exception handling that most new Java programmers find
easy. It is harder to decide when and how to use your own custom-made
exceptions. In general, errors can be reported in two ways: return values
and exceptions. When is one approach better than the other? Simply put,
in Java, exception handling should be the norm. Certainly, returning an
error code is a valid alternative in some cases, but exceptions provide a
more powerful, structured way to handle errors. They are the way
professional Java programmers handle errors in their code.

Try This 9-1 Adding Exceptions to the Queue Class

In this project, you will create two exception classes that can be used by the queue
classes developed by Project 8-1. They will indicate the queue-full and queue-empty
error conditions. These exceptions can be thrown by the put() and get() methods,

respectively. For the sake of simplicity, this project will add these exceptions to the
FixedQueue class, but you can easily incorporate them into the other queue classes
from Project 8-1.
1. You will create two files that will hold the queue exception classes. Call the first

file QueueFullException.java and enter into it the following:

A QueueFullException will be generated when an attempt is made to store an
item in an already full queue.

2. Create the second file QueueEmptyException.java and enter into it the
following:

A QueueEmptyException will be generated when an attempt is made to remove
an element from an empty queue.

3. Modify the FixedQueue class so that it throws exceptions when an error occurs,
as shown here. Put it in a file called FixedQueue.java.

Notice that two steps are required to add exceptions to FixedQueue. First, get()
and put() must have a throws clause added to their declarations. Second, when
an error occurs, these methods throw an exception. Using exceptions allows the
calling code to handle the error in a rational fashion. You might recall that the
previous versions simply reported the error. Throwing an exception is a much
better approach.

4. To try the updated FixedQueue class, use the QExcDemo class shown here. Put
it into a file called QExcDemo.java:

5. Since FixedQueue implements the ICharQ interface, which defines the two
queue methods get() and put(), ICharQ will need to be changed to reflect the
throws clause. Here is the updated ICharQ interface. Remember, this must be in
a file by itself called ICharQ.java.

6. Now, compile the updated ICharQ.java file. Then, compile FixedQueue.java,
QueueFullException.java, QueueEmptyException.java, and
QExcDemo.java. Finally, run QExcDemo. You will see the following output:

 Chapter 9 Self Test

1. What class is at the top of the exception hierarchy?
2. Briefly explain how to use try and catch.
3. What is wrong with this fragment?

4. What happens if an exception is not caught?
5. What is wrong with this fragment?

6. Can an inner catch rethrow an exception to an outer catch?
7. The finally block is the last bit of code executed before your program ends. True

or False? Explain your answer.
8. What type of exceptions must be explicitly declared in a throws clause of a

method?
9. What is wrong with this fragment?

class MyClass { // ... }
// ...
throw new MyClass();

10. In question 3 of the Chapter 6 Self Test, you created a Stack class. Add custom
exceptions to your class that report stack full and stack empty conditions.

11. What are the three ways that an exception can be generated?
12. What are the two direct subclasses of Throwable?
13. What is the multi-catch feature?
14. Should your code typically catch exceptions of type Error?

S

Chapter 10

Using I/O

Key Skills & Concepts
 Understand the stream

 Know the difference between byte and character streams

 Know Java’s byte stream classes

 Know Java’s character stream classes

 Know the predefined streams

 Use byte streams

 Use byte streams for file I/O

 Automatically close a file by using try-with-resources

 Read and write binary data

 Use random-access files

 Use character streams

 Use character streams for file I/O

 Apply Java’s type wrappers to convert numeric strings

ince the beginning of this book, you have been using parts of the Java I/O
system, such as println(). However, you have been doing so without much
formal explanation. Because the Java I/O system is based upon a hierarchy of

classes, it was not possible to present its theory and details without first discussing
classes, inheritance, and exceptions. Now it is time to examine Java’s approach to
I/O in detail.

Be forewarned, Java’s I/O system is quite large, containing many classes,
interfaces, and methods. Part of the reason for its size is that Java defines two
complete I/O systems: one for byte I/O and the other for character I/O. It won’t be
possible to discuss every aspect of Java’s I/O here. (An entire book could easily be
dedicated to Java’s I/O system!) This chapter will, however, introduce you to many
important and commonly used features. Fortunately, Java’s I/O system is cohesive
and consistent; once you understand its fundamentals, the rest of the I/O system is
easy to master.

Before we begin, an important point needs to be made. The I/O classes described
in this chapter support text-based console I/O and file I/O. They are not used to
create graphical user interfaces (GUIs). Thus, you will not use them to create
windowed applications, for example. However, Java does include substantial support
for building graphical user interfaces. The basics of GUI programming are found in
Chapter 16, which offers an introduction to Swing, and Chapter 17, which presents
an overview of JavaFX. (Swing and JavaFX are two of Java’s GUI toolkits.)

Java’s I/O Is Built upon Streams
Java programs perform I/O through streams. An I/O stream is an abstraction that
either produces or consumes information. A stream is linked to a physical device by
the Java I/O system. All streams behave in the same manner, even if the actual
physical devices they are linked to differ. Thus, the same I/O classes and methods
can be applied to different types of devices. For example, the same methods that you
use to write to the console can also be used to write to a disk file. Java implements
I/O streams within class hierarchies defined in the java.io package.

Byte Streams and Character Streams
Modern versions of Java define two types of I/O streams: byte and character. (The
original version of Java defined only the byte stream, but character streams were
quickly added.) Byte streams provide a convenient means for handling input and
output of bytes. They are used, for example, when reading or writing binary data.
They are especially helpful when working with files. Character streams are designed
for handling the input and output of characters. They use Unicode and, therefore, can
be internationalized. Also, in some cases, character streams are more efficient than
byte streams.

The fact that Java defines two different types of streams makes the I/O system
quite large because two separate sets of class hierarchies (one for bytes, one for
characters) are needed. The sheer number of I/O classes can make the I/O system

appear more intimidating than it actually is. Just remember, for the most part, the
functionality of byte streams is paralleled by that of the character streams.

One other point: At the lowest level, all I/O is still byte-oriented. The character-
based streams simply provide a convenient and efficient means for handling
characters.

The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top of these are two
abstract classes: InputStream and OutputStream. InputStream defines the
characteristics common to byte input streams and OutputStream describes the
behavior of byte output streams.

From InputStream and OutputStream are created several concrete subclasses
that offer varying functionality and handle the details of reading and writing to
various devices, such as disk files. The byte stream classes in java.io are shown in
Table 10-1. Don’t be overwhelmed by the number of different classes. Once you can
use one byte stream, the others are easy to master.

Table 10-1 The Byte Stream Classes in java.io

The Character Stream Classes

Character streams are defined by using two class hierarchies topped by these two
abstract classes: Reader and Writer. Reader is used for input, and Writer is used
for output. Concrete classes derived from Reader and Writer operate on Unicode
character streams.

From Reader and Writer are derived several concrete subclasses that handle
various I/O situations. In general, the character-based classes parallel the byte-based
classes. The character stream classes in java.io are shown in Table 10-2.

Table 10-2 The Character Stream I/O Classes in java.io

The Predefined Streams
As you know, all Java programs automatically import the java.lang package. This
package defines a class called System, which encapsulates several aspects of the
run-time environment. Among other things, it contains three predefined stream
variables, called in, out, and err. These fields are declared as public, final, and
static within System. This means that they can be used by any other part of your
program and without reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console.
System.in refers to standard input, which is by default the keyboard. System.err
refers to the standard error stream, which is also the console by default. However,
these streams can be redirected to any compatible I/O device.

System.in is an object of type InputStream; System.out and System.err are
objects of type PrintStream. These are byte streams, even though they are typically
used to read and write characters from and to the console. The reason they are byte
and not character streams is that the predefined streams were part of the original
specification for Java, which did not include the character streams. As you will see,
it is possible to wrap these within character-based streams if desired.

Using the Byte Streams
We will begin our examination of Java’s I/O with the byte streams. As explained, at
the top of the byte stream hierarchy are the InputStream and OutputStream
classes. Table 10-3 shows the methods in InputStream, and Table 10-4 shows the
methods in OutputStream. In general, the methods in InputStream and
OutputStream can throw an IOException on error. The methods defined by these
two abstract classes are available to all of their subclasses. Thus, they form a
minimal set of I/O functions that all byte streams will have.

Table 10-3 The Methods Defined by InputStream

Table 10-4 The Methods Defined by OutputStream

Reading Console Input
Originally, the only way to perform console input was to use a byte stream, and
much Java code still uses the byte streams exclusively. Today, you can use byte or
character streams. For commercial code, the preferred method of reading console
input is to use a character-oriented stream. Doing so makes your program easier to
internationalize and easier to maintain. It is also more convenient to operate directly
on characters rather than converting back and forth between characters and bytes.
However, for sample programs, simple utility programs for your own use, and
applications that deal with raw keyboard input, using the byte streams is acceptable.
For this reason, console I/O using byte streams is examined here.

Because System.in is an instance of InputStream, you automatically have access
to the methods defined by InputStream. This means that, for example, you can use
the read() method to read bytes from System.in. There are three versions of read(),
which are shown here:

int read() throws IOException
int read(byte data[]) throws IOException
int read(byte data[], int start, int max) throws IOException

In Chapter 3, you saw how to use the first version of read() to read a single
character from the keyboard (from System.in). It returns –1 when an attempt is made
to read at the end of the stream. The second version reads bytes from the input

stream and puts them into data until either the array is full, the end of stream is
reached, or an error occurs. It returns the number of bytes read, or –1 when an
attempt is made to read at the end of the stream. The third version reads input into
data beginning at the location specified by start. Up to max bytes are stored. It
returns the number of bytes read, or –1 when an attempt is made to read at the end of
the stream. All throw an IOException when an error occurs. When reading from
System.in, pressing ENTER generates an end-of-stream condition.

Here is a program that demonstrates reading an array of bytes from System.in.
Notice that any I/O exceptions that might be generated are simply thrown out of
main(). Such an approach is common when reading from the console, but you can
handle these types of errors yourself, if you choose.

Here is a sample run:

Enter some characters.
Read Bytes
You entered: Read Bytes

Writing Console Output
As is the case with console input, Java originally provided only byte streams for
console output. Java 1.1 added character streams. For the most portable code,
character streams are recommended. Because System.out is a byte stream, however,
byte-based console output is still widely used. In fact, all of the programs in this
book up to this point have used it! Thus, it is examined here.

Console output is most easily accomplished with print() and println(), with
which you are already familiar. These methods are defined by the class PrintStream
(which is the type of the object referenced by System.out). Even though System.out
is a byte stream, it is still acceptable to use this stream for simple console output.

Since PrintStream is an output stream derived from OutputStream, it also
implements the low-level method write(). Thus, it is possible to write to the console
by using write(). The simplest form of write() defined by PrintStream is shown
here:

void write(int byteval)

This method writes the byte specified by byteval to the file. Although byteval is
declared as an integer, only the low-order 8 bits are written. Here is a short example
that uses write() to output the character X followed by a new line:

You will not often use write() to perform console output (although it might be
useful in some situations), since print() and println() are substantially easier to
use.

PrintStream supplies two additional output methods: printf() and format().
Both give you detailed control over the precise format of data that you output. For
example, you can specify the number of decimal places displayed, a minimum field
width, or the format of a negative value. Although we won’t be using these methods
in the examples in this book, they are features that you will want to look into as you
advance in your knowledge of Java.

Reading and Writing Files Using Byte Streams
Java provides a number of classes and methods that allow you to read and write files.
Of course, the most common types of files are disk files. In Java, all files are byte-
oriented, and Java provides methods to read and write bytes from and to a file. Thus,

reading and writing files using byte streams is very common. However, Java allows
you to wrap a byte-oriented file stream within a character-based object, which is
shown later in this chapter.

To create a byte stream linked to a file, use FileInputStream or
FileOutputStream. To open a file, simply create an object of one of these classes,
specifying the name of the file as an argument to the constructor. Once the file is
open, you can read from or write to it.

Inputting from a File
A file is opened for input by creating a FileInputStream object. Here is a commonly
used constructor:

FileInputStream(String fileName) throws FileNotFoundException

Here, fileName specifies the name of the file you want to open. If the file does not
exist, then FileNotFoundException is thrown. FileNotFoundException is a
subclass of IOException.

To read from a file, you can use read(). The version that we will use is shown
here:

int read() throws IOException

Each time it is called, read() reads a single byte from the file and returns it as an
integer value. It returns –1 when the end of the file is encountered. It throws an
IOException when an error occurs. Thus, this version of read() is the same as the
one used to read from the console.

When you are done with a file, you must close it by calling close(). Its general
form is shown here:

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be
used by another file. Failure to close a file can result in “memory leaks” because of
unused resources remaining allocated.

The following program uses read() to input and display the contents of a text file,
the name of which is specified as a command-line argument. Notice how the
try/catch blocks handle I/O errors that might occur.

Notice that the preceding example closes the file stream after the try block that
reads the file has completed. Although this approach is occasionally useful, Java
supports a variation that is often a better choice. The variation is to call close()
within a finally block. In this approach, all of the methods that access the file are
contained within a try block, and the finally block is used to close the file. This way,
no matter how the try block terminates, the file is closed. Assuming the preceding
example, here is how the try block that reads the file can be recoded:

One advantage to this approach in general is that if the code that accesses a file
terminates because of some non-I/O-related exception, the file is still closed by the
finally block. Although not an issue in this example (or most other example
programs) because the program simply ends if an unexpected exception occurs, this
can be a major source of trouble in larger programs. Using finally avoids this
trouble.

Sometimes it’s easier to wrap the portions of a program that open the file and
access the file within a single try block (rather than separating the two), and then use
a finally block to close the file. For example, here is another way to write the

ShowFile program:

In this approach, notice that fin is initialized to null. Then, in the finally block, the
file is closed only if fin is not null. This works because fin will be non-null only if
the file was successfully opened. Thus, close() will not be called if an exception
occurs while opening the file.

It is possible to make the try/catch sequence in the preceding example a bit more
compact. Because FileNotFoundException is a subclass of IOException, it need

not be caught separately. For example, this catch clause could be used to catch both
exceptions, eliminating the need to catch FileNotFoundException separately. In this
case, the standard exception message, which describes the error, is displayed.

Ask the Expert
Q: I noticed that read() returns –1 when the end of the file has been

reached, but that it does not have a special return value for a file
error. Why not?

A: In Java, errors are handled by exceptions. Thus, if read(), or any other
I/O method, returns a value, it means that no error has occurred. This is a
much cleaner way than handling I/O errors by using special error codes.

In this approach, any error, including an error opening the file, will simply be
handled by the single catch statement. Because of its compactness, this approach is
used by most of the I/O examples in this book. Be aware, however, that it will not be
appropriate in cases in which you want to deal separately with a failure to open a
file, such as might be caused if a user mistypes a file name. In such a situation, you
might want to prompt for the correct name, for example, before entering a try block
that accesses the file.

Writing to a File
To open a file for output, create a FileOutputStream object. Here are two
commonly used constructors:

FileOutputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName, boolean append) throws FileNotFoundException

If the file cannot be created, then FileNotFoundException is thrown. In the first
form, when an output file is opened, any preexisting file by the same name is

destroyed. In the second form, if append is true, then output is appended to the end
of the file. Otherwise, the file is overwritten.

To write to a file, you will use the write() method. Its simplest form is shown
here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is
declared as an integer, only the low-order 8 bits are written to the file. If an error
occurs during writing, an IOException is thrown.

Once you are done with an output file, you must close it using close(), shown
here:

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be
used by another file. It also helps ensure that any output remaining in an output
buffer is actually written to the physical device.

The following example copies a text file. The names of the source and destination
files are specified on the command line.

Automatically Closing a File
In the preceding section, the example programs have made explicit calls to close() to
close a file once it is no longer needed. This is the way files have been closed since
Java was first created. As a result, this approach is widespread in existing code.
Furthermore, this approach is still valid and useful. However, beginning with JDK 7,
Java has included a feature that offers another, more streamlined way to manage
resources, such as file streams, by automating the closing process. It is based on
another version of the try statement called try-with-resources, and is sometimes
referred to as automatic resource management. The principal advantage of try-with-
resources is that it prevents situations in which a file (or other resource) is
inadvertently not released after it is no longer needed. As explained, forgetting to
close a file can result in memory leaks and could lead to other problems.

The try-with-resources statement has this general form:

try (resource-specification) {
// use the resource

}

Often, resource-specification is a statement that declares and initializes a resource,
such as a file. In this case, it consists of a variable declaration in which the variable
is initialized with a reference to the object being managed. When the try block ends,
the resource is automatically released. In the case of a file, this means that the file is
automatically closed. (Thus, there is no need to call close() explicitly.) A try-with-
resources statement can also include catch and finally clauses.

NOTE
Beginning with JDK 9, it is also possible for the resource specification of the try to
consist of a variable that has been declared and initialized earlier in the program.
However, that variable must be effectively final, which means that it has not been
assigned a new value after being given its initial value.

The try-with-resources statement can be used only with those resources that

implement the AutoCloseable interface defined by java.lang. This interface defines
the close() method. AutoCloseable is inherited by the Closeable interface defined
in java.io. Both interfaces are implemented by the stream classes, including
FileInputStream and FileOutputStream. Thus, try-with-resources can be used
when working with streams, including file streams.

As a first example of automatically closing a file, here is a reworked version of the
ShowFile program that uses it:

In the program, pay special attention to how the file is opened within the try-with-
resources statement:

try(FileInputStream fin = new FileInputStream(args[0])) {

Notice how the resource-specification portion of the try declares a FileInputStream
called fin, which is then assigned a reference to the file opened by its constructor.
Thus, in this version of the program the variable fin is local to the try block, being
created when the try is entered. When the try is exited, the file associated with fin is
automatically closed by an implicit call to close(). You don’t need to call close()
explicitly, which means that you can’t forget to close the file. This is a key
advantage of automatic resource management.

It is important to understand that a resource declared in the try statement is
implicitly final. This means that you can’t assign to the resource after it has been
created. Also, the scope of the resource is limited to the try-with-resources
statement.

You can manage more than one resource within a single try statement. To do so,
simply separate each resource specification with a semicolon. The following
program shows an example. It reworks the CopyFile program shown earlier so that it
uses a single try-with-resources statement to manage both fin and fout.

In this program, notice how the input and output files are opened within the try:

After this try block ends, both fin and fout will have been closed. If you compare
this version of the program to the previous version, you will see that it is much
shorter. The ability to streamline source code is a side-benefit of try-with-resources.

There is one other aspect to try-with-resources that needs to be mentioned. In
general, when a try block executes, it is possible that an exception inside the try

block will lead to another exception that occurs when the resource is closed in a
finally clause. In the case of a “normal” try statement, the original exception is lost,
being preempted by the second exception. However, with a try-with-resources
statement, the second exception is suppressed. It is not, however, lost. Instead, it is
added to the list of suppressed exceptions associated with the first exception. The list
of suppressed exceptions can be obtained by use of the getSuppressed() method
defined by Throwable.

Because of its advantages, try-with-resources will be used by the remaining
examples in this chapter. However, it is still very important that you are familiar with
the traditional approach shown earlier in which close() is called explicitly. There are
several reasons for this. First, you may encounter legacy code that still relies on the
traditional approach. It is important that all Java programmers be fully versed in and
comfortable with the traditional approach when maintaining or updating this older
code. Second, you might need to work in an environment that predates JDK 7. In
such a situation, the try-with-resources statement will not be available and the
traditional approach must be employed. Finally, there may be cases in which
explicitly closing a resource is more appropriate than the automated approach. The
foregoing notwithstanding, if you are using a modern version of Java, then you will
usually want to use the new, automated approach to resource management. It offers a
streamlined, robust alternative to the traditional approach.

Reading and Writing Binary Data
So far, we have just been reading and writing bytes containing ASCII characters, but
it is possible—indeed, common—to read and write other types of data. For example,
you might want to create a file that contains ints, doubles, or shorts. To read and
write binary values of the Java primitive types, you will use DataInputStream and
DataOutputStream.

DataOutputStream implements the DataOutput interface. This interface defines
methods that write all of Java’s primitive types to a file. It is important to understand
that this data is written using its internal, binary format, not its human-readable text
form. Several commonly used output methods for Java’s primitive types are shown
in Table 10-5. Each throws an IOException on failure.

Table 10-5 Commonly Used Output Methods Defined by DataOutputStream

Here is the constructor for DataOutputStream. Notice that it is built upon an
instance of OutputStream.

DataOutputStream(OutputStream outputStream)

Here, outputStream is the stream to which data is written. To write output to a file,
you can use the object created by FileOutputStream for this parameter.

DataInputStream implements the DataInput interface, which provides methods
for reading all of Java’s primitive types. These methods are shown in Table 10-6,
and each can throw an IOException. DataInputStream uses an InputStream
instance as its foundation, overlaying it with methods that read the various Java data
types. Remember that DataInputStream reads data in its binary format, not its
human-readable form. The constructor for DataInputStream is shown here:

Table 10-6 Commonly Used Input Methods Defined by DataInputStream

DataInputStream(InputStream inputStream)

Here, inputStream is the stream that is linked to the instance of DataInputStream
being created. To read input from a file, you can use the object created by
FileInputStream for this parameter.

Here is a program that demonstrates DataOutputStream and DataInputStream.
It writes and then reads back various types of data to and from a file.

The output from the program is shown here.

Writing 10
Writing 1023.56
Writing true
Writing 90.28
Reading 10
Reading 1023.56
Reading true
Reading 90.28

Try This 10-1 A File Comparison Utility

This project develops a simple, yet useful file comparison utility. It works by
opening both files to be compared and then reading and comparing each
corresponding set of bytes. If a mismatch is found, the files differ. If the end of each
file is reached at the same time and if no mismatches have been found, then the files
are the same. Notice that it uses a try-with-resources statement to automatically
close the files.
1. Create a file called CompFiles.java.
2. Into CompFiles.java, add the following program:

3. To try CompFiles, first copy CompFiles.java to a file called temp. Then, try this
command line:
java CompFiles CompFiles.java temp

The program will report that the files are the same. Next, compare
CompFiles.java to CopyFile.java (shown earlier) using this command line:
java CompFiles CompFiles.java CopyFile.java

These files differ and CompFiles will report this fact.

4. On your own, try enhancing CompFiles with various options. For example, add
an option that ignores the case of letters. Another idea is to have CompFiles
display the position within the file where the files differ.

Random-Access Files
Up to this point, we have been using sequential files, which are files that are
accessed in a strictly linear fashion, one byte after another. However, Java also
allows you to access the contents of a file in random order. To do this, you will use
RandomAccessFile, which encapsulates a random-access file. RandomAccessFile
is not derived from InputStream or OutputStream. Instead, it implements the
interfaces DataInput and DataOutput, which define the basic I/O methods. It also
supports positioning requests—that is, you can position the file pointer within the

file. The constructor that we will be using is shown here:

RandomAccessFile(String fileName, String access)
throws FileNotFoundException

Here, the name of the file is passed in fileName and access determines what type of
file access is permitted. If it is "r", the file can be read but not written. If it is "rw",
the file is opened in read-write mode. (The access parameter also supports "rws" and
"rwd", which (for local devices) ensure that changes to the file are immediately
written to the physical device.)

The method seek(), shown here, is used to set the current position of the file
pointer within the file:

void seek(long newPos) throws IOException

Here, newPos specifies the new position, in bytes, of the file pointer from the
beginning of the file. After a call to seek(), the next read or write operation will
occur at the new file position.

Because RandomAccessFile implements the DataInput and DataOuput
interfaces, methods to read and write the primitive types, such as readInt() and
writeDouble(), are available. The read() and write() methods are also supported.

Here is an example that demonstrates random-access I/O. It writes six doubles to
a file and then reads them back in nonsequential order.

The output from the program is shown here.

First value is 19.4
Second value is 10.1
Fourth value is 33.0

Here is every other value:
19.4 123.54 87.9

Notice how each value is located. Since each double value is 8 bytes long, each
value starts on an 8-byte boundary. Thus, the first value is located at zero, the second
begins at byte 8, the third starts at byte 16, and so on. Thus, to read the fourth value,
the program seeks to location 24.

Ask the Expert
Q: In looking through the documentation provided by the JDK, I

noticed a class called Console. Is this a class that I can use to perform
console-based I/O?

A: The short answer is Yes. The Console class was added by JDK 6, and it is
used to read from and write to the console. Console is primarily a
convenience class because most of its functionality is available through
System.in and System.out. However, its use can simplify some types of
console interactions, especially when reading strings from the console.
Console supplies no constructors. Instead, a Console object is obtained

by calling System.console(). It is shown here.

static Console console()

If a console is available, then a reference to it is returned. Otherwise, null is
returned. A console may not be available in all cases, such as when a

program runs as a background task. Therefore, if null is returned, no console
I/O is possible.

Console defines several methods that perform I/O, such as readLine()
and printf(). It also defines a method called readPassword(), which can be
used to obtain a password. It lets your application read a password without
echoing what is typed. You can also obtain a reference to the Reader and
the Writer that are attached to the console. In general, Console is a class
that you may find useful for some types of applications.

Using Java’s Character-Based Streams
As the preceding sections have shown, Java’s byte streams are both powerful and
flexible. However, they are not the ideal way to handle character-based I/O. For this
purpose, Java defines the character stream classes. At the top of the character stream
hierarchy are the abstract classes Reader and Writer. Table 10-7 shows the methods
in Reader, and Table 10-8 shows the methods in Writer. Most of the methods can
throw an IOException on error. The methods defined by these two abstract classes
are available to all of their subclasses. Thus, they form a minimal set of I/O functions
that all character streams will have.

Table 10-7 The Methods Defined by Reader

Table 10-8 The Methods Defined by Writer

Console Input Using Character Streams
For code that will be internationalized, inputting from the console using Java’s
character-based streams is a better, more convenient way to read characters from the

keyboard than is using the byte streams. However, since System.in is a byte stream,
you will need to wrap System.in inside some type of Reader. The best class for
reading console input is BufferedReader, which supports a buffered input stream.
However, you cannot construct a BufferedReader directly from System.in. Instead,
you must first convert it into a character stream. To do this, you will use
InputStreamReader, which converts bytes to characters. To obtain an
InputStreamReader object that is linked to System.in, use the constructor shown
next:

InputStreamReader(InputStream inputStream)

Since System.in refers to an object of type InputStream, it can be used for
inputStream.

Next, using the object produced by InputStreamReader, construct a
BufferedReader using the constructor shown here:

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader
being created. Putting it all together, the following line of code creates a
BufferedReader that is connected to the keyboard.

After this statement executes, br will be a character-based stream that is linked to the
console through System.in.

Reading Characters
Characters can be read from System.in using the read() method defined by
BufferedReader in much the same way as they were read using byte streams. Here
are three versions of read() supported by BufferedReader.

int read() throws IOException
int read(char data[]) throws IOException
int read(char data[], int start, int max) throws IOException

The first version of read() reads a single Unicode character. It returns –1 when an
attempt is made to read at the end of the stream. The second version reads characters
from the input stream and puts them into data until either the array is full, the end of
stream is reached, or an error occurs. It returns the number of characters read or –1

when an attempt is made to read at the end of the stream. The third version reads
input into data beginning at the location specified by start. Up to max characters are
stored. It returns the number of characters read or –1 when an attempt is made to
read at the end of the stream. All throw an IOException on error. When reading
from System.in, pressing ENTER generates an end-of-stream condition.

The following program demonstrates read() by reading characters from the
console until the user types a period. Notice that any I/O exceptions that might be
generated are simply thrown out of main(). As mentioned earlier in this chapter,
such an approach is common when reading from the console. Of course, you can
handle these types of errors under program control, if you choose.

Here is a sample run:

Enter characters, period to quit.
One Two.
O
n
e

T

w
o.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member
of the BufferedReader class. Its general form is shown here:

String readLine() throws IOException

It returns a String object that contains the characters read. It returns null if an
attempt is made to read when at the end of the stream.

The following program demonstrates BufferedReader and the readLine()
method. The program reads and displays lines of text until you enter the word “stop”.

Console Output Using Character Streams
While it is still permissible to use System.out to write to the console under Java, its
use is recommended mostly for debugging purposes or for sample programs such as
those found in this book. For real-world programs, the preferred method of writing to
the console when using Java is through a PrintWriter stream. PrintWriter is one of

the character-based classes. As explained, using a character-based class for console
output makes it easier to internationalize your program.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushingOn)

Here, outputStream is an object of type OutputStream and flushingOn controls
whether Java flushes the output stream every time a println() method (among
others) is called. If flushingOn is true, flushing automatically takes place. If false,
flushing is not automatic.

PrintWriter supports the print() and println() methods for all types including
Object. Thus, you can use these methods in just the same way as they have been
used with System.out. If an argument is not a primitive type, the PrintWriter
methods will call the object’s toString() method and then print out the result.

To write to the console using a PrintWriter, specify System.out for the output
stream and flush the stream after each call to println(). For example, this line of
code creates a PrintWriter that is connected to console output.

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console
output.

The output from this program is

Using a PrintWriter.
10
123.65
10 + 123.65 is 133.65

Remember that there is nothing wrong with using System.out to write simple text
output to the console when you are learning Java or debugging your programs.
However, using a PrintWriter will make your real-world applications easier to
internationalize. Since no advantage is to be gained by using a PrintWriter in the
sample programs shown in this book, for convenience we will continue to use
System.out to write to the console.

File I/O Using Character Streams
Although byte-oriented file handling is the most common, it is possible to use
character-based streams for this purpose. The advantage to the character streams is
that they operate directly on Unicode characters. Thus, if you want to store Unicode
text, the character streams are certainly your best option. In general, to perform
character-based file I/O, you will use the FileReader and FileWriter classes.

Using a FileWriter
FileWriter creates a Writer that you can use to write to a file. Two commonly used
constructors are shown here:

FileWriter(String fileName) throws IOException
FileWriter(String fileName, boolean append) throws IOException

Here, fileName is the full path name of a file. If append is true, then output is
appended to the end of the file. Otherwise, the file is overwritten. Either throws an
IOException on failure. FileWriter is derived from OutputStreamWriter and
Writer. Thus, it has access to the methods defined by these classes.

Here is a simple key-to-disk utility that reads lines of text entered at the keyboard
and writes them to a file called "test.txt". Text is read until the user enters the word
"stop". It uses a FileWriter to output to the file.

Using a FileReader
The FileReader class creates a Reader that you can use to read the contents of a
file. A commonly used constructor is shown here:

FileReader(String fileName) throws FileNotFoundException

Here, fileName is the full path name of a file. It throws a FileNotFoundException if
the file does not exist. FileReader is derived from InputStreamReader and
Reader. Thus, it has access to the methods defined by these classes.

The following program creates a simple disk-to-screen utility that reads a text file
called "test.txt" and displays its contents on the screen. Thus, it is the complement of
the key-to-disk utility shown in the previous section.

In this example, notice that the FileReader is wrapped in a BufferedReader. This
gives it access to readLine(). Also, closing the BufferedReader, br in this case,
automatically closes the file.

Ask the Expert
Q: I have heard about another I/O package called NIO. Can you tell me

about it?
A: Originally called New I/O, NIO was added to Java by JDK 1.4. It supports

a channel-based approach to I/O operations. The NIO classes are
contained in java.nio and its subordinate packages, such as
java.nio.channels and java.nio.charset.
NIO is built on two foundational items: buffers and channels. A buffer

holds data. A channel represents an open connection to an I/O device, such
as a file or a socket. In general, to use the new I/O system, you obtain a

channel to an I/O device and a buffer to hold data. You then operate on the
buffer, inputting or outputting data as needed.

Two other entities used by NIO are charsets and selectors. A charset
defines the way that bytes are mapped to characters. You can encode a
sequence of characters into bytes using an encoder. You can decode a
sequence of bytes into characters using a decoder. A selector supports key-
based, non-blocking, multiplexed I/O. In other words, selectors enable you
to perform I/O through multiple channels. Selectors are most applicable to
socket-backed channels.

Beginning with JDK 7, NIO was substantially enhanced, so much so that
the term NIO.2 is often used. The improvements included three new
packages (java.nio.file, java.nio.file.attribute, and java.nio.file.spi);
several new classes, interfaces, and methods; and direct support for stream-
based I/O. The additions greatly expanded the ways in which NIO can be
used, especially with files.

It is important to understand that NIO does not replace the I/O classes
found in java.io, which are discussed in this chapter. Instead, the NIO
classes are designed to supplement the standard I/O system, offering an
alternative approach, which can be beneficial in some circumstances.

Using Java’s Type Wrappers to Convert
Numeric Strings
Before leaving the topic of I/O, we will examine a technique useful when reading
numeric strings. As you know, Java’s println() method provides a convenient way
to output various types of data to the console, including numeric values of the built-
in types, such as int and double. Thus, println() automatically converts numeric
values into their human-readable form. However, methods like read() do not
provide a parallel functionality that reads and converts a string containing a numeric
value into its internal, binary format. For example, there is no version of read() that
reads a string such as "100" and then automatically converts it into its corresponding
binary value that is able to be stored in an int variable. Instead, Java provides various
other ways to accomplish this task. Perhaps the easiest is to use one of Java’s type
wrappers.

Java’s type wrappers are classes that encapsulate, or wrap, the primitive types.
Type wrappers are needed because the primitive types are not objects. This limits

their use to some extent. For example, a primitive type cannot be passed by
reference. To address this kind of need, Java provides classes that correspond to each
of the primitive types.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character,
and Boolean. These classes offer a wide array of methods that allow you to fully
integrate the primitive types into Java’s object hierarchy. As a side benefit, the
numeric wrappers also define methods that convert a numeric string into its
corresponding binary equivalent. Several of these conversion methods are shown
here. Each returns a binary value that corresponds to the string.

The integer wrappers also offer a second parsing method that allows you to specify
the radix.

The parsing methods give us an easy way to convert a numeric value, read as a
string from the keyboard or a text file, into its proper internal format. For example,
the following program demonstrates parseInt() and parseDouble(). It averages a
list of numbers entered by the user. It first asks the user for the number of values to
be averaged. It then reads that number using readLine() and uses parseInt() to
convert the string into an integer. Next, it inputs the values, using parseDouble() to
convert the strings into their double equivalents.

Here is a sample run:

How many numbers will you enter: 5
Enter 5 values.
: 1.1
: 2.2
: 3.3
: 4.4
: 5.5
Average is 3.3

Ask the Expert
Q: What else can the primitive type wrapper classes do?
A: The primitive type wrappers provide a number of methods that help

integrate the primitive types into the object hierarchy. For example,
various storage mechanisms provided by the Java library, including maps,
lists, and sets, work only with objects. Thus, to store an int, for example,
in a list, it must be wrapped in an object. Also, all type wrappers have a
method called compareTo(), which compares the value contained within
the wrapper; equals(), which tests two values for equality; and methods
that return the value of the object in various forms. The topic of type
wrappers is taken up again in Chapter 12, when autoboxing is discussed.

Try This 10-2 Creating a Disk-Based Help System

In Try This 4-1, you created a Help class that displayed information about Java’s
control statements. In that implementation, the help information was stored within
the class itself, and the user selected help from a menu of numbered options.

Although this approach was fully functional, it is certainly not the ideal way of
creating a Help system. For example, to add to or change the help information, the
source code of the program needed to be modified. Also, the selection of the topic by
number rather than by name is tedious, and is not suitable for long lists of topics.
Here, we will remedy these shortcomings by creating a disk-based Help system.

The disk-based Help system stores help information in a help file. The help file is

a standard text file that can be changed or expanded at will, without changing the
Help program. The user obtains help about a topic by typing in its name. The Help
system searches the help file for the topic. If it is found, information about the topic
is displayed.
1. Create the help file that will be used by the Help system. The help file is a

standard text file that is organized like this:

#topic-name1
topic info

#topic-name2
topic info

.

.

.
#topic-nameN
topic info

The name of each topic must be preceded by a #, and the topic name must be on
a line of its own. Preceding each topic name with a # allows the program to
quickly find the start of each topic. After the topic name are any number of
information lines about the topic. However, there must be a blank line between
the end of one topic’s information and the start of the next topic. Also, there
must be no trailing spaces at the end of any help-topic lines.

Here is a simple help file that you can use to try the disk-based Help system. It
stores information about Java’s control statements.

2. Create a file called FileHelp.java.
3. Begin creating the new Help class with these lines of code.

The name of the help file is passed to the Help constructor and stored in the
instance variable helpfile. Since each instance of Help will have its own copy of

helpfile, each instance can use a different file. Thus, you can create different sets
of help files for different sets of topics.

4. Add the helpOn() method shown here to the Help class. This method retrieves
help on the specified topic.

The first thing to notice is that helpOn() handles all possible I/O exceptions

itself and does not include a throws clause. By handling its own exceptions, it
prevents this burden from being passed on to all code that uses it. Thus, other
code can simply call helpOn() without having to wrap that call in a try/catch
block.

The help file is opened using a FileReader that is wrapped in a
BufferedReader. Since the help file contains text, using a character stream
allows the Help system to be more efficiently internationalized.

The helpOn() method works like this. A string containing the name of the topic
is passed in the what parameter. The help file is then opened. Then, the file is
searched, looking for a match between what and a topic in the file. Remember,
in the file, each topic is preceded by a #, so the search loop scans the file for #s.
When it finds one, it then checks to see if the topic following that # matches the
one passed in what. If it does, the information associated with that topic is
displayed. If a match is found, helpOn() returns true. Otherwise, it returns
false.

5. The Help class also provides a method called getSelection(). It prompts the user
for a topic and returns the topic string entered by the user.

This method creates a BufferedReader attached to System.in. It then prompts
for the name of a topic, reads the topic, and returns it to the caller.

6. The entire disk-based Help system is shown here:

Ask the Expert
Q: In addition to the parse methods defined by the primitive type

wrappers, is there another easy way to convert a numeric string
entered at the keyboard into its equivalent binary format?

A: Yes! Another way to convert a numeric string into its internal, binary
format is to use one of the methods defined by the Scanner class,
packaged in java.util. Scanner reads formatted (that is, human-readable)
input and converts it into its binary form. Scanner can be used to read
input from a variety of sources, including the console and files.

Therefore, you can use Scanner to read a numeric string entered at the
keyboard and assign its value to a variable. Although Scanner contains
far too many features to describe in detail, the following illustrates its
basic usage.
To use Scanner to read from the keyboard, you must first create a

Scanner linked to console input. To do this, you will use the following
constructor:

Scanner(InputStream from)

This creates a Scanner that uses the stream specified by from as a source for
input. You can use this constructor to create a Scanner linked to console
input, as shown here:
Scanner conin = new Scanner(System.in);

This works because System.in is an object of type InputStream. After this
line executes, conin can be used to read input from the keyboard.

Once you have created a Scanner, it is a simple matter to use it to read
numeric input. Here is the general procedure:

1. Determine if a specific type of input is available by calling one of
Scanner’s hasNextX methods, where X is the type of data desired.

2. If input is available, read it by calling one of Scanner’s nextX
methods.

As the preceding indicates, Scanner defines two sets of methods that enable
you to read input. The first are the hasNext methods. These include methods
such as hasNextInt() and hasNextDouble(), for example. Each of the
hasNext methods returns true if the desired data type is the next available
item in the data stream, and false otherwise. For example, calling
hasNextInt() returns true only if the next item in the stream is the human-
readable form of an integer. If the desired data is available, you can read it
by calling one of Scanner’s next methods, such as nextInt() or
nextDouble(). These methods convert the human-readable form of the data
into its internal, binary representation and return the result. For example, to
read an integer, call nextInt().

The following sequence shows how to read an integer from the keyboard.
Scanner conin = new Scanner(System.in);int i;if
(conin.hasNextInt()) i = conin.nextInt();

Using this code, if you enter the number 123 on the keyboard, then i will

contain the value 123.
Technically, you can call a next method without first calling a hasNext

method. However, doing so is not usually a good idea. If a next method
cannot find the type of data it is looking for, it throws an
InputMismatchException. For this reason, it is best to first confirm that the
desired type of data is available by calling a hasNext method before calling
its corresponding next method.

 Chapter 10 Self Test

1. Why does Java define both byte and character streams?
2. Even though console input and output is text-based, why does Java still use byte

streams for this purpose?
3. Show how to open a file for reading bytes.
4. Show how to open a file for reading characters.
5. Show how to open a file for random-access I/O.
6. How can you convert a numeric string such as "123.23" into its binary

equivalent?
7. Write a program that copies a text file. In the process, have it convert all spaces

into hyphens. Use the byte stream file classes. Use the traditional approach to
closing a file by explicitly calling close().

8. Rewrite the program described in question 7 so that it uses the character stream
classes. This time, use the try-with-resources statement to automatically close
the file.

9. What type of stream is System.in?
10. What does the read() method of InputStream return when an attempt is made

to read at the end of the stream?
11. What type of stream is used to read binary data?
12. Reader and Writer are at the top of the ____________ class hierarchies.
13. The try-with-resources statement is used for ___________ ____________

____________.

14. If you are using the traditional method of closing a file, then closing a file within
a finally block is generally a good approach. True or False?

A

Chapter 11

Multithreaded Programming

Key Skills & Concepts
 Understand multithreading fundamentals

 Know the Thread class and the Runnable interface

 Create a thread

 Create multiple threads

 Determine when a thread ends

 Use thread priorities

 Understand thread synchronization

 Use synchronized methods

 Use synchronized blocks

 Communicate between threads

 Suspend, resume, and stop threads

lthough Java contains many innovative features, one of its most exciting is its
built-in support for multithreaded programming. A multithreaded program
contains two or more parts that can run concurrently. Each part of such a

program is called a thread, and each thread defines a separate path of execution.
Thus, multithreading is a specialized form of multitasking.

Multithreading Fundamentals
There are two distinct types of multitasking: process-based and thread-based. It is

important to understand the difference between the two. A process is, in essence, a
program that is executing. Thus, process-based multitasking is the feature that
allows your computer to run two or more programs concurrently. For example, it is
process-based multitasking that allows you to run the Java compiler at the same time
you are using a text editor or browsing the Internet. In process-based multitasking, a
program is the smallest unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of
dispatchable code. This means that a single program can perform two or more tasks
at once. For instance, a text editor can be formatting text at the same time that it is
printing, as long as these two actions are being performed by two separate threads.
Although Java programs make use of process-based multitasking environments,
process-based multitasking is not under the control of Java. Multithreaded
multitasking is.

A principal advantage of multithreading is that it enables you to write very
efficient programs because it lets you utilize the idle time that is present in most
programs. As you probably know, most I/O devices, whether they be network ports,
disk drives, or the keyboard, are much slower than the CPU. Thus, a program will
often spend a majority of its execution time waiting to send or receive information to
or from a device. By using multithreading, your program can execute another task
during this idle time. For example, while one part of your program is sending a file
over the Internet, another part can be reading keyboard input, and still another can be
buffering the next block of data to send.

As you probably know, over the past few years, multiprocessor and multicore
systems have become commonplace. Of course, single-processor systems are still in
widespread use. It is important to understand that Java’s multithreading features
work in both types of systems. In a single-core system, concurrently executing
threads share the CPU, with each thread receiving a slice of CPU time. Therefore, in
a single-core system, two or more threads do not actually run at the same time, but
idle CPU time is utilized. However, in multiprocessor/multicore systems, it is
possible for two or more threads to actually execute simultaneously. In many cases,
this can further improve program efficiency and increase the speed of certain
operations.

A thread can be in one of several states. It can be running. It can be ready to run
as soon as it gets CPU time. A running thread can be suspended, which is a
temporary halt to its execution. It can later be resumed. A thread can be blocked
when waiting for a resource. A thread can be terminated, in which case its execution
ends and cannot be resumed.

Along with thread-based multitasking comes the need for a special type of feature
called synchronization, which allows the execution of threads to be coordinated in

certain well-defined ways. Java has a complete subsystem devoted to
synchronization, and its key features are also described here.

If you have programmed for operating systems such as Windows, then you are
already familiar with multithreaded programming. However, the fact that Java
manages threads through language elements makes multithreading especially
convenient. Many of the details are handled for you.

The Thread Class and Runnable Interface
Java’s multithreading system is built upon the Thread class and its companion
interface, Runnable. Both are packaged in java.lang. Thread encapsulates a thread
of execution. To create a new thread, your program will either extend Thread or
implement the Runnable interface.

The Thread class defines several methods that help manage threads. Here are
some of the more commonly used ones (we will be looking at these more closely as
they are used):

All processes have at least one thread of execution, which is usually called the
main thread, because it is the one that is executed when your program begins. Thus,
the main thread is the thread that all of the preceding example programs in the book
have been using. From the main thread, you can create other threads.

Creating a Thread
You create a thread by instantiating an object of type Thread. The Thread class
encapsulates an object that is runnable. As mentioned, Java defines two ways in

which you can create a runnable object:

 You can implement the Runnable interface.

 You can extend the Thread class.

Most of the examples in this chapter will use the approach that implements
Runnable. However, Try This 11-1 shows how to implement a thread by extending
Thread. Remember: Both approaches still use the Thread class to instantiate,
access, and control the thread. The only difference is how a thread-enabled class is
created.

The Runnable interface abstracts a unit of executable code. You can construct a
thread on any object that implements the Runnable interface. Runnable defines
only one method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important
to understand that run() can call other methods, use other classes, and declare
variables just like the main thread. The only difference is that run() establishes the
entry point for another, concurrent thread of execution within your program. This
thread will end when run() returns.

After you have created a class that implements Runnable, you will instantiate an
object of type Thread on an object of that class. Thread defines several
constructors. The one that we will use first is shown here:

Thread(Runnable threadOb)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin.

Once created, the new thread will not start running until you call its start()
method, which is declared within Thread. In essence, start() executes a call to run(
). The start() method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

Let’s look closely at this program. First, MyThread implements Runnable. This
means that an object of type MyThread is suitable for use as a thread and can be
passed to the Thread constructor.

Inside run(), a loop is established that counts from 0 to 9. Notice the call to sleep(
). The sleep() method causes the thread from which it is called to suspend execution
for the specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method can
throw an InterruptedException. Thus, calls to it must be wrapped in a try block.
The sleep() method also has a second form, which allows you to specify the period
in terms of milliseconds and nanoseconds if you need that level of precision. In run(
), sleep() pauses the thread for 400 milliseconds each time through the loop. This
lets the thread run slow enough for you to watch it execute.

Inside main(), a new Thread object is created by the following sequence of
statements:

As the comments suggest, first an object of MyThread is created. This object is then
used to construct a Thread object. This is possible because MyThread implements
Runnable. Finally, execution of the new thread is started by calling start(). This
causes the child thread’s run() method to begin. After calling start(), execution
returns to main(), and it enters main()’s for loop. Notice that this loop iterates 50
times, pausing 100 milliseconds each time through the loop. Both threads continue
running, sharing the CPU in single-CPU systems, until their loops finish. The output
produced by this program is as follows. Because of differences between computing
environments, the precise output that you see may differ slightly from that shown
here:

There is another point of interest to notice in this first threading example. To
illustrate the fact that the main thread and mt execute concurrently, it is necessary to
keep main() from terminating until mt is finished. Here, this is done through the
timing differences between the two threads. Because the calls to sleep() inside
main()’s for loop cause a total delay of 5 seconds (50 iterations times 100
milliseconds), but the total delay within run()’s loop is only 4 seconds (10 iterations
times 400 milliseconds), run() will finish approximately 1 second before main().
As a result, both the main thread and mt will execute concurrently until mt ends.
Then, about 1 second later main() ends.

Although this use of timing differences to ensure that main() finishes last is
sufficient for this simple example, it is not something that you would normally use in
practice. Java provides much better ways of waiting for a thread to end. It is,
however, sufficient for the next few programs. Later in this chapter, you will see a
better way for one thread to wait until another completes.

One other point: In a multithreaded program, you often will want the main thread
to be the last thread to finish running. As a general rule, a program continues to run
until all of its threads have ended. Thus, having the main thread finish last is not a
requirement. It is, however, often a good practice to follow—especially when you
are first learning about threads.

One Improvement and Two Simple Variations
The preceding program demonstrates the fundamentals of creating a Thread based
on a Runnable and then starting the thread. The approach shown in that program is
perfectly valid and is often exactly what you will want. However, two simple
variations can make MyThread more flexible and easier to use in some cases.

Furthermore, you may find that these variations are helpful when you create your
own Runnable classes. It is also possible to make one significant improvement to
MyThread that takes advantage of another feature of the Thread class. Let’s begin
with the improvement.

In the preceding program, notice that an instance variable called thrdName is
defined by MyThread and is used to hold the name of the thread. However, there is
no need for MyThread to store the name of the thread since it is possible to give a
name to a thread when it is created. To do so, use this version of Thread’s
constructor:

Thread(Runnable threadOb, String name)

Ask the Expert
Q: You state that in a multithreaded program, one will often want the

main thread to finish last. Can you explain?
A: The main thread is a convenient place to perform the orderly shutdown of

your program, such as the closing of files. It also provides a well-defined
exit point for your program. Therefore, it often makes sense for it to
finish last. Fortunately, as you will soon see, it is trivially easy for the
main thread to wait until the child threads have completed.

Here, name becomes the name of the thread. You can obtain the name of the thread
by calling getName() defined by Thread. Its general form is shown here:

final String getName()

Giving a thread a name when it is created provides two advantages. First, there is no
need for you to use a separate variable to hold the name because Thread already
provides this capability. Second, the name of the thread will be available to any code
that holds a reference to the thread. One other point: although not needed by this
example, you can set the name of a thread after it is created by using setName(),
which is shown here:

final void setName(String threadName)

Here, threadName specifies the new name of the thread.
As mentioned, there are two variations that can, depending on the situation, make

MyThread more convenient to use. First, it is possible for the MyThread
constructor to create a Thread object for the thread, storing a reference to that thread
in an instance variable. With this approach, the thread is ready to start as soon as the
MyThread constructor returns. You simply call start() on the Thread instance
encapsulated by MyThread.

The second variation offers a way to have a thread begin execution as soon as it is
created. This approach is useful in cases in which there is no need to separate thread
creation from thread execution. One way to accomplish this for MyThread is to
provide a static factory method that:

1. creates a new MyThread instance,
2. calls start() on the thread associated with that instance,
3. and then returns a reference to the newly created MyThread object.

With this approach, it becomes possible to create and start a thread through a single
method call. This can streamline the use of MyThread, especially in cases in which
several threads must be created and started.

The following version of the preceding program incorporates the changes just
described:

This version produces the same output as before. However, notice that now
MyThread no longer contains the name of the thread. Instead, it provides an
instance variable called thrd that holds a reference to the Thread object created by
MyThread’s constructor, shown here:

Thus, after MyThread’s constructor executes, thrd will contain a reference to the
newly created thread. To start the thread, you will simply call start() on thrd.

Next, pay special attention to the createAndStart() factory method, shown here:

When this method is called, it creates a new instance of MyThread called myThrd.
It then calls start() on myThrd’s copy of thrd. Finally, it returns a reference to the
newly created MyThread instance. Thus, once the call to createAndStart() returns,
the thread will already have been started. Therefore, in main(), this line creates and
begins the execution of a thread in a single call:

MyThread mt = MyThread.createAndStart("Child #1");

Because of the convenience that createAndStart() offers, it will be used by
several of the examples in this chapter. Furthermore, you may find it helpful to adapt
such a method for use in thread-based applications of your own. Of course, in cases
in which you want a thread’s execution to be separate from its creation, you can
simply create a MyThread object and then call start() later.

Ask the Expert
Q: Earlier, you used the term factory method and showed one example in

the method called createAndStart(). Can you give me a more general
definition?

A: Yes. In general, a factory method is a method that returns an object of a
class. Typically, factory methods are static methods of a class. Factory
methods are useful in a variety of situations. Here are some examples. As
you just saw in the case of createAndStart(), a factory method enables
an object to be constructed and then set to some specified state prior to
being returned to the caller. Another type of factory method is used to
provide an easy-to-remember name that indicates the variety of object
that is being constructed. For example, assuming a class called Line, you
might have factory methods that create lines of specific colors, such as
createRedLine() or createBlueLine(). Instead of having to remember a
potentially complex call to a constructor, you can simply use the factory
method whose name indicates the type of line you want. In some cases it
is also possible for a factory method to reuse an object, rather than
constructing a new one. As you will see as you advance in your study of
Java, factory methods are common in the Java API library.

Try This 11-1 Extending Thread

Implementing Runnable is one way to create a class that can instantiate thread
objects. Extending Thread is the other. In this project, you will see how to extend
Thread by creating a program functionally similar to the UseThreads program
shown at the start of this chapter.

When a class extends Thread, it must override the run() method, which is the
entry point for the new thread. It must also call start() to begin execution of the new
thread. It is possible to override other Thread methods, but doing so is not required.
1. Create a file called ExtendThread.java. Begin this file with the following lines:

Notice that MyThread now extends Thread instead of implementing

Runnable.

2. Add the following MyThread constructor:

Here, super is used to call this version of Thread’s constructor:

Thread(String threadName)

Here, threadName specifies the name of the thread. As explained previously,
Thread provides the ability to hold a thread’s name. Thus, no instance variable
is required by MyThread to store the name.

3. Conclude MyThread by adding the following run() method:

Notice the calls to getName(). Because ExtendThread extends Thread, it can
directly call all of Thread’s methods, including the getName() method.

4. Next, add the ExtendThread class shown here:

In main(), notice how an instance of MyThread is created and then started with
these two lines:

Because MyThread now implements Thread, start() is called directly on the
MyThread instance, mt.

5. Here is the complete program. Its output is the same as the UseThreads example,
but in this case, Thread is extended rather than Runnable being implemented.

6. When extending Thread, it is also possible to include the ability to create and
start a thread in one step by using a static factory method, similar to that used by
the ThreadVariations program shown earlier. To try this, add the following
method to MyThread:

As you can see, this method creates a new MyThread instance with the
specified name, calls start() on that thread, and returns a reference to the thread.
To try createAndStart(), replace these two lines in main():
System.out.println("Main thread starting.");
MyThread mt = new MyThread("Child #1");

with this line:
MyThread mt = MyThread.createAndStart("Child #1");

After making these changes, the program will run the same as before, but you
will be creating and starting the thread using a single method call.

Creating Multiple Threads
The preceding examples have created only one child thread. However, your program
can spawn as many threads as it needs. For example, the following program creates
three child threads:

Ask the Expert
Q: Why does Java have two ways to create child threads (by extending

Thread or implementing Runnable) and which approach is better?
A: The Thread class defines several methods that can be overridden by a

derived class. Of these methods, the only one that must be overridden is
run(). This is, of course, the same method required when you implement
Runnable. Some Java programmers feel that classes should be extended
only when they are being expanded in some way. So, if you will not be
overriding any of Thread’s other methods, it is probably best to simply
implement Runnable. Also, by implementing Runnable, you enable
your thread to inherit a class other than Thread.

Sample output from this program follows:

As you can see, once started, all three child threads share the CPU. Notice that in
this run the threads are started in the order in which they are created. However, this
may not always be the case. Java is free to schedule the execution of threads in its

own way. Of course, because of differences in timing or environment, the precise
output from the program may differ, so don’t be surprised if you see slightly
different results when you try the program.

Determining When a Thread Ends
It is often useful to know when a thread has ended. For example, in the preceding
examples, for the sake of illustration it was helpful to keep the main thread alive
until the other threads ended. In those examples, this was accomplished by having
the main thread sleep longer than the child threads that it spawned. This is, of course,
hardly a satisfactory or generalizable solution!

Fortunately, Thread provides two means by which you can determine if a thread
has ended. First, you can call isAlive() on the thread. Its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still
running. It returns false otherwise. To try isAlive(), substitute this version of
MoreThreads for the one shown in the preceding program:

This version produces output that is similar to the previous version, except that
main() ends as soon as the other threads finish. The difference is that it uses
isAlive() to wait for the child threads to terminate. Another way to wait for a thread
to finish is to call join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes
from the concept of the calling thread waiting until the specified thread joins it.
Additional forms of join() allow you to specify a maximum amount of time that you
want to wait for the specified thread to terminate.

Here is a program that uses join() to ensure that the main thread is the last to stop:

Sample output from this program is shown here. Remember that when you try the
program, your precise output may vary slightly.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities
Each thread has associated with it a priority setting. A thread’s priority determines,
in part, how much CPU time a thread receives relative to the other active threads. In
general, over a given period of time, low-priority threads receive little. High-priority
threads receive a lot. As you might expect, how much CPU time a thread receives
has profound impact on its execution characteristics and its interaction with other
threads currently executing in the system.

It is important to understand that factors other than a thread’s priority also affect
how much CPU time a thread receives. For example, if a high-priority thread is

waiting on some resource, perhaps for keyboard input, then it will be blocked, and a
lower-priority thread will run. However, when that high-priority thread gains access
to the resource, it can preempt the low-priority thread and resume execution. Another
factor that affects the scheduling of threads is the way the operating system
implements multitasking. (See “Ask the Expert” at the end of this section.) Thus, just
because you give one thread a high priority and another a low priority does not
necessarily mean that one thread will run faster or more often than the other. It’s just
that the high-priority thread has greater potential access to the CPU.

When a child thread is started, its priority setting is equal to that of its parent
thread. You can change a thread’s priority by calling setPriority(), which is a
member of Thread. This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level
must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently,
these values are 1 and 10, respectively. To return a thread to default priority, specify
NORM_PRIORITY, which is currently 5. These priorities are defined as static
final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of
Thread, shown here:

final int getPriority()

The following example demonstrates threads at different priorities. The threads
are created as instances of Priority. The run() method contains a loop that counts
the number of iterations. The loop stops when either the count reaches 10,000,000 or
the static variable stop is true. Initially, stop is set to false, but the first thread to
finish counting sets stop to true. This causes each other thread to terminate with its
next time slice. Each time through the loop the string in currentName is checked
against the name of the executing thread. If they don’t match, it means that a task-
switch occurred. Each time a task-switch happens, the name of the new thread is
displayed, and currentName is given the name of the new thread. Displaying each
thread switch allows you to watch (in a very imprecise way) when the threads gain
access to the CPU. After the threads stop, the number of iterations for each loop is
displayed.

Here are the results of a sample run:

In this run, the high-priority thread got the greatest amount of the CPU time. Of
course, the exact output produced by this program will depend upon a number of
factors, including the speed of your CPU, the number of CPUs in your system, the
operating system you are using, and the number and nature of other tasks running in
the system. Thus, it is actually possible for the low-priority thread to get the most
CPU time if the circumstances are right.

Ask the Expert
Q: Does the operating system’s implementation of multitasking affect

how much CPU time a thread receives?
A: Aside from a thread’s priority setting, the most important factor affecting

thread execution is the way the operating system implements multitasking
and scheduling. Some operating systems use preemptive multitasking in
which each thread receives a time slice, at least occasionally. Other
systems use nonpreemptive scheduling in which one thread must yield
execution before another thread will execute. In nonpreemptive systems,
it is easy for one thread to dominate, preventing others from running.

Synchronization
When using multiple threads, it is sometimes necessary to coordinate the activities of
two or more. The process by which this is achieved is called synchronization. The
most common reason for synchronization is when two or more threads need access
to a shared resource that can be used by only one thread at a time. For example,
when one thread is writing to a file, a second thread must be prevented from doing so
at the same time. Another reason for synchronization is when one thread is waiting
for an event that is caused by another thread. In this case, there must be some means
by which the first thread is held in a suspended state until the event has occurred.
Then, the waiting thread must resume execution.

Key to synchronization in Java is the concept of the monitor, which controls
access to an object. A monitor works by implementing the concept of a lock. When
an object is locked by one thread, no other thread can gain access to the object.
When the thread exits, the object is unlocked and is available for use by another
thread.

All objects in Java have a monitor. This feature is built into the Java language
itself. Thus, all objects can be synchronized. Synchronization is supported by the
keyword synchronized and a few well-defined methods that all objects have. Since
synchronization was designed into Java from the start, it is much easier to use than
you might first expect. In fact, for many programs, the synchronization of objects is
almost transparent.

There are two ways that you can synchronize your code. Both involve the use of
the synchronized keyword, and both are examined here.

Using Synchronized Methods
You can synchronize access to a method by modifying it with the synchronized
keyword. When that method is called, the calling thread enters the object’s monitor,
which then locks the object. While locked, no other thread can enter the method, or

enter any other synchronized method defined by the object’s class. When the thread
returns from the method, the monitor unlocks the object, allowing it to be used by
the next thread. Thus, synchronization is achieved with virtually no programming
effort on your part.

The following program demonstrates synchronization by controlling access to a
method called sumArray(), which sums the elements of an integer array.

The output from the program is shown here. (The precise output may differ on
your computer.)

Let’s examine this program in detail. The program creates three classes. The first
is SumArray. It contains the method sumArray(), which sums an integer array.
The second class is MyThread, which uses a static object of type SumArray to
obtain the sum of an integer array. This object is called sa and because it is static,
there is only one copy of it that is shared by all instances of MyThread. Finally, the
class Sync creates two threads and has each compute the sum of an integer array.

Inside sumArray(), sleep() is called to purposely allow a task switch to occur, if
one can—but it can’t. Because sumArray() is synchronized, it can be used by only
one thread at a time. Thus, when the second child thread begins execution, it does
not enter sumArray() until after the first child thread is done with it. This ensures

that the correct result is produced.
To fully understand the effects of synchronized, try removing it from the

declaration of sumArray(). After doing this, sumArray() is no longer
synchronized, and any number of threads may use it concurrently. The problem with
this is that the running total is stored in sum, which will be changed by each thread
that calls sumArray() through the static object sa. Thus, when two threads call
sa.sumArray() at the same time, incorrect results are produced because sum
reflects the summation of both threads, mixed together. For example, here is sample
output from the program after synchronized has been removed from sumArray()’s
declaration. (The precise output may differ on your computer.)

As the output shows, both child threads are calling sa.sumArray() concurrently,
and the value of sum is corrupted. Before moving on, let’s review the key points of a
synchronized method:

 A synchronized method is created by preceding its declaration with
synchronized.

 For any given object, once a synchronized method has been called, the object is
locked and no synchronized methods on the same object can be used by another
thread of execution.

 Other threads trying to call an in-use synchronized object will enter a wait state
until the object is unlocked.

 When a thread leaves the synchronized method, the object is unlocked.

The synchronized Statement
Although creating synchronized methods within classes that you create is an easy
and effective means of achieving synchronization, it will not work in all cases. For
example, you might want to synchronize access to some method that is not modified
by synchronized. This can occur because you want to use a class that was not
created by you but by a third party, and you do not have access to the source code.
Thus, it is not possible for you to add synchronized to the appropriate methods
within the class. How can access to an object of this class be synchronized?
Fortunately, the solution to this problem is quite easy: You simply put calls to the
methods defined by this class inside a synchronized block.

This is the general form of a synchronized block:

synchronized(objref) {
// statements to be synchronized

}

Here, objref is a reference to the object being synchronized. Once a synchronized
block has been entered, no other thread can call a synchronized method on the object
referred to by objref until the block has been exited.

For example, another way to synchronize calls to sumArray() is to call it from
within a synchronized block, as shown in this version of the program:

This version produces the same, correct output as the one shown earlier that uses a
synchronized method.

Ask the Expert

Q: I have heard of something called the “concurrency utilities.” What
are these? Also, what is the Fork/Join Framework?

A: The concurrency utilities, which are packaged in java.util.concurrent
(and its subpackages), support concurrent programming. Among several
other items, they offer synchronizers, thread pools, execution managers,
and locks that expand your control over thread execution. One of the
most exciting features of the concurrent API is the Fork/Join Framework.
The Fork/Join Framework supports what is often termed parallel

programming. This is the name commonly given to the techniques that take
advantage of computers that contain two or more processors (including
multicore systems) by subdividing a task into subtasks, with each subtask
executing on its own processor. As you can imagine, such an approach can
lead to significantly higher throughput and performance. The key advantage
of the Fork/Join Framework is ease of use; it streamlines the development of
multithreaded code that automatically scales to utilize the number of
processors in a system. Thus, it facilitates the creation of concurrent
solutions to some common programming tasks, such as performing
operations on the elements of an array. The concurrency utilities in general,
and the Fork/Join Framework specifically, are features that you will want to
explore after you have become more experienced with multithreading.

Thread Communication Using notify(), wait(),
and notifyAll()
Consider the following situation. A thread called T is executing inside a
synchronized method and needs access to a resource called R that is temporarily
unavailable. What should T do? If T enters some form of polling loop that waits for
R, T ties up the object, preventing other threads’ access to it. This is a less than
optimal solution because it partially defeats the advantages of programming for a
multithreaded environment. A better solution is to have T temporarily relinquish
control of the object, allowing another thread to run. When R becomes available, T
can be notified and resume execution. Such an approach relies upon some form of
interthread communication in which one thread can notify another that it is blocked
and be notified that it can resume execution. Java supports interthread
communication with the wait(), notify(), and notifyAll() methods.

The wait(), notify(), and notifyAll() methods are part of all objects because they

are implemented by the Object class. These methods should be called only from
within a synchronized context. Here is how they are used. When a thread is
temporarily blocked from running, it calls wait(). This causes the thread to go to
sleep and the monitor for that object to be released, allowing another thread to use
the object. At a later point, the sleeping thread is awakened when some other thread
enters the same monitor and calls notify(), or notifyAll().

Following are the various forms of wait() defined by Object:

final void wait() throws InterruptedException

final void wait(long millis) throws InterruptedException

final void wait(long millis, int nanos) throws InterruptedException

The first form waits until notified. The second form waits until notified or until the
specified period of milliseconds has expired. The third form allows you to specify
the wait period in terms of nanoseconds.

Here are the general forms for notify() and notifyAll():

final void notify()

final void notifyAll()

A call to notify() resumes one waiting thread. A call to notifyAll() notifies all
threads, with the highest priority thread gaining access to the object.

Before looking at an example that uses wait(), an important point needs to be
made. Although wait() normally waits until notify() or notifyAll() is called, there
is a possibility that in very rare cases the waiting thread could be awakened due to a
spurious wakeup. The conditions that lead to a spurious wakeup are complex and
beyond the scope of this book. However, Oracle recommends that because of the
remote possibility of a spurious wakeup, calls to wait() should take place within a
loop that checks the condition on which the thread is waiting. The following example
shows this technique.

An Example That Uses wait() and notify()
To understand the need for and the application of wait() and notify(), we will
create a program that simulates the ticking of a clock by displaying the words Tick
and Tock on the screen. To accomplish this, we will create a class called TickTock
that contains two methods: tick() and tock(). The tick() method displays the word
"Tick", and tock() displays "Tock". To run the clock, two threads are created, one

that calls tick() and one that calls tock(). The goal is to make the two threads
execute in a way that the output from the program displays a consistent "Tick
Tock"—that is, a repeated pattern of one tick followed by one tock.

Here is the output produced by the program:

Tick Tock
Tick Tock
Tick Tock
Tick Tock
Tick Tock

Let’s take a close look at this program. The heart of the clock is the TickTock
class. It contains two methods, tick() and tock(), which communicate with each
other to ensure that a Tick is always followed by a Tock, which is always followed
by a Tick, and so on. Notice the state field. When the clock is running, state will
hold either the string "ticked" or "tocked", which indicates the current state of the
clock. In main(), a TickTock object called tt is created, and this object is used to
start two threads of execution.

The threads are based on objects of type MyThread. Both the MyThread

constructor and the createAndStart() method are passed two arguments. The first
becomes the name of the thread. This will be either "Tick" or "Tock". The second is
a reference to the TickTock object, which is tt in this case. Inside the run() method
of MyThread, if the name of the thread is "Tick", then calls to tick() are made. If
the name of the thread is "Tock", then the tock() method is called. Five calls that
pass true as an argument are made to each method. The clock runs as long as true is
passed. A final call that passes false to each method stops the clock.

The most important part of the program is found in the tick() and tock() methods
of TickTock. We will begin with the tick() method, which, for convenience, is
shown here:

First, notice that tick() is modified by synchronized. Remember, wait() and
notify() apply only to synchronized methods. The method begins by checking the
value of the running parameter. This parameter is used to provide a clean shutdown
of the clock. If it is false, then the clock has been stopped. If this is the case, state is
set to "ticked" and a call to notify() is made to enable any waiting thread to run. We
will return to this point in a moment.

Assuming that the clock is running when tick() executes, the word "Tick" is
displayed, state is set to "ticked", and then a call to notify() takes place. The call to
notify() allows a thread waiting on the same object to run. Next, wait() is called

within a while loop. The call to wait() causes tick() to suspend until another thread
calls notify(). Therefore, the loop will not iterate until another thread calls notify()
on the same object. As a result, when tick() is called, it displays one "Tick", lets
another thread run, and then suspends.

The while loop that calls wait() checks the value of state, waiting for it to equal
"tocked", which will be the case only after the tock() method executes. As
explained, using a while loop to check this condition prevents a spurious wakeup
from incorrectly restarting the thread. If state does not equal "tocked" when wait()
returns, it means that a spurious wakeup occurred, and wait() is simply called again.

The tock() method is an exact copy of tick() except that it displays "Tock" and
sets state to "tocked". Thus, when entered, it displays "Tock", calls notify(), and
then waits. When viewed as a pair, a call to tick() can only be followed by a call to
tock(), which can only be followed by a call to tick(), and so on. Therefore, the two
methods are mutually synchronized.

The reason for the call to notify() when the clock is stopped is to allow a final call
to wait() to succeed. Remember, both tick() and tock() execute a call to wait()
after displaying their message. The problem is that when the clock is stopped, one of
the methods will still be waiting. Thus, a final call to notify() is required in order for
the waiting method to run. As an experiment, try removing this call to notify() and
watch what happens. As you will see, the program will “hang,” and you will need to
press CTRL-C to exit. The reason for this is that when the final call to tock() calls
wait(), there is no corresponding call to notify() that lets tock() conclude. Thus,
tock() just sits there, waiting forever.

Before moving on, if you have any doubt that the calls to wait() and notify() are
actually needed to make the “clock” run right, substitute this version of TickTock
into the preceding program. It has all calls to wait() and notify() removed.

After the substitution, the output produced by the program will look like this:

Tick Tick Tick Tick Tick Tock
Tock
Tock
Tock
Tock

Clearly, the tick() and tock() methods are no longer working together!

Ask the Expert
Q: I have heard the term deadlock applied to misbehaving multithreaded

programs. What is it, and how can I avoid it? Also, what is a race
condition, and how can I avoid that, too?

A: Deadlock is, as the name implies, a situation in which one thread is
waiting for another thread to do something, but that other thread is
waiting on the first. Thus, both threads are suspended, waiting on each
other, and neither executes. This situation is analogous to two overly
polite people, both insisting that the other step through a door first!
Avoiding deadlock seems easy, but it’s not. For example, deadlock can

occur in roundabout ways. The cause of the deadlock often is not readily
understood just by looking at the source code to the program because
concurrently executing threads can interact in complex ways at run time. To
avoid deadlock, careful programming and thorough testing is required.
Remember, if a multithreaded program occasionally “hangs,” deadlock is the
likely cause.

A race condition occurs when two (or more) threads attempt to access a
shared resource at the same time, without proper synchronization. For
example, one thread may be writing a new value to a variable while another
thread is incrementing the variable’s current value. Without synchronization,
the new value of the variable will depend upon the order in which the
threads execute. (Does the second thread increment the original value or the
new value written by the first thread?) In situations like this, the two threads
are said to be “racing each other,” with the final outcome determined by
which thread finishes first. Like deadlock, a race condition can occur in
difficult-to-discover ways. The solution is prevention: careful programming
that properly synchronizes access to shared resources.

Suspending, Resuming, and Stopping Threads
It is sometimes useful to suspend execution of a thread. For example, a separate
thread can be used to display the time of day. If the user does not desire a clock, then
its thread can be suspended. Whatever the case, it is a simple matter to suspend a
thread. Once suspended, it is also a simple matter to restart the thread.

The mechanisms to suspend, stop, and resume threads differ between early
versions of Java and more modern versions, beginning with Java 2. Prior to Java 2, a
program used suspend(), resume(), and stop(), which are methods defined by
Thread, to pause, restart, and stop the execution of a thread. They have the
following forms:

final void resume()

final void suspend()

final void stop()

While these methods seem to be a perfectly reasonable and convenient approach
to managing the execution of threads, they must no longer be used. Here’s why. The
suspend() method of the Thread class was deprecated by Java 2. This was done
because suspend() can sometimes cause serious problems that involve deadlock.
The resume() method is also deprecated. It does not cause problems but cannot be
used without the suspend() method as its counterpart. The stop() method of the
Thread class was also deprecated by Java 2. This was done because this method too
can sometimes cause serious problems.

Since you cannot now use the suspend(), resume(), or stop() methods to control
a thread, you might at first be thinking that there is no way to pause, restart, or
terminate a thread. But, fortunately, this is not true. Instead, a thread must be
designed so that the run() method periodically checks to determine if that thread
should suspend, resume, or stop its own execution. Typically, this is accomplished
by establishing two flag variables: one for suspend and resume, and one for stop. For
suspend and resume, as long as the flag is set to “running,” the run() method must
continue to let the thread execute. If this variable is set to “suspend,” the thread must
pause. For the stop flag, if it is set to “stop,” the thread must terminate.

The following example shows one way to implement your own versions of
suspend(), resume(), and stop():

Sample output from this program is shown here. (Your output may differ slightly.)

Ask the Expert
Q: Multithreading seems like a great way to improve the efficiency of

my programs. Can you give me any tips on effectively using it?
A: The key to effectively utilizing multithreading is to think concurrently

rather than serially. For example, when you have two subsystems within a
program that are fully independent of each other, consider making them
into individual threads. A word of caution is in order, however. If you
create too many threads, you can actually degrade the performance of
your program rather than enhance it. Remember, overhead is associated
with context switching. If you create too many threads, more CPU time
will be spent changing contexts than in executing your program!

Here is how the program works. The thread class MyThread defines two Boolean
variables, suspended and stopped, which govern the suspension and termination of

a thread. Both are initialized to false by the constructor. The run() method contains
a synchronized statement block that checks suspended. If that variable is true, the
wait() method is invoked to suspend the execution of the thread. To suspend
execution of the thread, call mysuspend(), which sets suspended to true. To
resume execution, call myresume(), which sets suspended to false and invokes
notify() to restart the thread.

To stop the thread, call mystop(), which sets stopped to true. In addition,
mystop() sets suspended to false and then calls notify(). These steps are necessary
to stop a suspended thread.

Try This 11-2 Using the Main Thread

All Java programs have at least one thread of execution, called the main thread,
which is given to the program automatically when it begins running. So far, we have
been taking the main thread for granted. In this project, you will see that the main
thread can be handled just like all other threads.
1. Create a file called UseMain.java.
2. To access the main thread, you must obtain a Thread object that refers to it. You

do this by calling the currentThread() method, which is a static member of
Thread. Its general form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Therefore, if
you call currentThread() while execution is inside the main thread, you will
obtain a reference to the main thread. Once you have this reference, you can
control the main thread just like any other thread.

3. Enter the following program into the file. It obtains a reference to the main
thread, and then gets and sets the main thread’s name and priority.

4. The output from the program is shown here:

5. You need to be careful about what operations you perform on the main thread.
For example, if you add the following code to the end of main(), the program
will never terminate because it will be waiting for the main thread to end!

 Chapter 11 Self Test

1. How does Java’s multithreading capability enable you to write more efficient
programs?

2. Multithreading is supported by the _________ class and the ________ interface.
3. When creating a runnable object, why might you want to extend Thread rather

than implement Runnable?
4. Show how to use join() to wait for a thread object called MyThrd to end.
5. Show how to set a thread called MyThrd to three levels above normal priority.
6. What is the effect of adding the synchronized keyword to a method?
7. The wait() and notify() methods are used to perform

_______________________.
8. Change the TickTock class so that it actually keeps time. That is, have each tick

take one half second, and each tock take one half second. Thus, each tick-tock
will take one second. (Don’t worry about the time it takes to switch tasks, etc.)

9. Why can’t you use suspend(), resume(), and stop() for new programs?
10. What method defined by Thread obtains the name of a thread?

11. What does isAlive() return?
12. On your own, try adding synchronization to the Queue class developed in

previous chapters so that it is safe for multithreaded use.

T

Chapter 12

Enumerations, Autoboxing, Static Import,
and Annotations

Key Skills & Concepts
 Understand enumeration fundamentals

 Use the class-based features of enumerations

 Apply the values() and valueof() methods to enumerations

 Create enumerations that have constructors, instance variables, and methods

 Employ the ordinal() and compareTo() methods that enumerations inherit
from Enum

 Use Java’s type wrappers

 Know the basics of autoboxing and auto-unboxing

 Use autoboxing with methods

 Understand how autoboxing works with expressions

 Apply static import

 Gain an overview of annotations

his chapter discusses enumerations, autoboxing, static import, and annotations.
Although none of these were part of the original definition of Java, each
having been added by JDK 5, they significantly enhanced the power and

usability of the language. In the case of enumerations and autoboxing, both
addressed what was, at the time, long-standing needs. Static import streamlined the
use of static members. Annotations expanded the kinds of information that can be
embedded within a source file. Collectively, these features offered a better way to

solve common programming problems. Frankly, today, it is difficult to imagine Java
without them. They have become that important. Also discussed in this chapter are
Java’s type wrappers.

Enumerations
In its simplest form, an enumeration is a list of named constants that define a new
data type. An object of an enumeration type can hold only the values that are defined
by the list. Thus, an enumeration gives you a way to precisely define a new type of
data that has a fixed number of valid values.

Enumerations are common in everyday life. For example, an enumeration of the
coins used in the United States is penny, nickel, dime, quarter, half-dollar, and
dollar. An enumeration of the months in the year consists of the names January
through December. An enumeration of the days of the week is Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, and Saturday.

From a programming perspective, enumerations are useful whenever you need to
define a set of values that represent a collection of items. For example, you might
use an enumeration to represent a set of status codes, such as success, waiting, failed,
and retrying, which indicate the progress of some action. In the past, such values
were defined as final variables, but enumerations offer a more structured approach.

Enumeration Fundamentals
An enumeration is created using the enum keyword. For example, here is a simple
enumeration that lists various forms of transportation:

The identifiers CAR, TRUCK, and so on, are called enumeration constants. Each is
implicitly declared as a public, static member of Transport. Furthermore, the
enumeration constants’ type is the type of the enumeration in which the constants are
declared, which is Transport in this case. Thus, in the language of Java, these
constants are called self-typed, where “self” refers to the enclosing enumeration.

Once you have defined an enumeration, you can create a variable of that type.
However, even though enumerations define a class type, you do not instantiate an
enum using new. Instead, you declare and use an enumeration variable in much the
same way that you do one of the primitive types. For example, this declares tp as a

variable of enumeration type Transport:

Transport tp;

Because tp is of type Transport, the only values that it can be assigned are those
defined by the enumeration. For example, this assigns tp the value AIRPLANE:

tp = Transport.AIRPLANE;

Notice that the symbol AIRPLANE is qualified by Transport.
Two enumeration constants can be compared for equality by using the = =

relational operator. For example, this statement compares the value in tp with the
TRAIN constant:

if(tp == Transport.TRAIN) // ...

An enumeration value can also be used to control a switch statement. Of course,
all of the case statements must use constants from the same enum as that used by the
switch expression. For example, this switch is perfectly valid:

Notice that in the case statements, the names of the enumeration constants are used
without being qualified by their enumeration type name. That is, TRUCK, not
Transport.TRUCK, is used. This is because the type of the enumeration in the
switch expression has already implicitly specified the enum type of the case
constants. There is no need to qualify the constants in the case statements with their
enum type name. In fact, attempting to do so will cause a compilation error.

When an enumeration constant is displayed, such as in a println() statement, its
name is output. For example, given this statement:

System.out.println(Transport.BOAT);

the name BOAT is displayed.
The following program puts together all of the pieces and demonstrates the

Transport enumeration:

The output from the program is shown here:

Before moving on, it’s necessary to make one stylistic point. The constants in
Transport use uppercase. (Thus, CAR, not car, is used.) However, the use of
uppercase is not required. In other words, there is no rule that requires enumeration
constants to be in uppercase. Because enumerations often replace final variables,
which have traditionally used uppercase, some programmers believe that
uppercasing enumeration constants is also appropriate. There are, of course, other
viewpoints and styles. The examples in this book will use uppercase for enumeration
constants, for consistency.

Java Enumerations Are Class Types
Although the preceding examples show the mechanics of creating and using an
enumeration, they don’t show all of its capabilities. Unlike the way enumerations are
implemented in some other languages, Java implements enumerations as class types.
Although you don’t instantiate an enum using new, it otherwise acts much like other
classes. The fact that enum defines a class enables the Java enumeration to have
powers that enumerations in some other languages do not. For example, you can give
it constructors, add instance variables and methods, and even implement interfaces.

The values() and valueOf() Methods
All enumerations automatically have two predefined methods: values() and
valueOf(). Their general forms are shown here:

public static enum-type[] values()

public static enum-type valueOf(String str)

The values() method returns an array that contains a list of the enumeration
constants. The valueOf() method returns the enumeration constant whose value
corresponds to the string passed in str. In both cases, enum-type is the type of the
enumeration. For example, in the case of the Transport enumeration shown earlier,
the return type of Transport.valueOf("TRAIN") is Transport. The value returned
is TRAIN. The following program demonstrates the values() and valueOf()
methods:

The output from the program is shown here:

Notice that this program uses a for-each style for loop to cycle through the array
of constants obtained by calling values(). For the sake of illustration, the variable
allTransports was created and assigned a reference to the enumeration array.
However, this step is not necessary because the for could have been written as
shown here, eliminating the need for the allTransports variable:

Now, notice how the value corresponding to the name AIRPLANE was obtained
by calling valueOf():

tp = Transport.valueOf("AIRPLANE");

As explained, valueOf() returns the enumeration value associated with the name of
the constant represented as a string.

Constructors, Methods, Instance Variables, and
Enumerations
It is important to understand that each enumeration constant is an object of its
enumeration type. Thus, an enumeration can define constructors, add methods, and
have instance variables. When you define a constructor for an enum, the constructor
is called when each enumeration constant is created. Each enumeration constant can
call any method defined by the enumeration. Each enumeration constant has its own
copy of any instance variables defined by the enumeration. The following version of
Transport illustrates the use of a constructor, an instance variable, and a method. It
gives each type of transportation a typical speed.

The output is shown here:

This version of Transport adds three things. The first is the instance variable
speed, which is used to hold the speed of each kind of transport. The second is the
Transport constructor, which is passed the speed of a transport. The third is the
method getSpeed(), which returns the value of speed.

When the variable tp is declared in main(), the constructor for Transport is
called once for each constant that is specified. Notice how the arguments to the
constructor are specified, by putting them inside parentheses, after each constant, as
shown here:

CAR(65), TRUCK(55), AIRPLANE(600), TRAIN(70), BOAT(22);

These values are passed to the s parameter of Transport(), which then assigns this
value to speed. There is something else to notice about the list of enumeration
constants: it is terminated by a semicolon. That is, the last constant, BOAT, is
followed by a semicolon. When an enumeration contains other members, the
enumeration list must end in a semicolon.

Because each enumeration constant has its own copy of speed, you can obtain the
speed of a specified type of transport by calling getSpeed(). For example, in main()
the speed of an airplane is obtained by the following call:

Transport.AIRPLANE.getSpeed()

The speed of each transport is obtained by cycling through the enumeration using a
for loop. Because there is a copy of speed for each enumeration constant, the value
associated with one constant is separate and distinct from the value associated with
another constant. This is a powerful concept, which is available only when
enumerations are implemented as classes, as Java does.

Although the preceding example contains only one constructor, an enum can offer
two or more overloaded forms, just as can any other class.

Ask the Expert
Q: Since enumerations have been added to Java, should I avoid the use

of final variables? In other words, have enumerations rendered final
variables obsolete?

A: No. Enumerations are appropriate when you are working with lists of
items that must be represented by identifiers. A final variable is
appropriate when you have a constant value, such as an array size, that

will be used in many places. Thus, each has its own use. The advantage
of enumerations is that final variables don’t have to be pressed into
service for a job for which they are not ideally suited.

Two Important Restrictions
There are two restrictions that apply to enumerations. First, an enumeration can’t
inherit another class. Second, an enum cannot be a superclass. This means that an
enum can’t be extended. Otherwise, enum acts much like any other class type. The
key is to remember that each of the enumeration constants is an object of the class in
which it is defined.

Enumerations Inherit Enum
Although you can’t inherit a superclass when declaring an enum, all enumerations
automatically inherit one: java.lang.Enum. This class defines several methods that
are available for use by all enumerations. Most often, you won’t need to use these
methods, but there are two that you may occasionally employ: ordinal() and
compareTo().

The ordinal() method obtains a value that indicates an enumeration constant’s
position in the list of constants. This is called its ordinal value. The ordinal()
method is shown here:

final int ordinal()

It returns the ordinal value of the invoking constant. Ordinal values begin at zero.
Thus, in the Transport enumeration, CAR has an ordinal value of zero, TRUCK
has an ordinal value of 1, AIRPLANE has an ordinal value of 2, and so on.

You can compare the ordinal value of two constants of the same enumeration by
using the compareTo() method. It has this general form:

final int compareTo(enum-type e)

Here, enum-type is the type of the enumeration and e is the constant being compared
to the invoking constant. Remember, both the invoking constant and e must be of the
same enumeration. If the invoking constant has an ordinal value less than e’s, then
compareTo() returns a negative value. If the two ordinal values are the same, then
zero is returned. If the invoking constant has an ordinal value greater than e’s, then a

positive value is returned.
The following program demonstrates ordinal() and compareTo():

The output from the program is shown here:

Try This 12-1 A Computer-Controlled Traffic Light

Enumerations are particularly useful when your program needs a set of constants, but
the actual values of the constants are arbitrary, as long as all differ. This type of
situation comes up quite often when programming. One common instance involves
handling the states in which some device can exist. For example, imagine that you
are writing a program that controls a traffic light. Your traffic light code must
automatically cycle through the light’s three states: green, yellow, and red. It also
must enable other code to know the current color of the light and let the color of the
light be set to a known initial value. This means that the three states must be
represented in some way. Although it would be possible to represent these three
states by integer values (for example, the values 1, 2, and 3) or by strings (such as
"red", "green", and "yellow"), an enumeration offers a much better approach. Using
an enumeration results in code that is more efficient than if strings represented the
states and more structured than if integers represented the states.

In this project, you will create a simulation of an automated traffic light, as just
described. This project not only demonstrates an enumeration in action, it also shows
another example of multithreading and synchronization.

1. Create a file called TrafficLightDemo.java.
2. Begin by defining an enumeration called TrafficLightColor that represents the

three states of the light, as shown here:

Whenever the color of the light is needed, its enumeration value is used.

3. Next, begin defining TrafficLightSimulator, as shown next.
TrafficLightSimulator is the class that encapsulates the traffic light simulation.

Notice that TrafficLightSimulator implements Runnable. This is necessary
because a separate thread is used to run each traffic light. This thread will cycle
through the colors. Two constructors are created. The first lets you specify the
initial light color. The second defaults to red.

Now look at the instance variables. A reference to the traffic light thread is
stored in thrd. The current traffic light color is stored in tlc. The stop variable is
used to stop the simulation. It is initially set to false. The light will run until this
variable is set to true. The changed variable is true when the light has changed.

4. Next, add the run() method, shown here, which begins running the traffic light:

This method cycles the light through the colors. First, it sleeps an appropriate
amount of time, based on the current color. Then, it calls changeColor() to
change to the next color in the sequence.

5. Now, add the changeColor() method, as shown here:

The switch statement examines the color currently stored in tlc and then assigns
the next color in the sequence. Notice that this method is synchronized. This is
necessary because it calls notify() to signal that a color change has taken place.
(Recall that notify() can be called only from a synchronized context.)

6. The next method is waitForChange(), which waits until the color of the light is
changed.

This method simply calls wait(). This call won’t return until changeColor()
executes a call to notify(). Thus, waitForChange() won’t return until the color
has changed.

7. Finally, add the methods getColor(), which returns the current light color, and
cancel(), which stops the traffic light thread by setting stop to true. These
methods are shown here:

8. Here is all the code assembled into a complete program that demonstrates the
traffic light:

The following output is produced. As you can see, the traffic light cycles through
the colors in order of green, yellow, and red:

GREEN
YELLOW
RED
GREEN
YELLOW
RED
GREEN
YELLOW
RED

In the program, notice how the use of the enumeration simplifies and adds
structure to the code that needs to know the state of the traffic light. Because the
light can have only three states (red, green, or yellow), the use of an enumeration
ensures that only these values are valid, thus preventing accidental misuse.

9. It is possible to improve the preceding program by taking advantage of the class
capabilities of an enumeration. For example, by adding a constructor, instance
variable, and method to TrafficLightColor, you can substantially improve the
preceding programming. This improvement is left as an exercise. See Self Test,
question 4.

Autoboxing
Beginning with JDK 5, Java has included two very helpful features: autoboxing and
auto-unboxing. Autoboxing/unboxing greatly simplifies and streamlines code that
must convert primitive types into objects, and vice versa. Because such situations are
found frequently in Java code, the benefits of autoboxing/unboxing affect nearly all
Java programmers. As you will see in Chapter 13, autoboxing/unboxing also
contributes greatly to the usability of generics.

Autoboxing/unboxing is directly related to Java’s type wrappers, and to the way
that values are moved into and out of an instance of a wrapper. For this reason, we
will begin with an overview of the type wrappers and the process of manually boxing
and unboxing values.

Type Wrappers
As you know, Java uses primitive types, such as int or double, to hold the basic data
types supported by the language. Primitive types, rather than objects, are used for
these quantities for the sake of performance. Using objects for these basic types
would add an unacceptable overhead to even the simplest of calculations. Thus, the
primitive types are not part of the object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times
when you will need an object representation. For example, you can’t pass a primitive
type by reference to a method. Also, many of the standard data structures
implemented by Java operate on objects, which means that you can’t use these data
structures to store primitive types. To handle these (and other) situations, Java
provides type wrappers, which are classes that encapsulate a primitive type within an
object. The type wrapper classes were introduced briefly in Chapter 10. Here, we
will look at them more closely.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character,
and Boolean, which are packaged in java.lang. These classes offer a wide array of
methods that allow you to fully integrate the primitive types into Java’s object
hierarchy.

Probably the most commonly used type wrappers are those that represent numeric
values. These are Byte, Short, Integer, Long, Float, and Double. All of the numeric
type wrappers inherit the abstract class Number. Number declares methods that
return the value of an object in each of the different numeric types. These methods
are shown here:

byte byteValue()

double doubleValue()

float floatValue()

int intValue()

long longValue()

short shortValue()

For example, doubleValue() returns the value of an object as a double, floatValue(
) returns the value as a float, and so on. These methods are implemented by each of
the numeric type wrappers.

All of the numeric type wrappers define constructors that allow an object to be
constructed from a given value, or a string representation of that value. For example,
here are the constructors defined for Integer and Double:

Integer(int num)
Integer(String str) throws NumberFormatException

Double(double num)
Double(String str) throws NumberFormatException

If str does not contain a valid numeric value, then a NumberFormatException is
thrown. However, beginning with JDK 9, the type-wrapper constructors have been
deprecated. Today, it is recommended that you use one of the valueOf() methods to
obtain a wrapper object. The valueOf() method is a static member of all of the
wrapper classes and all numeric classes support forms that convert a numeric value
or a string into an object. For example, here are two forms supported by Integer:

static Integer valueOf(int val)
static Integer valueOf(String valStr) throws NumberFormatException

Here, val specifies an integer value and valStr specifies a string that represents a
properly formatted numeric value in string form. Each returns an Integer object that
wraps the specified value. Here is an example:

Integer iOb = Integer.valueOf(100);

After this statement executes, the value 100 is represented by an Integer instance.
Thus, iOb wraps the value 100 within an object.

All of the type wrappers override toString(). It returns the human-readable form
of the value contained within the wrapper. This allows you to output the value by
passing a type wrapper object to println(), for example, without having to convert it
into its primitive type.

The process of encapsulating a value within an object is called boxing. Prior to
JDK 5, all boxing took place manually, with the programmer explicitly constructing
an instance of a wrapper with the desired value, as just shown. Therefore, in the
preceding example, the value 100 is said to be boxed inside iOb.

The process of extracting a value from a type wrapper is called unboxing. Again,
prior to JDK 5, all unboxing also took place manually, with the programmer
explicitly calling a method on the wrapper to obtain its value. For example, this
manually unboxes the value in iOb into an int.

int i = iOb.intValue();

Here, intValue() returns the value encapsulated within iOb as an int.
The following program demonstrates the preceding concepts:

This program wraps the integer value 100 inside an Integer object called iOb. The
program then obtains this value by calling intValue() and stores the result in i.
Finally, it displays the values of i and iOb, both of which are 100.

The same general procedure used by the preceding example to manually box and
unbox values was required by all versions of Java prior to JDK 5 and may still be
found in legacy code. The problem is that it is both tedious and error-prone because
it requires the programmer to manually create the appropriate object to wrap a value
and to explicitly obtain the proper primitive type when its value is needed.
Fortunately, autoboxing/unboxing fundamentally improves on these essential
procedures.

Autoboxing Fundamentals
Autoboxing is the process by which a primitive type is automatically encapsulated
(boxed) into its equivalent type wrapper whenever an object of that type is needed.
There is no need to explicitly obtain an object. Auto-unboxing is the process by
which the value of a boxed object is automatically extracted (unboxed) from a type
wrapper when its value is needed. There is no need to call a method such as
intValue() or doubleValue().

The addition of autoboxing and auto-unboxing greatly streamlines the coding of
several algorithms, removing the tedium of manually boxing and unboxing values. It
also helps prevent errors. With autoboxing it is not necessary to manually construct
an object in order to wrap a primitive type. You need only assign that value to a

type-wrapper reference. Java automatically constructs the object for you. For
example, here is the modern way to declare an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

Notice that the object is not explicitly boxed. Java handles this for you,
automatically.

To unbox an object, simply assign that object reference to a primitive-type
variable. For example, to unbox iOb, you can use this line:

int i = iOb; // auto-unbox

Java handles the details for you.
The following program demonstrates the preceding statements:

Autoboxing and Methods
In addition to the simple case of assignments, autoboxing automatically occurs
whenever a primitive type must be converted into an object, and auto-unboxing takes
place whenever an object must be converted into a primitive type. Thus,
autoboxing/unboxing might occur when an argument is passed to a method or when
a value is returned by a method. For example, consider the following:

This program displays the following result:

m() received 199
Return value from m2() is 10
Return value from m3() is 99
Square root of iOb is 10.0

In the program, notice that m() specifies an Integer parameter. Inside main(), m(
) is passed the int value 199. Because m() is expecting an Integer, this value is
automatically boxed. Next, m2() is called. It returns the int value 10. This int value
is assigned to iOb in main(). Because iOb is an Integer, the value returned by m2(
) is autoboxed. Next, m3() is called. It returns an Integer that is auto-unboxed into
an int. Finally, Math.sqrt() is called with iOb as an argument. In this case, iOb is
auto-unboxed and its value promoted to double, since that is the type expected by
Math.sqrt().

Autoboxing/Unboxing Occurs in Expressions
In general, autoboxing and unboxing take place whenever a conversion into an
object or from an object is required. This applies to expressions. Within an
expression, a numeric object is automatically unboxed. The outcome of the
expression is reboxed, if necessary. For example, consider the following program:

The output is shown here:

In the program, pay special attention to this line:

++iOb;

This causes the value in iOb to be incremented. It works like this: iOb is unboxed,
the value is incremented, and the result is reboxed.

Because of auto-unboxing, you can use integer numeric objects, such as an
Integer, to control a switch statement. For example, consider this fragment:

When the switch expression is evaluated, iOb is unboxed and its int value is
obtained.

As the examples in the program show, because of autoboxing/unboxing, using
numeric objects in an expression is both intuitive and easy. With early versions of
Java, such code would have involved casts and calls to methods such as intValue().

A Word of Warning
Because of autoboxing and auto-unboxing, one might be tempted to use objects such
as Integer or Double exclusively, abandoning primitives altogether. For example,
with autoboxing/unboxing it is possible to write code like this:

In this example, objects of type Double hold values, which are then averaged and the
result assigned to another Double object. Although this code is technically correct
and does, in fact, work properly, it is a very bad use of autoboxing/unboxing. It is far

less efficient than the equivalent code written using the primitive type double. The
reason is that each autobox and auto-unbox adds overhead that is not present if the
primitive type is used.

In general, you should restrict your use of the type wrappers to only those cases in
which an object representation of a primitive type is required. Autoboxing/unboxing
was not added to Java as a “back door” way of eliminating the primitive types.

Static Import
Java supports an expanded use of the import keyword. By following import with
the keyword static, an import statement can be used to import the static members of
a class or interface. This is called static import. When using static import, it is
possible to refer to static members directly by their names, without having to qualify
them with the name of their class. This simplifies and shortens the syntax required to
use a static member.

To understand the usefulness of static import, let’s begin with an example that
does not use it. The following program computes the solutions to a quadratic
equation, which has this form:

ax2 + bx + c = 0

The program uses two static methods from Java’s built-in math class Math, which is
part of java.lang. The first is Math.pow(), which returns a value raised to a
specified power. The second is Math.sqrt(), which returns the square root of its
argument.

Because pow() and sqrt() are static methods, they must be called through the use
of their class’ name, Math. This results in a somewhat unwieldy expression:

x = (-b + Math.sqrt(Math.pow(b, 2) - 4 * a * c)) / (2 * a);

Furthermore, having to specify the class name each time pow() or sqrt() (or any of
Java’s other math methods, such as sin(), cos(), and tan()) are used can become
tedious.

You can eliminate the tedium of specifying the class name through the use of
static import, as shown in the following version of the preceding program:

In this version, the names sqrt and pow are brought into view by these static import
statements:

import static java.lang.Math.sqrt;
import static java.lang.Math.pow;

After these statements, it is no longer necessary to qualify sqrt() or pow() with its
class name. Therefore, the expression can more conveniently be specified, as shown
here:

x = (-b + sqrt(pow(b, 2) - 4 * a * c)) / (2 * a);

As you can see, this form is considerably shorter and easier to read.
There are two general forms of the import static statement. The first, which is

used by the preceding example, brings into view a single name. Its general form is
shown here:

import static pkg.type-name.static-member-name;

Here, type-name is the name of a class or interface that contains the desired static
member. Its full package name is specified by pkg. The name of the member is
specified by static-member-name.

The second form of static import imports all static members. Its general form is
shown here:

import static pkg.type-name.*;

If you will be using many static methods or fields defined by a class, then this form
lets you bring them into view without having to specify each individually. Therefore,
the preceding program could have used this single import statement to bring both
pow() and sqrt() (and all other static members of Math) into view:

import static java.lang.Math.*;

Of course, static import is not limited just to the Math class or just to methods.
For example, this brings the static field System.out into view:

import static java.lang.System.out;

After this statement, you can output to the console without having to qualify out
with System, as shown here:

out.println("After importing System.out, you can use out directly.");

Whether importing System.out as just shown is a good idea is subject to debate.
Although it does shorten the statement, it is no longer instantly clear to anyone
reading the program that the out being referred to is System.out.

As convenient as static import can be, it is important not to abuse it. Remember,
one reason that Java organizes its libraries into packages is to avoid namespace
collisions. When you import static members, you are bringing those members into
the global namespace. Thus, you are increasing the potential for namespace conflicts
and the inadvertent hiding of other names. If you are using a static member once or
twice in the program, it’s best not to import it. Also, some static names, such as
System.out, are so recognizable that you might not want to import them. Static
import is designed for those situations in which you are using a static member
repeatedly, such as when performing a series of mathematical computations. In
essence, you should use, but not abuse, this feature.

Ask the Expert
Q: Using static import, can I import the static members of classes that I

create?
A: Yes, you can use static import to import the static members of classes and

interfaces you create. Doing so is especially convenient when you define
several static members that are used frequently throughout a large
program. For example, if a class defines a number of static final
constants that define various limits, then using static import to bring them
into view will save you a lot of tedious typing.

Annotations (Metadata)
Java provides a feature that enables you to embed supplemental information into a
source file. This information, called an annotation, does not change the actions of a
program. However, this information can be used by various tools, during both
development and deployment. For example, an annotation might be processed by a
source-code generator, by the compiler, or by a deployment tool. The term metadata
is also used to refer to this feature, but the term annotation is the most descriptive,
and more commonly used.

Annotation is a large and sophisticated topic, and it is far beyond the scope of this
book to cover it in detail. However, an overview is given here so that you will be
familiar with the concept.

NOTE
A more detailed discussion of annotations can be found in my book Java: The
Complete Reference, Tenth Edition (Oracle Press/McGraw-Hill Education, 2018).

An annotation is created through a mechanism based on the interface. Here is a
simple example:

This declares an annotation called MyAnno. Notice the @ that precedes the
keyword interface. This tells the compiler that an annotation type is being declared.
Next, notice the two members str() and val(). All annotations consist solely of
method declarations. However, you don’t provide bodies for these methods. Instead,
Java implements these methods. Moreover, the methods act much like fields.

All annotation types automatically extend the Annotation interface. Thus,
Annotation is a super-interface of all annotations. It is declared within the
java.lang.annotation package.

Originally, annotations were used to annotate only declarations. In this usage, any
type of declaration can have an annotation associated with it. For example, classes,
methods, fields, parameters, and enum constants can be annotated. Even an
annotation can be annotated. In such cases, the annotation precedes the rest of the
declaration. Beginning with JDK 8, you can also annotate a type use, such as a cast
or a method return type.

When you apply an annotation, you give values to its members. For example, here
is an example of MyAnno being applied to a method:

This annotation is linked with the method myMeth(). Look closely at the annotation
syntax. The name of the annotation, preceded by an @, is followed by a
parenthesized list of member initializations. To give a member a value, that
member’s name is assigned a value. Therefore, in the example, the string
"Annotation Example" is assigned to the str member of MyAnno. Notice that no
parentheses follow str in this assignment. When an annotation member is given a
value, only its name is used. Thus, annotation members look like fields in this
context.

Annotations that don’t have parameters are called marker annotations. These are
specified without passing any arguments and without using parentheses. Their sole
purpose is to mark an item with some attribute.

Java defines many built-in annotations. Most are specialized, but nine are general
purpose. Four are imported from java.lang.annotation: @Retention,
@Documented, @Target, and @Inherited. Five, @Override, @Deprecated,
@SafeVarargs, @FunctionalInterface, and @SuppressWarnings, are included in
java.lang. These are shown in Table 12-1.

Table 12-1 The General Purpose Built-in Annotations

NOTE
Beginning with JDK 8, java.lang.annotation also includes the annotations

@Repeatable and @Native. @Repeatable supports repeatable annotations, which
are annotations that can be applied more than once to a single item. @Native is used
to annotate a constant field accessed by executable (i.e., native) code. Both are
special-use annotations that are beyond the scope of this book.

Here is an example that uses @Deprecated to mark the MyClass class and the
getMsg() method. When you try to compile this program, warnings will report the
use of these deprecated elements.

As a point of interest, over the years several elements in Java’s API library have
been deprecated, and additional deprecations may occur as Java continues to evolve.
Remember, although deprecated API elements are still available, they are not
recommended for use. Typically, an alternative to the deprecated API element is

offered.

 Chapter 12 Self Test

1. Enumeration constants are said to be self-typed. What does this mean?
2. What class do all enumerations automatically inherit?
3. Given the following enumeration, write a program that uses values() to show a

list of the constants and their ordinal values.

4. The traffic light simulation developed in Try This 12-1 can be improved with a
few simple changes that take advantage of an enumeration’s class features. In
the version shown, the duration of each color was controlled by the
TrafficLightSimulator class by hard-coding these values into the run()
method. Change this so that the duration of each color is stored by the constants
in the TrafficLightColor enumeration. To do this, you will need to add a
constructor, a private instance variable, and a method called getDelay(). After
making these changes, what improvements do you see? On your own, can you
think of other improvements? (Hint: Try using ordinal values to switch light
colors rather than relying on a switch statement.)

5. Define boxing and unboxing. How does autoboxing/unboxing affect these
actions?

6. Change the following fragment so that it uses autoboxing.
Double val = Double.valueOf(123.0);

7. In your own words, what does static import do?
8. What does this statement do?

import static java.lang.Integer.parseInt;
9. Is static import designed for special-case situations, or is it good practice to

bring all static members of all classes into view?
10. An annotation is syntactically based on a/an ________________ .
11. What is a marker annotation?
12. An annotation can be applied only to methods. True or False?

S

Chapter 13

Generics

Key Skills & Concepts
 Understand the benefits of generics

 Create a generic class

 Apply bounded type parameters

 Use wildcard arguments

 Apply bounded wildcards

 Create a generic method

 Create a generic constructor

 Create a generic interface

 Utilize raw types

 Apply type inference with the diamond operator

 Understand erasure

 Avoid ambiguity errors

 Know generics restrictions

ince its original 1.0 version, many new features have been added to Java. All
have enhanced and expanded the scope of the language, but one that has had an
especially profound and far-reaching impact is generics because its effects

were felt throughout the entire Java language. For example, generics added a
completely new syntax element and caused changes to many of the classes and
methods in the core API. It is not an overstatement to say that the inclusion of
generics fundamentally reshaped the character of Java.

The topic of generics is quite large, and some of it is sufficiently advanced to be
beyond the scope of this book. However, a basic understanding of generics is
necessary for all Java programmers. At first glance, the generics syntax may look a
bit intimidating, but don’t worry. Generics are surprisingly simple to use. By the
time you finish this chapter, you will have a grasp of the key concepts that underlie
generics and sufficient knowledge to use generics effectively in your own programs.

Generics Fundamentals
At its core, the term generics means parameterized types. Parameterized types are
important because they enable you to create classes, interfaces, and methods in
which the type of data upon which they operate is specified as a parameter. A class,
interface, or method that operates on a type parameter is called generic, as in generic
class or generic method.

Ask the Expert
Q: I have heard that Java’s generics are similar to templates in C++. Is

this the case?
A: Java generics are similar to templates in C++. What Java calls a

parameterized type, C++ calls a template. However, Java generics and
C++ templates are not the same, and there are some fundamental
differences between the two approaches to generic types. For the most
part, Java’s approach is simpler to use.
A word of warning: If you have a background in C++, it is important not

to jump to conclusions about how generics work in Java. The two
approaches to generic code differ in subtle but fundamental ways.

A principal advantage of generic code is that it will automatically work with the
type of data passed to its type parameter. Many algorithms are logically the same no
matter what type of data they are being applied to. For example, a Quicksort is the
same whether it is sorting items of type Integer, String, Object, or Thread. With
generics, you can define an algorithm once, independently of any specific type of
data, and then apply that algorithm to a wide variety of data types without any
additional effort.

It is important to understand that Java has always given you the ability to create
generalized classes, interfaces, and methods by operating through references of type
Object. Because Object is the superclass of all other classes, an Object reference
can refer to any type of object. Thus, in pre-generics code, generalized classes,
interfaces, and methods used Object references to operate on various types of data.
The problem was that they could not do so with type safety because casts were
needed to explicitly convert from Object to the actual type of data being operated
upon. Thus, it was possible to accidentally create type mismatches. Generics add the
type safety that was lacking because they make these casts automatic and implicit. In
short, generics expand your ability to reuse code and let you do so safely and
reliably.

A Simple Generics Example
Before discussing any more theory, it’s best to look at a simple generics example.
The following program defines two classes. The first is the generic class Gen, and
the second is GenDemo, which uses Gen.

The output produced by the program is shown here:

Type of T is java.lang.Integer
value: 88

Type of T is java.lang.String
value: Generics Test

Let’s examine this program carefully. First, notice how Gen is declared by the
following line:

class Gen<T> {

Here, T is the name of a type parameter. This name is used as a placeholder for the
actual type that will be passed to Gen when an object is created. Thus, T is used
within Gen whenever the type parameter is needed. Notice that T is contained within
< >. This syntax can be generalized. Whenever a type parameter is being declared, it
is specified within angle brackets. Because Gen uses a type parameter, Gen is a
generic class.

In the declaration of Gen, there is no special significance to the name T. Any
valid identifier could have been used, but T is traditional. Furthermore, it is
recommended that type parameter names be single-character, capital letters. Other
commonly used type parameter names are V and E.

Next, T is used to declare an object called ob, as shown here:

T ob; // declare an object of type T

As explained, T is a placeholder for the actual type that will be specified when a
Gen object is created. Thus, ob will be an object of the type passed to T. For
example, if type String is passed to T, then in that instance, ob will be of type
String.

Now consider Gen’s constructor:

Notice that its parameter, o, is of type T. This means that the actual type of o is
determined by the type passed to T when a Gen object is created. Also, because both
the parameter o and the member variable ob are of type T, they will both be of the
same actual type when a Gen object is created.

The type parameter T can also be used to specify the return type of a method, as is
the case with the getob() method, shown here:

Because ob is also of type T, its type is compatible with the return type specified by
getob().

The showType() method displays the type of T. It does this by calling getName(
) on the Class object returned by the call to getClass() on ob. We haven’t used this
feature before, so let’s examine it closely. As you should recall from Chapter 7, the
Object class defines the method getClass(). Thus, getClass() is a member of all
class types. It returns a Class object that corresponds to the class type of the object
on which it is called. Class is a class defined within java.lang that encapsulates
information about a class. Class defines several methods that can be used to obtain
information about a class at run time. Among these is the getName() method, which
returns a string representation of the class name.

The GenDemo class demonstrates the generic Gen class. It first creates a version
of Gen for integers, as shown here:

Gen<Integer> iOb;

Look carefully at this declaration. First, notice that the type Integer is specified
within the angle brackets after Gen. In this case, Integer is a type argument that is
passed to Gen’s type parameter, T. This effectively creates a version of Gen in
which all references to T are translated into references to Integer. Thus, for this
declaration, ob is of type Integer, and the return type of getob() is of type Integer.

Before moving on, it’s necessary to state that the Java compiler does not actually
create different versions of Gen, or of any other generic class. Although it’s helpful
to think in these terms, it is not what actually happens. Instead, the compiler removes
all generic type information, substituting the necessary casts, to make your code
behave as if a specific version of Gen was created. Thus, there is really only one

version of Gen that actually exists in your program. The process of removing generic
type information is called erasure, which is discussed later in this chapter.

The next line assigns to iOb a reference to an instance of an Integer version of the
Gen class.

iOb = new Gen<Integer>(88);

Notice that when the Gen constructor is called, the type argument Integer is also
specified. This is because the type of the object (in this case iOb) to which the
reference is being assigned is of type Gen<Integer>. Thus, the reference returned by
new must also be of type Gen<Integer>. If it isn’t, a compile-time error will result.
For example, the following assignment will cause a compile-time error:

iOb = new Gen<Double>(88.0); // Error!

Because iOb is of type Gen<Integer>, it can’t be used to refer to an object of
Gen<Double>. This type of checking is one of the main benefits of generics because
it ensures type safety.

As the comments in the program state, the assignment

iOb = new Gen<Integer>(88);

makes use of autoboxing to encapsulate the value 88, which is an int, into an
Integer. This works because Gen<Integer> creates a constructor that takes an
Integer argument. Because an Integer is expected, Java will automatically box 88
inside one. Of course, the assignment could also have been written explicitly, like
this:

iOb = new Gen<Integer>(Integer.valueOf(88));

However, there would be no benefit to using this version.
The program then displays the type of ob within iOb, which is Integer. Next, the

program obtains the value of ob by use of the following line:

int v = iOb.getob();

Because the return type of getob() is T, which was replaced by Integer when iOb
was declared, the return type of getob() is also Integer, which auto-unboxes into int
when assigned to v (which is an int). Thus, there is no need to cast the return type of
getob() to Integer.

Next, GenDemo declares an object of type Gen<String>:

Gen<String> strOb = new Gen<String>("Generics Test");

Because the type argument is String, String is substituted for T inside Gen. This
creates (conceptually) a String version of Gen, as the remaining lines in the program
demonstrate.

Generics Work Only with Reference Types
When declaring an instance of a generic type, the type argument passed to the type
parameter must be a reference type. You cannot use a primitive type, such as int or
char. For example, with Gen, it is possible to pass any class type to T, but you
cannot pass a primitive type to T. Therefore, the following declaration is illegal:

Gen<int> intOb = new Gen<int>(53); // Error, can't use primitive type

Of course, not being able to specify a primitive type is not a serious restriction
because you can use the type wrappers (as the preceding example did) to encapsulate
a primitive type. Further, Java’s autoboxing and auto-unboxing mechanism makes
the use of the type wrapper transparent.

Generic Types Differ Based on Their Type Arguments
A key point to understand about generic types is that a reference of one specific
version of a generic type is not type-compatible with another version of the same
generic type. For example, assuming the program just shown, the following line of
code is in error and will not compile:

iOb = strOb; // Wrong!

Even though both iOb and strOb are of type Gen<T>, they are references to
different types because their type arguments differ. This is part of the way that
generics add type safety and prevent errors.

A Generic Class with Two Type Parameters
You can declare more than one type parameter in a generic type. To specify two or
more type parameters, simply use a comma-separated list. For example, the
following TwoGen class is a variation of the Gen class that has two type parameters:

The output from this program is shown here:

Notice how TwoGen is declared:

class TwoGen<T, V> {

It specifies two type parameters, T and V, separated by a comma. Because it has two
type parameters, two type arguments must be passed to TwoGen when an object is
created, as shown next:

In this case, Integer is substituted for T, and String is substituted for V. Although
the two type arguments differ in this example, it is possible for both types to be the
same. For example, the following line of code is valid:

TwoGen<String, String> x = new TwoGen<String, String>("A", "B");

In this case, both T and V would be of type String. Of course, if the type arguments
were always the same, then two type parameters would be unnecessary.

The General Form of a Generic Class
The generics syntax shown in the preceding examples can be generalized. Here is the
syntax for declaring a generic class:

class class-name<type-param-list> { // ...

Here is the full syntax for declaring a reference to a generic class and creating a
generic instance:

class-name<type-arg-list> var-name =
new class-name<type-arg-list>(cons-arg-list);

Bounded Types
In the preceding examples, the type parameters could be replaced by any class type.
This is fine for many purposes, but sometimes it is useful to limit the types that can
be passed to a type parameter. For example, assume that you want to create a generic
class that stores a numeric value and is capable of performing various mathematical
functions, such as computing the reciprocal or obtaining the fractional component.
Furthermore, you want to use the class to compute these quantities for any type of
number, including integers, floats, and doubles. Thus, you want to specify the type
of the numbers generically, using a type parameter. To create such a class, you might
try something like this:

Unfortunately, NumericFns will not compile as written because both methods
will generate compile-time errors. First, examine the reciprocal() method, which
attempts to return the reciprocal of num. To do this, it must divide 1 by the value of
num. The value of num is obtained by calling doubleValue(), which obtains the
double version of the numeric object stored in num. Because all numeric classes,
such as Integer and Double, are subclasses of Number, and Number defines the
doubleValue() method, this method is available to all numeric wrapper classes. The
trouble is that the compiler has no way to know that you are intending to create
NumericFns objects using only numeric types. Thus, when you try to compile
NumericFns, an error is reported that indicates that the doubleValue() method is
unknown. The same type of error occurs twice in fraction(), which needs to call
both doubleValue() and intValue(). Both calls result in error messages stating that
these methods are unknown. To solve this problem, you need some way to tell the
compiler that you intend to pass only numeric types to T. Furthermore, you need
some way to ensure that only numeric types are actually passed.

To handle such situations, Java provides bounded types. When specifying a type
parameter, you can create an upper bound that declares the superclass from which all
type arguments must be derived. This is accomplished through the use of an extends
clause when specifying the type parameter, as shown here:

<T extends superclass>

This specifies that T can be replaced only by superclass, or subclasses of superclass.
Thus, superclass defines an inclusive, upper limit.

You can use an upper bound to fix the NumericFns class shown earlier by
specifying Number as an upper bound, as shown here:

The output is shown here:

Reciprocal of iOb is 0.2
Fractional component of iOb is 0.0

Reciprocal of dOb is 0.19047619047619047
Fractional component of dOb is 0.25

Notice how NumericFns is now declared by this line:

class NumericFns<T extends Number> {

Because the type T is now bounded by Number, the Java compiler knows that all
objects of type T can call doubleValue() because it is a method declared by
Number. This is, by itself, a major advantage. However, as an added bonus, the
bounding of T also prevents nonnumeric NumericFns objects from being created.
For example, if you remove the comments from the line at the end of the program,
and then try re-compiling, you will receive compile-time errors because String is not
a subclass of Number.

Bounded types are especially useful when you need to ensure that one type
parameter is compatible with another. For example, consider the following class
called Pair, which stores two objects that must be compatible with each other:

Notice that Pair uses two type parameters, T and V, and that V extends T. This
means that V will either be the same as T or a subclass of T. This ensures that the
two arguments to Pair’s constructor will be objects of the same type or of related
types. For example, the following constructions are valid:

// This is OK because both T and V are Integer.
Pair<Integer, Integer> x = new Pair<Integer, Integer>(1, 2);//

This is OK because Integer is a subclass of Number.
Pair<Number, Integer> y = new Pair<Number, Integer>(10.4, 12);

However, the following is invalid:

// This causes an error because String is not
// a subclass of Number
Pair<Number, String> z = new Pair<Number, String>(10.4, "12");

In this case, String is not a subclass of Number, which violates the bound specified
by Pair.

Using Wildcard Arguments
As useful as type safety is, sometimes it can get in the way of perfectly acceptable
constructs. For example, given the NumericFns class shown at the end of the
preceding section, assume that you want to add a method called absEqual() that
returns true if two NumericFns objects contain numbers whose absolute values are

the same. Furthermore, you want this method to be able to work properly no matter
what type of number each object holds. For example, if one object contains the
Double value 1.25 and the other object contains the Float value –1.25, then
absEqual() would return true. One way to implement absEqual() is to pass it a
NumericFns argument, and then compare the absolute value of that argument
against the absolute value of the invoking object, returning true only if the values are
the same. For example, you want to be able to call absEqual(), as shown here:

At first, creating absEqual() seems like an easy task. Unfortunately, trouble starts
as soon as you try to declare a parameter of type NumericFns. What type do you
specify for NumericFns’ type parameter? At first, you might think of a solution like
this, in which T is used as the type parameter:

Here, the standard method Math.abs() is used to obtain the absolute value of each
number, and then the values are compared. The trouble with this attempt is that it
will work only with other NumericFns objects whose type is the same as the
invoking object. For example, if the invoking object is of type
NumericFns<Integer>, then the parameter ob must also be of type
NumericFns<Integer>. It can’t be used to compare an object of type
NumericFns<Double>, for example. Therefore, this approach does not yield a
general (i.e., generic) solution.

To create a generic absEqual() method, you must use another feature of Java
generics: the wildcard argument. The wildcard argument is specified by the ?, and it
represents an unknown type. Using a wildcard, here is one way to write the
absEqual() method:

Here, NumericFns<?> matches any type of NumericFns object, allowing any two
NumericFns objects to have their absolute values compared. The following program
demonstrates this:

The output is shown here:

In the program, notice these two calls to absEqual():

if(iOb.absEqual(dOb))

if(iOb.absEqual(lOb))

In the first call, iOb is an object of type NumericFns<Integer> and dOb is an
object of type NumericFns<Double>. However, through the use of a wildcard, it is
possible for iOb to pass dOb in the call to absEqual(). The same applies to the
second call, in which an object of type NumericFns<Long> is passed.

One last point: It is important to understand that the wildcard does not affect what
type of NumericFns objects can be created. This is governed by the extends clause
in the NumericFns declaration. The wildcard simply matches any valid
NumericFns object.

Bounded Wildcards
Wildcard arguments can be bounded in much the same way that a type parameter
can be bounded. A bounded wildcard is especially important when you are creating a
method that is designed to operate only on objects that are subclasses of a specific
superclass. To understand why, let’s work through a simple example. Consider the
following set of classes:

Here, class A is extended by classes B and C, but not by D.
Next, consider the following very simple generic class:

Gen takes one type parameter, which specifies the type of object stored in ob.
Because T is unbounded, the type of T is unrestricted. That is, T can be of any class
type.

Now, suppose that you want to create a method that takes as an argument any type
of Gen object so long as its type parameter is A or a subclass of A. In other words,
you want to create a method that operates only on objects of Gen<type>, where type
is either A or a subclass of A. To accomplish this, you must use a bounded wildcard.
For example, here is a method called test() that accepts as an argument only Gen
objects whose type parameter is A or a subclass of A:

The following class demonstrates the types of Gen objects that can be passed to
test().

In main(), objects of type A, B, C, and D are created. These are then used to create
four Gen objects, one for each type. Finally, four calls to test() are made, with the
last call commented out. The first three calls are valid because w, w2, and w3 are

Gen objects whose type is either A or a subclass of A. However, the last call to test(
) is illegal because w4 is an object of type D, which is not derived from A. Thus, the
bounded wildcard in test() will not accept w4 as an argument.

In general, to establish an upper bound for a wildcard, use the following type of
wildcard expression:

<? extends superclass>

Ask the Expert
Q: Can I cast one instance of a generic class into another?
A: Yes, you can cast one instance of a generic class into another, but only if

the two are otherwise compatible and their type arguments are the same.
For example, assume a generic class called Gen that is declared like this:

class Gen<T> { // ...

Next, assume that x is declared as shown here:
Gen<Integer> x = new Gen<Integer>();

Then, this cast is legal
(Gen<Integer>) x // legal

because x is an instance of Gen<Integer>. But, this cast
(Gen<Long>) x // illegal

is not legal because x is not an instance of Gen<Long>.

where superclass is the name of the class that serves as the upper bound. Remember,
this is an inclusive clause because the class forming the upper bound (specified by
superclass) is also within bounds.

You can also specify a lower bound for a wildcard by adding a super clause to a
wildcard declaration. Here is its general form:

<? super subclass>

In this case, only classes that are superclasses of subclass are acceptable arguments.

This is an inclusive clause.

Generic Methods
As the preceding examples have shown, methods inside a generic class can make use
of a class’ type parameter and are, therefore, automatically generic relative to the
type parameter. However, it is possible to declare a generic method that uses one or
more type parameters of its own. Furthermore, it is possible to create a generic
method that is enclosed within a nongeneric class.

The following program declares a nongeneric class called GenericMethodDemo
and a static generic method within that class called arraysEqual(). This method
determines if two arrays contain the same elements, in the same order. It can be used
to compare any two arrays as long as the arrays are of the same or compatible types
and the array elements are, themselves, comparable.

The output from the program is shown here:

nums equals nums
nums equals nums2

Let’s examine arraysEqual() closely. First, notice how it is declared by this line:

static <T extends Comparable<T>, V extends T> boolean arraysEqual(T[] x, V[] y)
{

The type parameters are declared before the return type of the method. Also note that
T extends Comparable<T>. Comparable is an interface declared in java.lang. A
class that implements Comparable defines objects that can be ordered. Thus,
requiring an upper bound of Comparable ensures that arraysEqual() can be used
only with objects that are capable of being compared. Comparable is generic, and
its type parameter specifies the type of objects that it compares. (Shortly, you will
see how to create a generic interface.) Next, notice that the type V is upper-bounded
by T. Thus, V must be either the same as type T or a subclass of T. This relationship
enforces that arraysEqual() can be called only with arguments that are comparable
with each other. Also notice that arraysEqual() is static, enabling it to be called
independently of any object. Understand, though, that generic methods can be either
static or nonstatic. There is no restriction in this regard.

Now, notice how arraysEqual() is called within main() by use of the normal
call syntax, without the need to specify type arguments. This is because the types of
the arguments are automatically discerned, and the types of T and V are adjusted
accordingly. For example, in the first call:

if(arraysEqual(nums, nums))

the element type of the first argument is Integer, which causes Integer to be
substituted for T. The element type of the second argument is also Integer, which
makes Integer a substitute for V, too. Thus, the call to arraysEqual() is legal, and
the two arrays can be compared.

Now, notice the commented-out code, shown here:

If you remove the comments and then try to compile the program, you will receive
an error. The reason is that the type parameter V is bounded by T in the extends
clause in V’s declaration. This means that V must be either type T or a subclass of T.
In this case, the first argument is of type Integer, making T into Integer, but the
second argument is of type Double, which is not a subclass of Integer. This makes
the call to arraysEqual() illegal, and results in a compile-time type-mismatch error.

The syntax used to create arraysEqual() can be generalized. Here is the syntax
for a generic method:

<type-param-list> ret-type meth-name(param-list) { // ...

In all cases, type-param-list is a comma-separated list of type parameters. Notice that
for a generic method, the type parameter list precedes the return type.

Generic Constructors
A constructor can be generic, even if its class is not. For example, in the following
program, the class Summation is not generic, but its constructor is.

The Summation class computes and encapsulates the summation of the numeric
value passed to its constructor. Recall that the summation of N is the sum of all the
whole numbers between 0 and N. Because Summation() specifies a type parameter
that is bounded by Number, a Summation object can be constructed using any
numeric type, including Integer, Float, or Double. No matter what numeric type is
used, its value is converted to Integer by calling intValue(), and the summation is
computed. Therefore, it is not necessary for the class Summation to be generic; only
a generic constructor is needed.

Generic Interfaces
As you saw in the GenericMethodDemo program presented earlier, an interface can
be generic. In that example, the standard interface Comparable<T> was used to
ensure that elements of two arrays could be compared. Of course, you can also
define your own generic interface. Generic interfaces are specified just like generic

classes. Here is an example. It creates an interface called Containment, which can
be implemented by classes that store one or more values. It declares a method called
contains() that determines if a specified value is contained by the invoking object.

The output is shown here:

2 is in ob
5 is NOT in ob

Although most aspects of this program should be easy to understand, a couple of
key points need to be made. First, notice that Containment is declared like this:

interface Containment<T> {

In general, a generic interface is declared in the same way as a generic class. In this
case, the type parameter T specifies the type of objects that are contained.

Next, Containment is implemented by MyClass. Notice the declaration of
MyClass, shown here:

class MyClass<T> implements Containment<T> {

In general, if a class implements a generic interface, then that class must also be
generic, at least to the extent that it takes a type parameter that is passed to the
interface. For example, the following attempt to declare MyClass is in error:

class MyClass implements Containment<T> { // Wrong!

This declaration is wrong because MyClass does not declare a type parameter,
which means that there is no way to pass one to Containment. In this case, the

identifier T is simply unknown and the compiler reports an error. Of course, if a
class implements a specific type of generic interface, such as shown here:

class MyClass implements Containment<Double> { // OK

then the implementing class does not need to be generic.
As you might expect, the type parameter(s) specified by a generic interface can be

bounded. This lets you limit the type of data for which the interface can be
implemented. For example, if you wanted to limit Containment to numeric types,
then you could declare it like this:

interface Containment<T extends Number> {

Now, any implementing class must pass to Containment a type argument also
having the same bound. For example, now MyClass must be declared as shown
here:

class MyClass<T extends Number> implements Containment<T> {

Pay special attention to the way the type parameter T is declared by MyClass and
then passed to Containment. Because Containment now requires a type that
extends Number, the implementing class (MyClass in this case) must specify the
same bound. Furthermore, once this bound has been established, there is no need to
specify it again in the implements clause. In fact, it would be wrong to do so. For
example, this declaration is incorrect and won’t compile:

Once the type parameter has been established, it is simply passed to the interface
without further modification.

Here is the generalized syntax for a generic interface:

interface interface-name<type-param-list> { // ...

Here, type-param-list is a comma-separated list of type parameters. When a generic
interface is implemented, you must specify the type arguments, as shown here:

class class-name<type-param-list>
implements interface-name<type-param-list> {

Try This 13-1 Create a Generic Queue

One of the most powerful advantages that generics bring to programming is the
ability to construct reliable, reusable code. As mentioned at the start of this chapter,
many algorithms are the same no matter what type of data they are used on. For
example, a queue works the same way whether that queue is for integers, strings, or
File objects. Instead of creating a separate queue class for each type of object, you
can craft a single, generic solution that can be used with any type of object. Thus, the
development cycle of design, code, test, and debug occurs only once when you
create a generic solution—not repeatedly, each time a queue is needed for a new data
type.

In this project, you will adapt the queue example that has been evolving since Try
This 5-2, making it generic. This project represents the final evolution of the queue.
It includes a generic interface that defines the queue operations, two exception
classes, and one queue implementation: a fixed-size queue. Of course, you can
experiment with other types of generic queues, such as a generic dynamic queue or a
generic circular queue. Just follow the lead of the example shown here.

Like the previous version of the queue shown in Try This 9-1, this project
organizes the queue code into a set of separate files: one for the interface, one for
each queue exception, one for the fixed-queue implementation, and one for the
program that demonstrates it. This organization reflects the way that this project
would normally be organized in the real world.

1. The first step in creating a generic queue is to create a generic interface that
describes the queue’s two operations: put and get. The generic version of the
queue interface is called IGenQ and it is shown here. Put this interface into a file
called IGenQ.java.

Notice that the type of data stored by the queue is specified by the generic type
parameter T.

2. Next, create the files QueueFullException.java and
QueueEmptyException.java. Put in each file its corresponding class, shown
here:

These classes encapsulate the two queue errors: full or empty. They are not
generic classes because they are the same no matter what type of data is stored in
a queue. Thus, these two files will be the same as those you used with Try This
9-1.

3. Now, create a file called GenQueue.java. Into that file, put the following code,

which implements a fixed-size queue:

GenQueue is a generic class with type parameter T, which specifies the type of
data stored in the queue. Notice that T is also passed to the IGenQ interface.

Notice that the GenQueue constructor is passed a reference to an array that will
be used to hold the queue. Thus, to construct a GenQueue, you will first create
an array whose type is compatible with the objects that you will be storing in the
queue and whose size is long enough to store the number of objects that will be

placed in the queue.

For example, the following sequence shows how to create a queue that holds
strings:

4. Create a file called GenQDemo.java and put the following code into it. This
program demonstrates the generic queue.

5. Compile the program and run it. You will see the output shown here:

6. On your own, try converting the CircularQueue and DynQueue classes from
Try This 8-1 into generic classes.

Raw Types and Legacy Code
Because support for generics did not exist prior to JDK 5, it was necessary for Java
to provide some transition path from old, pre-generics code. Simply put, pre-generics
legacy code had to remain both functional and compatible with generics. This meant
that pre-generics code must be able to work with generics, and generic code must be
able to work with pre-generics code.

To handle the transition to generics, Java allows a generic class to be used without
any type arguments. This creates a raw type for the class. This raw type is
compatible with legacy code, which has no knowledge of generics. The main

drawback to using the raw type is that the type safety of generics is lost.
Here is an example that shows a raw type in action:

This program contains several interesting things. First, a raw type of the generic
Gen class is created by the following declaration:

Gen raw = new Gen(98.6);

Notice that no type arguments are specified. In essence, this creates a Gen object
whose type T is replaced by Object.

A raw type is not type safe. Thus, a variable of a raw type can be assigned a
reference to any type of Gen object. The reverse is also allowed, in which a variable
of a specific Gen type can be assigned a reference to a raw Gen object. However,
both operations are potentially unsafe because the type checking mechanism of
generics is circumvented.

This lack of type safety is illustrated by the commented-out lines at the end of the
program. Let’s examine each case. First, consider the following situation:

// int i = (Integer) raw.getob(); // run-time error

In this statement, the value of ob inside raw is obtained, and this value is cast to
Integer. The trouble is that raw contains a Double value, not an integer value.
However, this cannot be detected at compile time because the type of raw is
unknown. Thus, this statement fails at run time.

The next sequence assigns to strOb (a reference of type Gen<String>) a
reference to a raw Gen object:

The assignment itself is syntactically correct, but questionable. Because strOb is of
type Gen<String>, it is assumed to contain a String. However, after the assignment,
the object referred to by strOb contains a Double. Thus, at run time, when an
attempt is made to assign the contents of strOb to str, a run-time error results
because strOb now contains a Double. Thus, the assignment of a raw reference to a
generic reference bypasses the type-safety mechanism.

The following sequence inverts the preceding case:

Here, a generic reference is assigned to a raw reference variable. Although this is
syntactically correct, it can lead to problems, as illustrated by the second line. In this
case, raw now refers to an object that contains an Integer object, but the cast
assumes that it contains a Double. This error cannot be prevented at compile time.
Rather, it causes a run-time error.

Because of the potential for danger inherent in raw types, javac displays
unchecked warnings when a raw type is used in a way that might jeopardize type
safety. In the preceding program, these lines generate unchecked warnings:

Gen raw = new Gen(98.6);

strOb = raw; // OK, but potentially wrong

In the first line, it is the use of Gen without a type argument that causes the warning.
In the second line, it is the assignment of a raw reference to a generic variable that
generates the warning.

At first, you might think that this line should also generate an unchecked warning,
but it does not:

raw = iOb; // OK, but potentially wrong

No compiler warning is issued because the assignment does not cause any further
loss of type safety than had already occurred when raw was created.

One final point: You should limit the use of raw types to those cases in which you
must mix legacy code with modern, generic code. Raw types are simply a
transitional feature and not something that should be used for new code.

Type Inference with the Diamond Operator
Beginning with JDK 7, it is possible to shorten the syntax used to create an instance
of a generic type. To begin, think back to the TwoGen class shown earlier in this
chapter. A portion is shown here for convenience. Notice that it uses two generic
types.

For versions of Java prior to JDK 7, to create an instance of TwoGen, you must use
a statement similar to the following:

Here, the type arguments (which are Integer and String) are specified twice: first,
when tgOb is declared, and second, when a TwoGen instance is created via new.
While there is nothing wrong, per se, with this form, it is a bit more verbose than it
needs to be. Since, in the new clause, the type of the type arguments can be readily
inferred, there is really no reason that they need to be specified a second time. To
address this situation, JDK 7 added a syntactic element that lets you avoid the second
specification.

Today, the preceding declaration can be rewritten as shown here:

TwoGen<Integer, String> tgOb = new TwoGen<>(42, "testing");

Notice that the instance creation portion simply uses < >, which is an empty type
argument list. This is referred to as the diamond operator. It tells the compiler to
infer the type arguments needed by the constructor in the new expression. The
principal advantage of this type-inference syntax is that it shortens what are
sometimes quite long declaration statements. This is especially helpful for generic
types that specify bounds.

The preceding example can be generalized. When type inference is used, the
declaration syntax for a generic reference and instance creation has this general
form:

class-name<type-arg-list> var-name = new class-name< >(cons-arg-list);

Here, the type argument list of the new clause is empty.
Although mostly for use in declaration statements, type inference can also be

applied to parameter passing. For example, if the following method is added to
TwoGen:

then the following call is legal:

if(tgOb.isSame(new TwoGen<>(42, "testing"))) System.out.println("Same");

In this case, the type arguments for the arguments passed to isSame() can be
inferred from the parameters’ types. They don’t need to be specified again.

Although the diamond operator offers convenience, in general, the remaining
examples of generics in this book will continue to use the full syntax when declaring
instances of generic classes. There are two reasons for this. First, using the full-
length syntax makes it very clear precisely what is being created, which is helpful
when example code is shown. Second, the code will work in environments that are
using an older compiler. Of course, in your own code, the use of the type inference
syntax will streamline your declarations.

Erasure
Usually, it is not necessary for the programmer to know the details about how the

Java compiler transforms your source code into object code. However, in the case of
generics, some general understanding of the process is important because it explains
why the generic features work as they do—and why their behavior is sometimes a bit
surprising. For this reason, a brief discussion of how generics are implemented in
Java is in order.

An important constraint that governed the way generics were added to Java was
the need for compatibility with previous versions of Java. Simply put: generic code
had to be compatible with preexisting, nongeneric code. Thus, any changes to the
syntax of the Java language, or to the JVM, had to avoid breaking older code. The
way Java implements generics while satisfying this constraint is through the use of
erasure.

In general, here is how erasure works. When your Java code is compiled, all
generic type information is removed (erased). This means replacing type parameters
with their bound type, which is Object if no explicit bound is specified, and then
applying the appropriate casts (as determined by the type arguments) to maintain
type compatibility with the types specified by the type arguments. The compiler also
enforces this type compatibility. This approach to generics means that no type
parameters exist at run time. They are simply a source-code mechanism.

Ambiguity Errors
The inclusion of generics gives rise to a new type of error that you must guard
against: ambiguity. Ambiguity errors occur when erasure causes two seemingly
distinct generic declarations to resolve to the same erased type, causing a conflict.
Here is an example that involves method overloading:

Notice that MyGenClass declares two generic types: T and V. Inside
MyGenClass, an attempt is made to overload set() based on parameters of type T
and V. This looks reasonable because T and V appear to be different types.
However, there are two ambiguity problems here.

First, as MyGenClass is written there is no requirement that T and V actually be
different types. For example, it is perfectly correct (in principle) to construct a
MyGenClass object as shown here:

MyGenClass<String, String> obj = new MyGenClass<String, String>()

In this case, both T and V will be replaced by String. This makes both versions of
set() identical, which is, of course, an error.

Second, and more fundamental, is that the type erasure of set() effectively
reduces both versions to the following:

void set(Object o) { // ...

Thus, the overloading of set() as attempted in MyGenClass is inherently
ambiguous. The solution in this case is to use two separate method names rather than
trying to overload set().

Some Generic Restrictions
There are a few restrictions that you need to keep in mind when using generics. They
involve creating objects of a type parameter, static members, exceptions, and arrays.
Each is examined here.

Type Parameters Can’t Be Instantiated
It is not possible to create an instance of a type parameter. For example, consider this
class:

Here, it is illegal to attempt to create an instance of T. The reason should be easy to
understand: the compiler has no way to know what type of object to create. T is
simply a placeholder.

Restrictions on Static Members
No static member can use a type parameter declared by the enclosing class. For
example, both of the static members of this class are illegal:

Although you can’t declare static members that use a type parameter declared by
the enclosing class, you can declare static generic methods, which define their own
type parameters, as was done earlier in this chapter.

Generic Array Restrictions
There are two important generics restrictions that apply to arrays. First, you cannot
instantiate an array whose element type is a type parameter. Second, you cannot
create an array of type-specific generic references. The following short program
shows both situations:

As the program shows, it’s valid to declare a reference to an array of type T, as this
line does:

T vals[]; // OK

But, you cannot instantiate an array of T, as this commented-out line attempts:

// vals = new T[10]; // can't create an array of T

The reason you can’t create an array of T is that there is no way for the compiler to
know what type of array to actually create. However, you can pass a reference to a
type-compatible array to Gen() when an object is created and assign that reference
to vals, as the program does in this line:

vals = nums; // OK to assign reference to existent array

This works because the array passed to Gen() has a known type, which will be the
same type as T at the time of object creation. Inside main(), notice that you can’t
declare an array of references to a specific generic type. That is, this line

// Gen<Integer> gens[] = new Gen<Integer>[10]; // Wrong!

won’t compile.

Generic Exception Restriction
A generic class cannot extend Throwable. This means that you cannot create
generic exception classes.

Continuing Your Study of Generics
As mentioned at the start, this chapter gives you sufficient knowledge to use generics
effectively in your own programs. However, there are many side issues and special
cases that are not covered here. Readers especially interested in generics will want to
learn about how generics affect class hierarchies, run-time type comparisons, and
overriding, for example. Discussions of these and other topics are found in my book
Java: The Complete Reference, Tenth Edition (Oracle Press/McGraw-Hill Education,
2018).

 Chapter 13 Self Test

1. Generics are important to Java because they enable the creation of code that is
A. Type-safe
B. Reusable

C. Reliable
D. All of the above

2. Can a primitive type be used as a type argument?
3. Show how to declare a class called FlightSched that takes two generic

parameters.
4. Beginning with your answer to question 3, change FlightSched’s second type

parameter so that it must extend Thread.
5. Now, change FlightSched so that its second type parameter must be a subclass

of its first type parameter.
6. As it relates to generics, what is the ? and what does it do?
7. Can the wildcard argument be bounded?
8. A generic method called MyGen() has one type parameter. Furthermore,

MyGen() has one parameter whose type is that of the type parameter. It also
returns an object of that type parameter. Show how to declare MyGen().

9. Given this generic interface
interface IGenIF<T, V extends T> { // ...
show the declaration of a class called MyClass that implements IGenIF.

10. Given a generic class called Counter<T>, show how to create an object of its
raw type.

11. Do type parameters exist at run time?
12. Convert your solution to question 10 of the Self Test for Chapter 9 so that it is

generic. In the process, create a stack interface called IGenStack that
generically defines the operations push() and pop().

13. What is < >?
14. How can the following be simplified?

MyClass<Double,String> obj = new MyClass<Double,String>(1.1,"Hi");

B

Chapter 14

Lambda Expressions and Method
References

Key Skills & Concepts
 Know the general form of a lambda expression

 Understand the definition of a functional interface

 Use expression lambdas

 Use block lambdas

 Use generic functional interfaces

 Understand variable capture in a lambda expression

 Throw an exception from a lambda expression

 Understand the method reference

 Understand the constructor reference

 Know about the predefined functional interfaces in java.util.function

eginning with JDK 8, a feature was added to Java that profoundly enhanced
the expressive power of the language. This feature is the lambda expression.
Not only did lambda expressions add new syntax elements to the language,

they also streamlined the way that certain common constructs are implemented. In
much the same way that the addition of generics reshaped Java years ago, lambda
expressions continue to reshape Java today. They truly are that important.

The addition of lambda expressions also provided the catalyst for other Java
features. You have already seen one of them—the default method—which was
described in Chapter 8. It lets you define default behavior for an interface method.

Another example is the method reference, described later in this chapter, which lets
you refer to a method without executing it. Furthermore, the inclusion of lambda
expressions resulted in new capabilities being incorporated into the API library.

Beyond the benefits that lambda expressions bring to the language, there is
another reason why they constitute such an important part of Java. Over the past few
years, lambda expressions have become a major focus of computer language design.
For example, they have been added to languages such as C# and C++. Their
inclusion in Java helps it remain the vibrant, innovative language that programmers
have come to expect. This chapter presents an introduction to this important feature.

Introducing Lambda Expressions
Key to understanding the lambda expression are two constructs. The first is the
lambda expression, itself. The second is the functional interface. Let’s begin with a
simple definition of each.

A lambda expression is, essentially, an anonymous (that is, unnamed) method.
However, this method is not executed on its own. Instead, it is used to implement a
method defined by a functional interface. Thus, a lambda expression results in a
form of anonymous class. Lambda expressions are also commonly referred to as
closures.

A functional interface is an interface that contains one and only one abstract
method. Normally, this method specifies the intended purpose of the interface. Thus,
a functional interface typically represents a single action. For example, the standard
interface Runnable is a functional interface because it defines only one method:
run(). Therefore, run() defines the action of Runnable. Furthermore, a functional
interface defines the target type of a lambda expression. Here is a key point: a
lambda expression can be used only in a context in which a target type is specified.
One other thing: a functional interface is sometimes referred to as a SAM type, where
SAM stands for Single Abstract Method.

Let’s now look more closely at both lambda expressions and functional interfaces.

NOTE
A functional interface may specify any public method defined by Object, such as
equals(), without affecting its “functional interface” status. The public Object
methods are considered implicit members of a functional interface because they are
automatically implemented by an instance of a functional interface.

Lambda Expression Fundamentals

The lambda expression relies on a syntax element and operator that differ from what
you have seen in the preceding chapters. The operator, sometimes referred to as the
lambda operator or the arrow operator, is –>. It divides a lambda expression into
two parts. The left side specifies any parameters required by the lambda expression.
On the right side is the lambda body, which specifies the actions of the lambda
expression. Java defines two types of lambda bodies. One type consists of a single
expression, and the other type consists of a block of code. We will begin with
lambdas that define a single expression.

At this point, it will be helpful to look at a few examples of lambda expressions
before continuing. Let’s begin with what is probably the simplest type of lambda
expression you can write. It evaluates to a constant value and is shown here:

() -> 98.6

This lambda expression takes no parameters, thus the parameter list is empty. It
returns the constant value 98.6. The return type is inferred to be double. Therefore, it
is similar to the following method:

double myMeth() { return 98.6; }

Of course, the method defined by a lambda expression does not have a name.
A slightly more interesting lambda expression is shown here:

() -> Math.random() * 100

This lambda expression obtains a pseudo-random value from Math.random(),
multiplies it by 100, and returns the result. It, too, does not require a parameter.

When a lambda expression requires a parameter, it is specified in the parameter
list on the left side of the lambda operator. Here is a simple example:

(n) -> 1.0 / n

This lambda expression returns the reciprocal of the value of parameter n. Thus, if n
is 4.0, the reciprocal is 0.25. Although it is possible to explicitly specify the type of a
parameter, such as n in this case, often you won’t need to because, in many cases, its
type can be inferred. Like a named method, a lambda expression can specify as many
parameters as needed.

Any valid type can be used as the return type of a lambda expression. For
example, this lambda expression returns true if the value of parameter n is even and
false otherwise.

(n) -> (n % 2)==0

Thus, the return type of this lambda expression is boolean.
One other point before moving on. When a lambda expression has only one

parameter, it is not necessary to surround the parameter name with parentheses when
it is specified on the left side of the lambda operator. For example, this is also a valid
way to write the lambda expression just shown:

n -> (n % 2)==0

For consistency, this book will surround all lambda expression parameter lists with
parentheses, even those containing only one parameter. Of course, you are free to
adopt a different style.

Functional Interfaces
As stated, a functional interface is an interface that specifies only one abstract
method. Before continuing, recall from Chapter 8 that not all interface methods are
abstract. Beginning with JDK 8, it is possible for an interface to have one or more
default methods. Default methods are not abstract. Neither are static or private
interface methods. Thus, an interface method is abstract only if it is does not specify
an implementation. This means that a functional interface can include default, static,
or private methods, but in all cases it must have one and only one abstract method.
Because non-default, non-static, non-private interface methods are implicitly
abstract, there is no need to use the abstract modifier (although you can specify it, if
you like).

Here is an example of a functional interface:

In this case, the method getValue() is implicitly abstract, and it is the only method
defined by MyValue. Thus, MyValue is a functional interface, and its function is
defined by getValue().

As mentioned earlier, a lambda expression is not executed on its own. Rather, it
forms the implementation of the abstract method defined by the functional interface
that specifies its target type. As a result, a lambda expression can be specified only in
a context in which a target type is defined. One of these contexts is created when a
lambda expression is assigned to a functional interface reference. Other target type
contexts include variable initialization, return statements, and method arguments, to
name a few.

Let’s work through a simple example. First, a reference to the functional interface

MyValue is declared:

// Create a reference to a MyValue instance.
MyValue myVal;

Next, a lambda expression is assigned to that interface reference:

// Use a lambda in an assignment context.
myVal = () -> 98.6;

This lambda expression is compatible with getValue() because, like getValue(), it
has no parameters and returns a double result. In general, the type of the abstract
method defined by the functional interface and the type of the lambda expression
must be compatible. If they aren’t, a compile-time error will result.

As you can probably guess, the two steps just shown can be combined into a
single statement, if desired:

MyValue myVal = () -> 98.6;

Here, myVal is initialized with the lambda expression.
When a lambda expression occurs in a target type context, an instance of a class is

automatically created that implements the functional interface, with the lambda
expression defining the behavior of the abstract method declared by the functional
interface. When that method is called through the target, the lambda expression is
executed. Thus, a lambda expression gives us a way to transform a code segment
into an object.

In the preceding example, the lambda expression becomes the implementation for
the getValue() method. As a result, the following displays the value 98.6:

Because the lambda expression assigned to myVal returns the value 98.6, that is the
value obtained when getValue() is called.

If the lambda expression takes one or more parameters, then the abstract method
in the functional interface must also take the same number of parameters. For
example, here is a functional interface called MyParamValue, which lets you pass a
value to getValue():

You can use this interface to implement the reciprocal lambda shown in the previous
section. For example:

MyParamValue myPval = (n) -> 1.0 / n;

You can then use myPval like this:

System.out.println("Reciprocal of 4 is " + myPval.getValue(4.0));

Here, getValue() is implemented by the lambda expression referred to by myPval,
which returns the reciprocal of the argument. In this case, 4.0 is passed to getValue(
), which returns 0.25.

There is something else of interest in the preceding example. Notice that the type
of n is not specified. Rather, its type is inferred from the context. In this case, its type
is inferred from the parameter type of getValue() as defined by the MyParamValue
interface, which is double. It is also possible to explicitly specify the type of a
parameter in a lambda expression. For example, this is also a valid way to write the
preceding:

(double n) -> 1.0 / n;

Here, n is explicitly specified as double. Usually it is not necessary to explicitly
specify the type.

Before moving on, it is important to emphasize a key point: For a lambda
expression to be used in a target type context, the type of the abstract method and the
type of the lambda expression must be compatible. For example, if the abstract
method specifies two int parameters, then the lambda must specify two parameters
whose type either is explicitly int or can be implicitly inferred as int by the context.
In general, the type and number of the lambda expression’s parameters must be
compatible with the method’s parameters and its return type.

Lambda Expressions in Action
With the preceding discussion in mind, let’s look at some simple examples that put
the basic lambda expression concepts into action. The first example assembles the
pieces shown in the foregoing section into a complete program that you can run and
experiment with.

Sample output from the program is shown here:

A constant value: 98.6
Reciprocal of 4 is 0.25
Reciprocal of 8 is 0.125

As mentioned, the lambda expression must be compatible with the abstract
method that it is intended to implement. For this reason, the commented-out lines at
the end of the preceding program are illegal. The first, because a value of type
String is not compatible with double, which is the return type required by getValue(
). The second, because getValue(int) in MyParamValue requires a parameter, and
one is not provided.

A key aspect of a functional interface is that it can be used with any lambda
expression that is compatible with it. For example, consider the following program.
It defines a functional interface called NumericTest that declares the abstract
method test(). This method has two int parameters and returns a boolean result. Its
purpose is to determine if the two arguments passed to test() satisfy some condition.
It returns the result of the test. In main(), three different tests are created through the
use of lambda expressions. One tests if the first argument can be evenly divided by
the second; the second determines if the first argument is less than the second; and
the third returns true if the absolute values of the arguments are equal. Notice that
the lambda expressions that implement these tests have two parameters and return a
boolean result. This is, of course, necessary since test() has two parameters and
returns a boolean result.

The output is shown here:

As the program illustrates, because all three lambda expressions are compatible
with test(), all can be executed through a NumericTest reference. In fact, there is no
need to use three separate NumericTest reference variables because the same one
could have been used for all three tests. For example, you could create the variable
myTest and then use it to refer to each test, in turn, as shown here:

Of course, using different reference variables called isFactor, lessThan, and
absEqual, as the original program does, makes it very clear to which lambda
expression each variable refers.

There is one other point of interest in the preceding program. Notice how the two
parameters are specified for the lambda expressions. For example, here is the one
that determines if one number is a factor of another:

(n, d) -> (n % d) == 0

Notice that n and d are separated by commas. In general, whenever more than one
parameter is required, the parameters are specified, separated by commas, in a
parenthesized list on the left side of the lambda operator.

Although the preceding examples used primitive values as the parameter types and
return type of the abstract method defined by a functional interface, there is no
restriction in this regard. For example, the following program declares a functional
interface called StringTest. It has a method called test() that takes two String
parameters and returns a boolean result. Thus, it can be used to test some condition
related to strings. Here, a lambda expression is created that determines if one string
is contained within another:

The output is shown here:

Notice that the lambda expression uses the indexOf() method defined by the String
class to determine if one string is part of another. This works because the parameters
a and b are determined by type inference to be of type String. Thus, it is permissible
to call a String method on a.

Ask the Expert
Q: Earlier you mentioned that I can explicitly declare the type of a

parameter in a lambda expression if needed. In cases in which a
lambda expression requires two or more parameters, must I specify
the types of all parameters, or can I let one or more use type
inference?

A: In cases in which you need to explicitly declare the type of a parameter,
then all of the parameters in the list must have declared types. For
example, this is legal:

(int n, int d) -> (n % d) == 0

But this is not legal:
(int n, d) -> (n % d) == 0

Nor is this legal:
(n, int d) -> (n % d) == 0

Block Lambda Expressions
The body of the lambdas shown in the preceding examples consist of a single
expression. These types of lambda bodies are referred to as expression bodies, and
lambdas that have expression bodies are sometimes called expression lambdas. In an
expression body, the code on the right side of the lambda operator must consist of a
single expression, which becomes the lambda’s value. Although expression lambdas
are quite useful, sometimes the situation will require more than a single expression.
To handle such cases, Java supports a second type of lambda expression in which the
code on the right side of the lambda operator consists of a block of code that can
contain more than one statement. This type of lambda body is called a block body.
Lambdas that have block bodies are sometimes referred to as block lambdas.

A block lambda expands the types of operations that can be handled within a
lambda expression because it allows the body of the lambda to contain multiple
statements. For example, in a block lambda you can declare variables, use loops,
specify if and switch statements, create nested blocks, and so on. A block lambda is
easy to create. Simply enclose the body within braces as you would any other block
of statements.

Aside from allowing multiple statements, block lambdas are used much like the
expression lambdas just discussed. One key difference, however, is that you must
explicitly use a return statement to return a value. This is necessary because a block
lambda body does not represent a single expression.

Here is an example that uses a block lambda to find the smallest positive factor of
an int value. It uses an interface called NumericFunc that has a method called func(
), which takes one int argument and returns an int result. Thus, NumericFunc
supports a numeric function on values of type int.

The output is shown here:

Smallest factor of 12 is 2
Smallest factor of 11 is 1

In the program, notice that the block lambda declares a variable called result, uses
a for loop, and has a return statement. These are legal inside a block lambda body.
In essence, the block body of a lambda is similar to a method body. One other point.
When a return statement occurs within a lambda expression, it simply causes a
return from the lambda. It does not cause an enclosing method to return.

Generic Functional Interfaces
A lambda expression, itself, cannot specify type parameters. Thus, a lambda
expression cannot be generic. (Of course, because of type inference, all lambda
expressions exhibit some “generic-like” qualities.) However, the functional interface
associated with a lambda expression can be generic. In this case, the target type of
the lambda expression is determined, in part, by the type argument or arguments
specified when a functional interface reference is declared.

To understand the value of generic functional interfaces, consider this. Earlier in
this chapter, two different functional interfaces were created, one called
NumericTest and the other called StringTest. They were used to determine if two
values satisfied some condition. To do this, both defined a method called test() that
took two parameters and returned a boolean result. In the case of NumericTest, the
values being tested were integers. For StringTest, the values were of type String.
Thus, the only difference between the two methods was the type of data they
operated on. Such a situation is perfect for generics. Instead of having two functional
interfaces whose methods differ only in their data types, it is possible to declare one
generic interface that can be used to handle both circumstances. The following
program shows this approach:

The output is shown here:

In the program, the generic functional interface SomeTest is declared as shown
here:

Here, T specifies the type of both parameters for test(). This means that it is
compatible with any lambda expression that takes two parameters of the same type
and returns a boolean result.

The SomeTest interface is used to provide a reference to three different types of
lambdas. The first uses type Integer, the second uses type Double, and the third uses
type String. Thus, the same functional interface can be used to refer to the isFactor,
isFactorD, and isIn lambdas. Only the type argument passed to SomeTest differs.

As a point of interest, the NumericFunc interface shown in the previous section
can also be rewritten as a generic interface. This is an exercise in “Chapter 14 Self
Test,” at the end of this chapter.

Try This 14-1 Pass a Lambda Expression as an
Argument

A lambda expression can be used in any context that provides a target type. The
target contexts used by the preceding examples are assignment and initialization.
Another one is when a lambda expression is passed as an argument. In fact, passing a
lambda expression as an argument is a common use of lambdas. Moreover, it is a
very powerful use because it gives you a way to pass executable code as an argument
to a method. This greatly enhances the expressive power of Java.

To illustrate the process, this project creates three string functions that perform the
following operations: reverse a string, reverse the case of letters within a string, and

replace spaces with hyphens. These functions are implemented as lambda
expressions of the functional interface StringFunc. They are then passed as the first
argument to a method called changeStr(). This method applies the string function to
the string passed as the second argument to changeStr() and returns the result.
Thus, changeStr() can be used to apply a variety of different string functions.

1. Create a file called LambdaArgumentDemo.java.
2. To the file, add the functional interface StringFunc, as shown here:

This interface defines the method func(), which takes a String argument and
returns a String. Thus, func() can act on a string and return the result.

3. Begin the LambdaArgumentDemo class, as shown here, by defining the
changeStr() method:

As the comment indicates, changeStr() has two parameters. The type of the first
is StringFunc. This means it can be passed a reference to any StringFunc
instance. Thus, it can be passed a reference to an instance created by a lambda
expression that is compatible with StringFunc. The string to be acted on is
passed to s. The resulting string is returned.

4. Begin the main() method, as shown here:

Here, inStr refers to the string that will be acted on, and outStr will receive the
modified string.

5. Define a lambda expression that reverses the characters in a string and assign it to
a StringFunc reference. Notice that this is another example of a block lambda.

6. Call changeStr(), passing in the reverse lambda and inStr. Assign the result to
outStr, and display the result.

Because the first parameter to changeStr() is of type StringFunc, the reverse
lambda can be passed to it. Recall that a lambda expression causes an instance of
its target type to be created, which in this case is StringFunc. Thus, a lambda
expression gives you a way to effectively pass a code sequence to a method.

7. Finish the program by adding lambdas that replace spaces with hyphens and
invert the case of the letters, as shown next. Notice that both of these lambdas are
embedded in the call to changeStr(), itself, rather than using a separate
StringFunc variable.

As you can see by looking at this code, embedding the lambda that replaces
spaces with hyphens in the call to changeStr() is both convenient and easy to
understand. This is because it is a short, expression lambda that simply calls
replace() to replace spaces with hyphens. The replace() method is another
method defined by the String class. The version used here takes as arguments the
character to be replaced and its replacement. It returns a modified string.

For the sake of illustration, the lambda that inverts the case of the letters in a
string is also embedded in the call to changeStr(). However, in this case, rather
unwieldy code is produced that is somewhat hard to follow. Usually, it is better to
assign such a lambda to a separate reference variable (as was done for the string-
reversing lambda), and then pass that variable to the method. Of course, it is
technically correct to pass a block lambda as an argument, as the example shows.

One other point: notice that the invert-case lambda uses the static methods
isUpperCase(), toUpperCase(), and toLowerCase() defined by Character.
Recall that Character is a wrapper class for char. The isUpperCase() method

returns true if its argument is an uppercase letter and false otherwise. The
toUpperCase() and toLowerCase() perform the indicated action and return the
result. In addition to these methods, Character defines several others that
manipulate or test characters. You will want to explore them on your own.

8. Here is all the code assembled into a complete program.

The following output is produced:

Ask the Expert
Q: In addition to variable initialization, assignment, and argument

passing, what other places constitute a target type context for a
lambda expression?

A: Casts, the ? operator, array initializers, return statements, and lambda
expressions, themselves, can also serve as target type contexts.

Lambda Expressions and Variable Capture
Variables defined by the enclosing scope of a lambda expression are accessible
within the lambda expression. For example, a lambda expression can use an instance
variable or static variable defined by its enclosing class. A lambda expression also
has access to this (both explicitly and implicitly), which refers to the invoking
instance of the lambda expression’s enclosing class. Thus, a lambda expression can
obtain or set the value of an instance variable or static variable and call a method
defined by its enclosing class.

However, when a lambda expression uses a local variable from its enclosing
scope, a special situation is created that is referred to as a variable capture. In this
case, a lambda expression may only use local variables that are effectively final. An
effectively final variable is one whose value does not change after it is first assigned.
There is no need to explicitly declare such a variable as final, although doing so
would not be an error. (The this parameter of an enclosing scope is automatically
effectively final, and lambda expressions do not have a this of their own.)

It is important to understand that a local variable of the enclosing scope cannot be
modified by the lambda expression. Doing so would remove its effectively final
status, thus rendering it illegal for capture.

The following program illustrates the difference between effectively final and
mutable local variables:

As the comments indicate, num is effectively final and can, therefore, be used
inside myLambda. This is why the println() statement outputs the number 18.
When func() is called with the argument 8, the value of v inside the lambda is set by
adding num (which is 10) to the value passed to n (which is 8). Thus, func() returns
18. This works because num is not modified after it is initialized. However, if num
were to be modified, either inside the lambda or outside of it, num would lose its
effectively final status. This would cause an error, and the program would not

compile.
It is important to emphasize that a lambda expression can use and modify an

instance variable from its invoking class. It just can’t use a local variable of its
enclosing scope unless that variable is effectively final.

Throw an Exception from Within a Lambda
Expression
A lambda expression can throw an exception. If it throws a checked exception,
however, then that exception must be compatible with the exception(s) listed in the
throws clause of the abstract method in the functional interface. For example, if a
lambda expression throws an IOException, then the abstract method in the
functional interface must list IOException in a throws clause. This situation is
demonstrated by the following program:

Because a call to read() could result in an IOException, the ioAction() method
of the functional interface MyIOAction must include IOException in a throws
clause. Without it, the program will not compile because the lambda expression will

no longer be compatible with ioAction(). To prove this, simply remove the throws
clause and try compiling the program. As you will see, an error will result.

Ask the Expert
Q: Can a lambda expression use a parameter that is an array?
A: Yes. However, when the type of the parameter is inferred, the parameter

to the lambda expression is not specified using the normal array syntax.
Rather, the parameter is specified as a simple name, such as n, not as n[].
Remember, the type of a lambda expression parameter will be inferred
from the target context. Thus, if the target context requires an array, then
the parameter’s type will automatically be inferred as an array. To better
understand this, let’s work through a short example.
Here is a generic functional interface called MyTransform, which can

be used to apply some transform to the elements of an array:

Notice that the parameter to the transform() method is an array of type T.
Now, consider the following lambda expression that uses MyTransform to
convert the elements of an array of Double values into their square roots:

Here, the type of a in transform() is Double[], because Double is
specified as the type parameter for MyTransform when sqrts is declared.
Therefore, the type of v in the lambda expression is inferred as Double[]. It
is not necessary (or legal) to specify it as v[].

One last point: It is legal to declare the lambda parameter as Double[] v,
because doing so explicitly declares the type of the parameter. However,
doing so gains nothing in this case.

Method References
There is an important feature related to lambda expressions called the method
reference. A method reference provides a way to refer to a method without executing
it. It relates to lambda expressions because it, too, requires a target type context that
consists of a compatible functional interface. When evaluated, a method reference
also creates an instance of a functional interface. There are different types of method
references. We will begin with method references to static methods.

Method References to static Methods
A method reference to a static method is created by specifying the method name
preceded by its class name, using this general syntax:

ClassName::methodName

Notice that the class name is separated from the method name by a double colon.
The :: is a separator that was added to Java by JDK 8 expressly for this purpose. This
method reference can be used anywhere in which it is compatible with its target type.

The following program demonstrates the static method reference. It does so by
first declaring a functional interface called IntPredicate that has a method called
test(). This method has an int parameter and returns a boolean result. Thus, it can
be used to test an integer value against some condition. The program then creates a
class called MyIntPredicates, which defines three static methods, with each one
checking if a value satisfies some condition. The methods are called isPrime(),
isEven(), and isPositive(), and each method performs the test indicated by its name.
Inside MethodRefDemo, a method called numTest() is created that has as its first
parameter, a reference to IntPredicate. Its second parameter specifies the integer
being tested. Inside main(), three different tests are performed by calling numTest(
), passing in a method reference to the test to perform.

The output is shown here:

17 is prime.
12 is even.
11 is positive.

In the program, pay special attention to this line:

result = numTest(MyIntPredicates::isPrime, 17);

Here, a reference to the static method isPrime() is passed as the first argument to
numTest(). This works because isPrime is compatible with the IntPredicate
functional interface. Thus, the expression MyIntPredicates::isPrime evaluates to a
reference to an object in which isPrime() provides the implementation of test() in
IntPredicate. The other two calls to numTest() work in the same way.

Method References to Instance Methods
A reference to an instance method on a specific object is created by this basic syntax:

objRef::methodName

As you can see, the syntax is similar to that used for a static method, except that an
object reference is used instead of a class name. Thus, the method referred to by the
method reference operates relative to objRef. The following program illustrates this
point. It uses the same IntPredicate interface and test() method as the previous
program. However, it creates a class called MyIntNum, which stores an int value
and defines the method isFactor(), which determines if the value passed is a factor
of the value stored by the MyIntNum instance. The main() method then creates two
MyIntNum instances. It then calls numTest(), passing in a method reference to the
isFactor() method and the value to be checked. In each case, the method reference
operates relative to the specific object.

This program produces the following output:

3 is a factor of 12
3 is not a factor of 16

In the program, pay special attention to the line

IntPredicate ip = myNum::isFactor;

Here, the method reference assigned to ip refers to an instance method isFactor() on
myNum. Thus, when test() is called through that reference, as shown here:

result = ip.test(3);

the method will call isFactor() on myNum, which is the object specified when the
method reference was created. The same situation occurs with the method reference
myNum2::isFactor, except that isFactor() will be called on myNum2. This is
confirmed by the output.

It is also possible to handle a situation in which you want to specify an instance
method that can be used with any object of a given class—not just a specified object.
In this case, you will create a method reference as shown here:

ClassName::instanceMethodName

Here, the name of the class is used instead of a specific object, even though an
instance method is specified. With this form, the first parameter of the functional
interface matches the invoking object and the second parameter matches the
parameter (if any) specified by the method. Here is an example. It reworks the
previous example. First, it replaces IntPredicate with the interface
MyIntNumPredicate. In this case, the first parameter to test() is of type
MyIntNum. It will be used to receive the object being operated upon. This allows
the program to create a method reference to the instance method isFactor() that can
be used with any MyIntNum object.

Ask the Expert
Q: How do I specify a method reference to a generic method?
A: Often, because of type inference, you won’t need to explicitly specify a

type argument to a generic method when obtaining its method reference,
but Java does include a syntax to handle those cases in which you do. For
example, assuming the following:

the following statement is valid:
SomeTest<Integer> mRef = MyClass::<Integer>myGenMeth;

Here, the type argument for the generic method myGenMeth is explicitly

specified. Notice that the type argument occurs after the ::. This syntax can
be generalized: When a generic method is specified as a method reference,
its type argument comes after the :: and before the method name. In cases in
which a generic class is specified, the type argument follows the class name
and precedes the ::.

The output is shown here:

3 is a factor of 12
3 is a not a factor of 16

In the program, pay special attention to this line:

result = inp.test(myNum, 3);

It creates a method reference to the instance method isFactor() that will work with
any object of type MyIntNum. For example, when test() is called through the inp,
as shown here:

result = inp.test(myNum, 3);

it results in a call to myNum.isFactor(3). In other words, myNum becomes the
object on which isFactor(3) is called.

NOTE
A method reference can use the keyword super to refer to a superclass version of a
method. The general forms of the syntax are super::methodName and
typeName.super::methodName. In the second form, typeName must refer to the
enclosing class or a superinterface.

Constructor References
Similar to the way that you can create references to methods, you can also create
references to constructors. Here is the general form of the syntax that you will use:

classname::new

This reference can be assigned to any functional interface reference that defines a
method compatible with the constructor. Here is a simple example:

The output is shown here:

str in mc is Testing

In the program, notice that the func() method of MyFunc returns a reference of
type MyClass and has a String parameter. Next, notice that MyClass defines two
constructors. The first specifies a parameter of type String. The second is the
default, parameterless constructor. Now, examine the following line:

MyFunc myClassCons = MyClass::new;

Here, the expression MyClass::new creates a constructor reference to a MyClass
constructor. In this case, because MyFunc’s func() method takes a String
parameter, the constructor being referred to is MyClass(String s) because it is the
one that matches. Also notice that the reference to this constructor is assigned to a
MyFunc reference called myClassCons. After this statement executes,
myClassCons can be used to create an instance of MyClass, as this line shows:

MyClass mc = myClassCons.func("Testing");

In essence, myClassCons has become another way to call MyClass(String s).
If you wanted MyClass::new to use MyClass’s default constructor, then you

would need to use a functional interface that defines a method that has no parameter.
For example, if you define MyFunc2, as shown here:

then the following line will assign to MyClassCons a reference to MyClass’s
default (i.e., parameterless) constructor:

MyFunc2 myClassCons = MyClass::new;

In general, the constructor that will be used when ::new is specified is the one whose
parameters match those specified by the functional interface.

Ask the Expert
Q: Can I declare a constructor reference that creates an array?
A: Yes. To create a constructor reference for an array, use this construct:

type[]::new

Here, type specifies the type of object being created. For example, assuming

the form of MyClass shown in the preceding example and given the
MyClassArrayCreator interface shown here:

the following creates an array of MyClass objects and gives each element an
initial value:

Here, the call to func(3) causes a three-element array to be created. This
example can be generalized. Any functional interface that will be used to
create an array must contain a method that takes a single int parameter and
returns a reference to the array of the specified size.

As a point of interest, you can create a generic functional interface that
can be used with other types of classes, as shown here:

For example, you could create an array of five Thread objects like this:

One last point: In the case of creating a constructor reference for a generic class,
you can specify the type parameter in the normal way, after the class name. For
example, if MyGenClass is declared like this:

MyGenClass<T> { // ...

then the following creates a constructor reference with a type argument of Integer:

MyGenClass<Integer>::new;

Because of type inference, you won’t always need to specify the type argument, but
you can when necessary.

Predefined Functional Interfaces
Up to this point, the examples in this chapter have defined their own functional
interfaces so that the fundamental concepts behind lambda expressions and
functional interfaces could be clearly illustrated. In many cases, however, you won’t
need to define your own functional interface because the package java.util.function
provides several predefined ones. Here is a sampling:

The following program shows the Predicate interface in action. It uses Predicate
as the functional interface for a lambda expression the determines if a number is
even. Predicate’s abstract method is called test(), and it is shown here:

boolean test(T val)

It must return true if val satisfies some constraint or condition. As it is used here, it
will return true if val is even.

Ask the Expert
Q: At the start of this chapter, you mentioned that the inclusion of

lambda expressions resulted in new capabilities being incorporated
into the API library. Can you give me an example?

A: One example is the stream package java.util.stream. This package
defines several stream interfaces, the most general of which is Stream.
As it relates to java.util.stream, a stream is a conduit for data. Thus, a
stream represents a sequence of objects. Furthermore, a stream supports
many types of operations that let you create a pipeline that performs a
series of actions on the data. Often, these actions are represented by
lambda expressions. For example, using the stream API, you can
construct sequences of actions that resemble, in concept, the type of
database queries for which you might use SQL. Furthermore, in many
cases, such actions can be performed in parallel, thus providing a high
level of efficiency, especially when large data sets are involved. Put
simply, the stream API provides a powerful means of handling data in an
efficient, yet easy to use way. One last point: although the streams
supported by the new stream API have some similarities with the I/O

streams described in Chapter 10, they are not the same.

The program produces the following output:

4 is even
5 is odd

 Chapter 14 Self Test

1. What is the lambda operator?
2. What is a functional interface?
3. How do functional interfaces and lambda expressions relate?
4. What are the two general types of lambda expressions?
5. Show a lambda expression that returns true if a number is between 10 and 20,

inclusive.
6. Create a functional interface that can support the lambda expression you created

in question 5. Call the interface MyTest and its abstract method testing().
7. Create a block lambda that computes the factorial of an integer value.

Demonstrate its use. Use NumericFunc, shown in this chapter, for the
functional interface.

8. Create a generic functional interface called MyFunc<T>. Call its abstract
method func(). Have func() return a reference of type T. Have it take a
parameter of type T. (Thus, MyFunc will be a generic version of NumericFunc
shown in the chapter.) Demonstrate its use by rewriting your answer to question
7 so it uses MyFunc<T> rather than NumericFunc.

9. Using the program shown in Try This 14-1, create a lambda expression that
removes all spaces from a string and returns the result. Demonstrate this method
by passing it to changeStr().

10. Can a lambda expression use a local variable? If so, what constraint must be
met?

11. If a lambda expression throws a checked exception, the abstract method in the
functional interface must have a throws clause that includes that exception.
True or False?

12. What is a method reference?
13. When evaluated, a method reference creates an instance of the ____________

___________ supplied by its target context.
14. Given a class called MyClass that contains a static method called

myStaticMethod(), show how to specify a method reference to
myStaticMethod().

15. Given a class called MyClass that contains an instance method called
myInstMethod() and assuming an object of MyClass called mcObj, show
how to create a method reference to myInstMethod() on mcObj.

16. To the MethodRefDemo2 program, add a new method to MyIntNum called
hasCommonFactor(). Have it return true if its int argument and the value
stored in the invoking MyIntNum object have at least one factor in common.
For example, 9 and 12 have a common factor, which is 3, but 9 and 16 have no
common factor. Demonstrate hasCommonFactor() via a method reference.

17. How is a constructor reference specified?
18. Java defines several predefined functional interfaces in what package?

W

Chapter 15

Modules

Key Skills & Concepts
 Know the definition of a module

 Know Java’s module-related keywords

 Declare a module by use of the module keyword

 Use requires and exports

 Understand the purpose of module-info.java

 Use javac and java to compile and run module-based programs

 Understand the purpose of java.base

 Understand how pre-module legacy code is supported

 Export a package to a specific module

 Use implied readability

 Use services in a module

ith the release of JDK 9 a new and important feature called modules was
added to Java. Modules give you a way to describe the relationships and
dependencies of the code that comprises an application. Modules also let

you control which parts of a module are accessible to other modules and which are
not. Through the use of modules you can create more reliable, scalable programs.

As a general rule, modules are most helpful to large applications because they help
reduce the management complexity often associated with a large software system.
However, small programs also benefit from modules because the Java API library
has now been organized into modules. Thus, it is now possible to specify which parts

of the API are required by your program and which are not. This makes it possible to
deploy programs with a smaller run-time footprint, which is especially important
when creating code for small devices, such as those intended to be part of the
Internet of Things (IoT).

Support for modules is provided both by language elements, including new
keywords, and by enhancements to javac, java, and other JDK tools. Furthermore,
new tools and file formats have been introduced. As a result, the JDK and the run-
time system provided by JDK 9 have been substantially upgraded to support
modules. In short, modules constitute a major addition to, and evolution of, the Java
language. This chapter introduces the key aspects of this important new capability.

Module Basics
In its most fundamental sense, a module is a grouping of packages and resources that
can be collectively referred to by the module’s name. A module declaration specifies
the name of a module and defines the relationship a module and its packages have to
other modules. Module declarations are program statements in a Java source file and
are supported by several new module-related keywords. They are shown here:

It is important to understand that these keywords are recognized as keywords only in
the context of a module declaration. Otherwise, they are interpreted as identifiers in
other situations. Thus, the keyword module could, for example, also be used as a
parameter name, but such a use is certainly not now recommended.

A module declaration is contained in a file called module-info.java. Thus, a
module is defined in a Java source file. This file is then compiled by javac into a
class file and is known as a module descriptor. The module-info.java file must
contain only a module definition. It is not a general-purpose file.

A module declaration begins with the keyword module. Here is its general form:

module moduleName {
// module definition

}

The name of the module is specified by moduleName, which must be a valid Java
identifier or a sequence of identifiers separated by periods. The module definition is

specified within the braces. Although a module definition may be empty (which
results in a declaration that simply names the module), typically it specifies one or
more clauses that define the characteristics of the module.

Ask the Expert
Q: Why are the new module-related keywords, such as module and

requires, recognized as keywords only in the context of a module
declaration?

A: Restricting their use as keywords to a module declaration prevents
problems with preexisting code that uses one or more of them as
identifiers. For example, consider a situation in which a pre-JDK 9
program uses requires as the name of a variable. When that program is
ported to JDK 9, if requires were recognized as a keyword outside a
module declaration, then any other place in which it is used would result
in a compilation error. By recognizing requires as a keyword only within
a module declaration, any other uses of requires in the program are
unaffected and remain valid. Of course, the same goes for the other
module-related keywords. Because they are context-sensitive, the
module-related keywords are formally called restricted keywords.

A Simple Module Example
At the foundation of a module’s capabilities are two key features. The first is a
module’s ability to specify that it requires another module. In other words, one
module can specify that it depends on another. A dependence relationship is
specified by use of a requires statement. By default, the presence of the required
module is checked at both compile time and run time. The second key feature is a
module’s ability to control which, if any, of its packages are accessible by another
module. This is accomplished by use of the exports keyword. The public and
protected types within a package are accessible to other modules only if they are
explicitly exported. Here we will develop an example that introduces both of these
features.

The following example creates a modular application that demonstrates some
simple mathematical functions. Although this application is purposely very small, it
illustrates the core concepts and procedures required to create, compile, and run

module-based code. Furthermore, the general approach shown here also applies to
larger, real-world applications. It is strongly recommended that you work through
the example on your computer, carefully following each step.

NOTE
This chapter shows the process of creating, compiling, and running module-based
code by use of the command-line tools. This approach has two advantages. First, it
works for all Java programmers, because no IDE is required. Second, it very clearly
shows the fundamentals of the module system, including how it utilizes directories.
To follow along, you will need to manually create a number of directories and ensure
that each file is placed in its proper directory. As you might expect, when creating
real-world, module-based applications you will likely find a module-aware IDE
easier to use because, typically, it will automate much of the process. However,
learning the fundamentals of modules using the command-line tools ensures that you
have a solid understanding of the topic.

The application defines two modules. The first module is called appstart. It
contains a package called appstart.mymodappdemo that defines the application’s
entry point in a class called MyModAppDemo. Thus, MyModAppDemo contains
the application’s main() method. The second module is called appfuncs. It contains
a package called appfuncs.simplefuncs that includes the class SimpleMathFuncs.
This class defines three static methods that implement some simple mathematical
functions. The entire application will be contained in a directory tree that begins at
mymodapp.

Before continuing, a few words about module names are appropriate. First, in the
examples that follow, the name of a module (such as appfuncs) is the prefix of the
name of a package (such as appfuncs.simplefuncs) that it contains. This is not
required, but is used here as a way of clearly indicating to what module a package
belongs. In general, when learning about and experimenting with modules, short,
simple names, such as those used in this chapter, are helpful, and you can use any
sort of convenient names that you like. However, when creating modules suitable for
distribution, you must be careful with the names you choose because you will want
those names to be unique. At the time of this writing, the suggested way to achieve
this is to use the reverse domain name method. In this method, the reverse domain
name of the domain that “owns” the project is used as a prefix for the module. For
example, a project associated with herbschildt.com would use com.herbschildt as
the module prefix. (The same goes for package names.) Because modules are a new
addition to Java, naming conventions may evolve over time. You will want to check
the Java documentation for current recommendations.

Let’s now begin. Start by creating the necessary source code directories by
following these steps:

1. Create a directory called mymodapp. This is the top-level directory for the entire
application.

2. Under mymodapp, create a subdirectory called appsrc. This is the top-level
directory for the application’s source code.

3. Under appsrc, create the subdirectory appstart. Under this directory, create a
subdirectory also called appstart. Under this directory, create the directory
mymodappdemo. Thus, beginning with appsrc, you will have created this tree:
appsrc\appstart\appstart\mymodappdemo

4. Also under appsrc, create the subdirectory appfuncs. Under this directory, create
a subdirectory also called appfuncs. Under this directory, create the directory
called simplefuncs. Thus, beginning with appsrc, you will have created this tree:
appsrc\appfuncs\appfuncs\simplefuncs

Your directory tree should look like that shown here.

After you have set up these directories, you can create the application’s source files.
This example will use four source files. Two are the source files that define the

application. The first is SimpleMathFuncs.java, shown here. Notice that
SimpleMathFuncs is packaged in appfuncs.simplefuncs.

SimpleMathFuncs defines three simple static math functions. The first, isFactor(),
returns true if a is a factor of b. The lcf() method returns the smallest factor common
to both a and b. In other words, it returns the least common factor of a and b. The
gcf() method returns the greatest common factor of a and b. In both cases, 1 is
returned if no common factors are found. This file must be put in the following
directory:

appsrc\appfuncs\appfuncs\simplefuncs

This is the appfuncs.simplefuncs package directory.
The second source file is MyModAppDemo.java, shown next. It uses the

methods in SimpleMathFuncs. Notice that it is packaged in
appstart.mymodappdemo. Also note that it imports the SimpleMathFuncs class
because it depends on SimpleMathFuncs for its operation.

This file must be put in the following directory:

appsrc\appstart\appstart\mymodappdemo

This is the directory for the appstart.mymodappdemo package.
Next, you will need to add module-info.java files for each module. These files

contain the module definitions. First, add this one, which defines the appfuncs

module:

Notice that appfuncs exports the package appfuncs.simplefuncs, which makes it
accessible to other modules. This file must be put into this directory:

appsrc\appfuncs

Thus, it goes in the appfuncs module directory, which is above the package
directories.

Finally, add the module-info.java file for the appstart module. It is shown here.
Notice that appstart requires the module appfuncs.

This file must be put into its module directory:

appsrc\appstart

Before examining the requires, exports, and module statements more closely,
let’s first compile and run this example. Be sure that you have correctly created the
directories and entered each file into its proper directory, as just explained.

Compile and Run the First Module Example
Beginning with JDK 9, javac has been updated to support modules. Thus, like all
other Java programs, module-based programs are compiled using javac. The process
is easy, with the primary difference being that you will usually explicitly specify a
module path. A module path tells the compiler where the compiled files will be
located. When following along with this example, be sure that you execute the javac
commands from the mymodapp directory in order for the paths to be correct. Recall
that mymodapp is the top-level directory for the entire module application.

To begin, compile the SimpleMathFuncs.java file, using this command:

Remember, this command must be executed from the mymodapp directory. Notice
the use of the -d option. This tells javac where to put the output .class file. For the
examples in this chapter, the top of the directory tree for compiled code is
appmodules. This command will automatically create the output package directories
for appfuncs.simplefuncs under appmodules\appfuncs as needed.

Next, here is the javac command that compiles the module-info.java file for the
appfuncs module:

javac -d appmodules\appfuncs appsrc\appfuncs\module-info.java

This puts the module-info.class file into the appmodules\appfuncs directory.
Although the preceding two-step process works, it was shown primarily for the

sake of discussion. It is usually easier to compile a module’s module-info.java file
and its source files in one command line. Here, the preceding two javac commands
are combined into one:

In this case, each compiled file is put in its proper module or package directory.
Now, compile the module-info.java and MyModAppDemo.java files for the

appstart module, using this command:

Notice the --module-path option. It specifies the module path, which is the path on
which the compiler will look for the user-defined modules required by the module-
info.java file. In this case, it will look for the appfuncs module because it is needed
by the appstart module. Also, notice that it specifies the output directory as
appmodules\appstart. This means that the module-info.class file will be in the
appmodules\appstart module directory and MyModAppDemo.class will be in the
appmodules\appstart\appstart\mymodappdemo package directory.

Once you have completed the compilation, you can run the application with this
java command:

java --module-path appmodules -m
appstart/appstart.mymodappdemo.MyModAppDemo

Here, the --module-path option specifies the path to the application’s modules. As
mentioned, appmodules is the directory at the top of the compiled modules tree. The
-m option specifies the class that contains the entry point of the application and, in
this case, the name of the class that contains the main() method. When you run the
program, you will see the following output:

A Closer Look at requires and exports
The preceding module-based example relies on the two foundational features of the
module system: the ability to specify a dependence and the ability to satisfy that
dependence. These capabilities are specified through the use of the requires and
exports statements within a module declaration. Each merits a closer examination at
this time.

Here is the form of the requires statement used in the example:

requires moduleName;

Here, moduleName specifies the name of a module that is required by the module in
which the requires statement occurs. This means that the required module must be
present in order for the current module to compile. In the language of modules, the
current module is said to read the module specified in the requires statement. In
general, the requires statement gives you a way to ensure that your program has
access to the modules that it needs.

Here is the general form of the exports statement used in the example:

exports packageName;

Here, packageName specifies the name of the package that is exported by the
module in which this statement occurs. When a module exports a package, it makes
all of the public and protected types in the package accessible to other modules.
Furthermore, the public and protected members of those types are also accessible.
However, if a package within a module is not exported, then it is private to that
module, including all of its public types. For example, even though a class is
declared as public within a package, if that package is not explicitly exported by an
exports statement, then that class is not accessible to other modules. It is important
to understand that the public and protected types of a package, whether exported or
not, are always accessible within that package’s module. The exports statement

simply makes them accessible to outside modules. Thus, any nonexported package is
only for the internal use of its module.

The key to understanding requires and exports is that they work together. If one
module depends on another, then it must specify that dependence with requires. The
module on which another depends must explicitly export (i.e., make accessible) the
packages that the dependent module needs. If either side of this dependence
relationship is missing, the dependent module will not compile. As it relates to the
foregoing example, MyModAppDemo uses the functions in SimpleMathFuncs. As
a result, the appstart module declaration contains a requires statement that names
the appfuncs module. The appfuncs module declaration exports the
appfuncs.simplefuncs package, thus making the public types in the
SimpleMathFuncs class available. Since both sides of the dependence relationship
have been fulfilled, the application can compile and run. If either is missing, the
compilation will fail. (You will see the results of a missing exports statement when
you answer exercise 10 in the self-test at the end of this chapter.)

It is important to emphasize that requires and exports statements must occur only
within a module statement. Furthermore, a module statement must occur by itself in
a file called module-info.java.

java.base and the Platform Modules
As mentioned at the start of this chapter, beginning with JDK 9 the Java API
packages have been incorporated into modules. In fact, the modularization of the
API is one of the primary benefits realized by the addition of the modules. Because
of their special role, the API modules are referred to as platform modules, and their
names all begin with the prefix java. Here are some examples: java.base,
java.desktop, and java.xml. By modularizing the API, it becomes possible to
deploy an application with only the packages that it requires, rather than the entire
Java Runtime Environment (JRE). Because of the size of the full JRE, this is a very
important improvement.

The fact that all of the Java API library packages are now in modules gives rise to
the following question: How can the main() method in MyModAppDemo in the
preceding example use System.out.println() without specifying a requires
statement for the module that contains the System class? Obviously, the program
will not compile and run unless System is present. The same question also applies to
the use of the Math class in SimpleMathFuncs. The answer to this question is
found in java.base.

Of the platform modules, the most important is java.base. It includes and exports
those packages fundamental to Java, such as java.lang, java.io, and java.util,

among many others. Because of its importance, java.base is automatically
accessible to all modules. Furthermore, all other modules automatically require
java.base. There is no need to include a requires java.base statement in a module
declaration. (As a point of interest, it is not wrong to explicitly specify java.base;
it’s just not necessary.) Thus, in much the same way that java.lang is automatically
available to all programs without the use of an import statement, the java.base
module is automatically accessible to all module-based programs without explicitly
requesting it.

Because java.base contains the java.lang package, and java.lang contains the
System class, MyModAppDemo in the preceding example can automatically use
System.out.println() without an explicit requires statement. The same applies to
the use of the Math class in SimpleMathFuncs, because the Math class is also in
java.lang. As you will see when you begin to create your own module-based
applications, many of the API classes you will commonly need are in the packages
included in java.base. Thus, the automatic inclusion of java.base simplifies the
creation of module-based code because Java’s core packages are automatically
accessible.

One last point: Beginning with JDK 9, the documentation for the Java API now
tells you the name of the module in which a package is contained. If the module is
java.base, then you can use the contents of that package directly. Otherwise, your
module declaration must include a requires clause for the desired module.

Ask the Expert
Q: I recall that JDK 8 had the ability to use a feature called compact

profiles. Are compact profiles a part of modules?
A: Compact profiles are a feature that, in some situations, let you specify a

subset of the API library. They are not part of the module system.
Moreover, the module system introduced by JDK 9 fully supersedes
them.

Legacy Code and the Unnamed Module
Another question may have occurred to you when working through the first example
module program. Because JDK 9 now supports modules, and the API packages are

also contained in modules, why do all of the other programs in the preceding
chapters compile and run without error even though they do not use modules? More
generally, since there is now over 20 years of Java code in existence and (at the time
of this writing) the vast majority of that code does not use modules, how is it
possible to compile, run, and maintain that legacy code with a JDK 9 or later
compiler? Given Java’s original philosophy of “write once, run everywhere,” this is
a very important question because backward capability must be maintained. As you
will see, Java answers this question by providing an elegant, nearly transparent
means of ensuring backward compatibility with preexisting code.

Support for legacy code is provided by two key features. The first is the unnamed
module. When you use code that is not part of a named module, it automatically
becomes part of the unnamed module. The unnamed module has two important
attributes. First, all of the packages in the unnamed module are automatically
exported. Second, the unnamed module can access any and all other modules. Thus,
when a program does not use modules, all API modules in the Java platform are
automatically accessible through the unnamed module.

The second key feature that supports legacy code is the automatic use of the class
path, rather than the module path. When you compile a program that does not use
modules, the class path mechanism is employed, just as it has been since Java’s
original release. As a result, the program is compiled and run in the same way it was
prior to JDK 9.

Because of the unnamed module and the automatic use of the class path, there was
no need to declare any modules for the sample programs shown elsewhere in this
book. They run properly whether you compile them with a JDK 9 compiler or an
earlier one, such as JDK 8. Thus, even though modules are a new feature that has a
significant impact on Java, compatibility with legacy code is maintained. This
approach also provides a smooth, nonintrusive, nondisruptive transition path to
modules. Thus, it enables you to move a legacy application to modules at your own
pace. Furthermore, it allows you to avoid the use of modules when they are not
needed.

Before moving on, an important point needs to be made. For the types of example
programs used elsewhere in this book, and for example programs in general, there is
no benefit in using modules. Modularizing them would simply add clutter and
complicate them for no reason or benefit. Furthermore, for many simple programs
that you will write when learning the essentials of Java, there is no need to contain
them in modules. For the reasons stated at the start of this chapter, modules are often
of the greatest benefit when creating commercial programs. Therefore, no examples
outside this chapter will use modules. This also allows the examples to be compiled
and run in a pre-JDK 9 environment, which is important to readers using an older

version of Java. Thus, except for the examples in this chapter, the examples in this
book work for both pre-module and post-module JDKs.

Exporting to a Specific Module
The basic form of the exports statement makes a package accessible to any and all
other modules. This is often exactly what you want. However, in some specialized
development situations, it can be desirable to make a package accessible to only a
specific set of modules, not all other modules. For example, a library developer
might want to export a support package to certain other modules within the library,
but not make it available for general use. Adding a to clause to the exports statement
provides a means by which this can be accomplished.

In an exports statement, the to clause specifies a list of one or more modules that
have access to the exported package. Furthermore, only those modules named in the
to clause will have access. In the language of modules, the to clause creates what is
known as a qualified export.

The form of exports that includes to is shown here:

exports packageName to moduleNames;

Here, moduleNames is a comma-separated list of modules to which the exporting
module grants access.

You can try the to clause by changing the module-info.java file for the appfuncs
module, as shown here:

Now, simplefuncs is exported only to appstart and to no other modules. After
making this change, you can recompile the application by using this javac
command:

After compiling, you can run the application as shown earlier.
This example also uses another new module-related feature provided by JDK 9.

Look closely at the preceding javac command. First, notice that it specifies the --

module-source-path option. The module source path specifies the top of the module
source tree. The --module-source-path option automatically compiles the files in
the tree under the specified directory, which is appsrc in this example. The --
module-source-path option must be used with the -d option to ensure that the
compiled modules are stored in their proper directories under appmodules. This
form of javac is called multimodule mode because it enables more than one module
to be compiled at a time. The multimodule compilation mode is especially helpful
here because the to clause refers to a specific module, and the requiring module must
have access to the exported package. Thus, in this case, both appstart and appfuncs
are needed to avoid warnings and/or errors during compilation. Multimodule mode
avoids this problem because both modules are being compiled at the same time.

The multimodule mode of javac has another advantage. It automatically finds and
compiles all source files for the application, creating the necessary output directories.
Because of the advantages that multimodule compilation mode offers, it will be used
for the subsequent examples.

NOTE
As a general rule, qualified export is a special case feature. Most often, your modules
will either provide unqualified export of a package or not export the package at all,
keeping it inaccessible. As such, qualified export is discussed here primarily for the
sake of completeness. Also, qualified export by itself does not prevent the exported
package from being misused by malicious code in a module that masquerades as the
targeted module. The security techniques required to prevent this from happening are
beyond the scope of this book. Consult the Oracle documentation for details on
security in this regard and Java security details in general.

Using requires transitive
Consider a situation in which there are three modules, A, B, and C, that have the
following dependences:

 A requires B.
 B requires C.

Given this situation, it is clear that since A depends on B and B depends on C, A has
an indirect dependence on C. As long as A does not directly use any of the contents
of C, then you can simply have A require B in its module-info file, and have B
export the packages required by A in its module-info file, as shown here:

Here, somepack is a placeholder for the package exported by B and used by A.
Although this works as long as A does not need to use anything defined in C, a
problem occurs if A does want to access a type in C. In this case, there are two
solutions.

The first solution is to simply add a requires C statement to A’s file, as shown
here:

This solution certainly works, but if B will be used by many modules, you must add
requires C to all module definitions that require B. This is not only tedious; it is also
error prone. Fortunately, there is a better solution. You can create an implied
dependence on C. Implied dependence is also referred to as implied readability.

To create an implied dependence, add the transitive keyword after requires in the
clause that requires the module upon which an implied readability is needed. In the
case of this example, you would change B’s module-info file as shown here:

Here, C is now required as transitive. After making this change, any module that
depends on B will also automatically depend on C. Thus, A would automatically
have access to C.

As a point of interest, because of a special exception in the Java syntax, in a

requires statement, if transitive is immediately followed by a separator (such as a
semicolon), it is interpreted as an identifier (for example, as a module name) rather
than a keyword.

Try This 15-1 Experiment with requires transitive

You can experiment with requires transitive by reworking the preceding modular
application example. Here, you will remove the isFactor() method from the
SimpleMathFuncs class in the appfuncs.simplefuncs package and put it into a new
class, module, and package. The new class will be called SupportFuncs, the module
will be called appsupport, and the package will be called
appsupport.supportfuncs. The appfuncs module will then add a dependence on the
appsupport module by use of requires transitive. This will enable both the
appfuncs and appstart modules to access it without appstart having to provide its
own requires statement. This works because appstart receives access to it through
an appfuncs requires transitive statement.

1. To begin, create the source directories that support the new appsupport module.
To do so, create appsupport under the appsrc directory. This is the module
directory for the support functions. Under appsupport, create the package
directory by adding the appsupport subdirectory followed by the supportfuncs
subdirectory. Thus, the directory tree for appsupport should now look like this:
appsrc\appsupport\appsupport\supportfuncs

2. Add the following module-info.java file to the module source directory for
appsupport, which is appsrc\appsupport:

3. In the appsupport.supportfuncs package directory, add the following file called
SupportFuncs.java:

As you can see, the isFactor() method is now in SupportFuncs rather than in
SimpleMathFuncs.

4. Remove isFactor() from SimpleMathFuncs. Thus, SimpleMathFuncs.java
will now look like this:

Notice that now the SupportFuncs class is imported, and calls to isFactor() are
referred to through the class name SupportFuncs.

5. Change the module-info.java file for appfuncs so that in its requires statement,
appsupport is specified as transitive, as shown here:

6. Because appfuncs requires appsupport as transitive, there is no need for the
module-info.java file for appstart to also require it. Its dependence on
appsupport is implied. Thus, no changes to the module-info.java file for
appstart are required.

7. Update MyModAppDemo.java to reflect these changes. Specifically, it must
now import the SupportFuncs class and specify it when invoking isFactor(),
as shown here:

8. Recompile the entire program using this multimodule compilation command:

As explained earlier, the multimodule compilation will automatically create the
parallel module subdirectories under the appmodules directory.

9. Run the application as before, using this command:
java --module-path appmodules -m
appstart/appstart.mymodappdemo.MyModAppDemo

It will produce the same output as before.

10. As an experiment, remove the transitive specifier from the module-info.java
file for appfuncs and then try recompiling. As you will see, an error will result
because appsupport is no longer accessible by appstart.

11. Here is another experiment. In the module-info file for appsupport, try
exporting the appsupport.supportfuncs package to only appfuncs by use of a
qualified export, as shown here:
exports appsupport.supportfuncs to appfuncs;

Next, try recompiling the program. As you can see, the program will not compile
because now the support function isFactor() is not available to the
MyModAppDemo, which is in the appstart module. As explained previously, a
qualified export restricts access to a package to only those modules specified by
the to clause.

Use Services
In programming, it is often useful to separate what must be done from how it is done.
As you learned in Chapter 8, one way this is accomplished in Java is through the use
of interfaces. The interface specifies the what, and the implementing class specifies
the how. This concept can be expanded so that the implementing class is provided by
code that is outside your program, through the use of a plug-in. Using such an
approach, the capabilities of an application can be enhanced, upgraded, or altered by
simply changing the plug-in. The core of the application itself remains unchanged.
One way that Java supports a pluggable application architecture is through the use of
services and service providers. Because of their importance, especially in large,
commercial applications, Java’s module system provides support for them.

Before we begin, it is necessary to state that applications that use services and
service providers are typically fairly sophisticated. Therefore, you may find that you
do not often need the service-based module features. However, because support for
services constitutes a rather significant part of the module system, it is important that
you have a general understanding of how these features work. Also, a simple
example is presented that illustrates the core techniques needed to use them.

Service and Service Provider Basics
In Java, a service is a program unit whose functionality is defined by an interface or
an abstract class. Thus, a service specifies in a general way some form of program
activity. A concrete implementation of a service is supplied by a service provider. In
other words, a service defines the form of some action, and the service provider
supplies that action.

As mentioned, services are often used to support a pluggable architecture. For
example, a service might be used to support the translation of one language into
another. In this case, the service supports translation in general. The service provider
supplies a specific translation, such as German to English or French to Chinese.
Because all service providers implement the same interface, different translators can
be used to translate different languages without having to change the core of the

application. You can simply change the service provider.
Service providers are supported by the ServiceLoader class. ServiceLoader is a

generic class packaged in java.util. It is declared like this:

class ServiceLoader<S>

Here, S specifies the service type. Service providers are loaded by the load()
method. It has several forms; the one we will use is shown here:

public static <S> ServiceLoader<S> load(Class <S> serviceType)

Here, serviceType specifies the Class object for the desired service type. Recall from
Chapter 13 that Class is a class that encapsulates information about a class. There
are a variety of ways to obtain a Class instance. The way we will use here is called a
class literal. A class literal has this general form:

className.class

Here, className specifies the name of the class.
When load() is called, it returns a ServiceLoader instance for the application.

This object supports iteration and can be cycled through by use of a for-each for
loop. Therefore, to find a specific provider, simply search for it using a loop.

The Service-Based Keywords
Modules support services through the use of the keywords provides, uses, and with.
Essentially, a module specifies that it provides a service with a provides statement.
A module indicates that it requires a service with a uses statement. The specific type
of service provider is declared by with. When used together, they enable you to
specify a module that provides a service, a module that needs that service, and the
specific implementation of that service. Furthermore, the module system ensures that
the service and service providers are available and will be found.

Here is the general form of provides:

provides serviceType with implementationTypes;

Here, serviceType specifies the type of the service, which is often an interface,
although abstract classes are also used. A comma-separated list of the
implementation types is specified by implementationTypes. Therefore, to provide a
service, the module indicates both the name of the service and its implementation.

Here is the general form of the uses statement:

uses serviceType;

Here, serviceType specifies the type of the service required.

A Module-Based Service Example
To demonstrate the use of services, we will add a service to the modular application
example that we have been using. For simplicity, we will begin with the first version
of the application shown at the start of this chapter. To it we will add two new
modules. The first is called userfuncs. It will define interfaces that support functions
that perform binary operations in which each argument is an int and the result is an
int. The second module is called userfuncsimp, and it contains concrete
implementations of the interfaces.

Begin by creating the necessary source directories.

1. Under the appsrc directory, add directories called userfuncs and userfuncsimp.
2. Under userfuncs, add the subdirectory also called userfuncs. Under that

directory, add the subdirectory binaryfuncs. Thus, beginning with appsrc, you
will have created this tree:
appsrc\userfuncs\userfuncs\binaryfuncs

3. Under userfuncsimp, add the subdirectory also called userfuncsimp. Under that
directory, add the subdirectory binaryfuncsimp. Thus, beginning with appsrc,
you will have created this tree:
appsrc\userfuncsimp\userfuncsimp\binaryfuncsimp

This example expands the original version of the application by providing support
for functions beyond those built into the application. Recall that the
SimpleMathFuncs class supplies three built-in functions: isFactor(), lcf(), and
gcf(). Although it would be possible to add more functions to this class, doing so
requires modifying and recompiling the application. By implementing services, it
becomes possible to “plug in” new functions at run time without modifying the
application, and that is what this example will do. In this case, the service supplies
functions that take two int arguments and return an int result. Of course, other types
of functions can be supported if additional interfaces are provided, but support for
binary integer functions is sufficient for our purposes and keeps the source code size
of the example manageable.

The Service Interfaces
Two service-related interfaces are needed. One specifies the form of an action, and

the other specifies the form of the provider of that action. Both go in the
binaryfuncs directory, and both are in the userfuncs.binaryfuncs package. The
first, called BinaryFunc, declares the form of a binary function. It is shown here:

BinaryFunc declares the form of an object that can implement a binary integer
function. This is specified by the func() method. The name of the function is
obtainable from getName(). The name will be used to determine what type of
function is implemented. This interface is implemented by a class that supplies a
binary function.

The second interface declares the form of the service provider. It is called
BinFuncProvider and is shown here:

BinFuncProvider declares only one method, get(), which is used to obtain an
instance of BinaryFunc. This interface must be implemented by a class that wants to

provide instances of BinaryFunc.

The Implementation Classes
In this example, two concrete implementations of BinaryFunc are supported. The
first is AbsPlus, which returns the sum of the absolute values of its arguments. The
second is AbsMinus, which returns the result of subtracting the absolute value of the
second argument from the absolute value of the first argument. These are provided
by the classes AbsPlusProvider and AbsMinusProvider. The source code for these
classes must be stored in the binaryfuncsimp directory, and they are all part of the
userfuncsimp.binaryfuncsimp package.

The code for AbsPlus is shown here:

AbsPlus implements func() such that it returns the result of adding the absolute
values of a and b. Notice that getName() returns the "absPlus" string. It identifies
this function.

The AbsMinus class is shown next:

Here, func() is implemented to return the difference between the absolute values of
a and b, and the string "absMinus" is returned by getName().

To obtain an instance of AbsPlus, the AbsPlusProvider is used. It implements
BinFuncProvider and is shown here:

The get() method simply returns a new AbsPlus() object. Although this provider is
very simple, it is important to point out that some service providers will be much
more complex.

The provider for AbsMinus is called AbsMinusProvider and is shown next:

Its get() method returns an object of AbsMinus.

The Module Definition Files
Next, two module definition files are needed. The first is for the userfuncs module.
It is shown here:

This code must be contained in a module-info.java file that is in the userfuncs
module directory. Notice that it exports the userfuncs.binaryfuncs package. This is
the package that defines the BinaryFunc and BinFuncProvider interfaces.

The second module-info.java file is shown next. It defines the module that
contains the implementations. It goes in the userfuncsimp module directory.

This module requires userfuncs because that is where BinaryFunc and
BinFuncProvider are contained, and those interfaces are needed by the
implementations. The module provides BinFuncProvider implementations with the
classes AbsPlusProvider and AbsMinusProvider.

Demonstrate the Service Providers in MyModAppDemo
To demonstrate the use of the services, the main() method of MyModAppDemo is
expanded to use AbsPlus and AbsMinus. It does so by loading them at run time by
use of ServiceLoader.load(). Here is the updated code:

Let’s take a close look at how a service is loaded and executed by the preceding
code. First, a service loader for services of type BinFuncProvider is created with
this statement:

Notice that the type parameter to ServiceLoader is BinFuncProvider. This is also
the type used in the call to load(). This means that providers that implement this
interface will be found. Thus, after this statement executes, BinFuncProvider
classes in the module will be available through ldr. In this case, both
AbsPlusProvider and AbsMinusProvider will be available.

Next, a reference of type BinaryFunc called binOp is declared and initialized to
null. It will be used to refer to an implementation that supplies a specific type of
binary function. Next, the following loop searches ldr for one that has the "absPlus"
name.

Here, a for-each loop iterates through ldr. Inside the loop, the name of the function
supplied by the provider is checked. If it matches "absPlus", that function is assigned
to binOp by calling the provider’s get() method.

Finally, if the function is found, as it will be in this example, it is executed by this
statement:

In this case, because binOp refers to an instance of AbsPlus, the call to func()
performs an absolute value addition. A similar sequence is used to find and execute
AbsMinus.

Because MyModAppDemo now uses BinFuncProvider, its module definition
file must include a uses statement that specifies this fact. Recall that
MyModAppDemo is in the appstart module. Therefore, you must change the
module-info.java file for appstart as shown here:

Compile and Run the Module-Based Service Example
Once you have performed all of the preceding steps, you can compile and run the
example by executing the following commands:

Here is the output:

As the output shows, the binary functions were located and executed. It is important
to emphasize that if either the provides statement in the userfuncsimp module or
the uses statement in the appstart module were missing, the application would fail.

Additional Module Features
Before concluding our discussion of modules, there are three more features that
require a brief introduction. These are the open module, the opens statement, and the
use of requires static. Each of these features is designed to handle a specialized
situation, and each constitutes a fairly advanced aspect of the module system. That
said, it is important for you to have a general understanding of their purpose. As you
gain more experience with Java, you may encounter situations for which they
provide elegant solutions.

Open Modules
As you learned earlier in this chapter, by default, the types in a module’s packages
are accessible only if they are explicitly exported via an exports statement. While
this is usually what you will want, there can be circumstances in which it is useful to
enable run-time access to all packages in the module, whether a package is exported
or not. To allow this, you can create an open module. An open module is declared by
preceding the module keyword with the open modifier, as shown here:

open module moduleName {
 // module definition
}

In an open module, types in all packages are accessible at run time. Understand,
however, that only those packages that are explicitly exported are available at
compile time. Thus, the open modifier affects only run-time accessibility.

The primary reason for an open module is to enable the packages in the module to
be accessed through reflection. Reflection is the feature that lets a program analyze
code at run time. Although the topic of and techniques required to use reflection are
beyond the scope of this book, it can be quite important to certain types of programs
that require run-time access to a third-party library.

NOTE
Information about reflection can be found in my book Java: The Complete
Reference, Tenth Edition (Oracle Press/McGraw-Hill Education, 2018).

The opens Statement
It is possible for a module to open a specific package for run-time access by other
modules and for reflective access rather than opening an entire module. To do so, use
the opens statement, shown here:

opens packageName;

Here, packageName specifies the package to open. It is also possible to include a to
clause, which names those modules for which the package is opened.

It is important to understand that opens does not grant compile-time access. It is
used only to open a package for run-time and reflective access. One other point: an
opens statement cannot be used in an open module. Remember, all packages in an
open module are already open.

requires static
As you know, requires specifies a dependence that, by default, is enforced both
during compilation and at run time. However, it is possible to relax this requirement
in such a way that a module is not required at run time. This is accomplished by use
of the static modifier in a requires statement. For example, this specifies that
mymod is required for compilation, but not at run time:

requires static mymod;

In this case, the addition of static makes mymod optional at run time. This can be
helpful in a situation in which a program can utilize functionality if it is present, but
not require it.

Continuing Your Study of Modules
The preceding discussions have introduced and demonstrated the core elements of
Java’s module system. They are the features that are directly supported by keywords
in the Java language. Thus, they are the features about which every Java programmer
should have at least a basic understanding. As you might guess, the module system
provides additional features that you will want to learn about as you advance in your
study of Java. A good place to begin is with javac and java. Both have more options
related to modules.

Here are some other areas that you will want to explore. Beginning with JDK 9,
the JDK includes the jlink tool that assembles a modular application into a run-time
image that has only those modules related to the application. This saves both space
and download time. A modular application can be packaged into a JAR file. (JAR
stands for Java ARchive. It is a file format typically used for application
deployment.) As a result, the jar tool now has options that support modules. For
example, it can now recognize a module path. A JAR file that contains a module-
info.class file is called a modular JAR file. For specialized advanced work with
modules, you will want to learn about layers of modules, automatic modules, and the
technique by which modules can be added during compilation or execution.

In conclusion, modules are expected to play an important role in Java
programming. Although their use is not required at this time, they offer important
benefits for commercial applications that no Java programmer can afford to ignore. It
is likely that module-based development will be in nearly every Java programmer’s
future.

Ask the Expert
Q: I have heard the term module graph used in discussions of modules.

What does it mean?
A: During compilation, the compiler resolves the dependence relationships

between modules by creating a module graph that represents the
dependences. The process ensures that all dependences are resolved,
including those that occur indirectly. For example, if module A requires
module B and B requires module C, then the module graph will contain
module C even if A does not use it directly.
Module graphs can be depicted visually in a drawing to illustrate the

relationship between modules, and you will likely encounter one as you
continue on in Java. Here is a simple example. It is the graph for the first
module example in this chapter. (Because java.base is automatically
included, it is not shown in the diagram.)

In Java, the arrows point from the dependent module to the required module.
Thus, a drawing of a module graph depicts what modules have access to what
other modules. Frankly, only the smallest applications can have their module
graphs visually represented because of the complexity typically involved in
many commercial applications.

 Chapter 15 Self Test

1. In general terms, modules give you a way to specify when one unit of code
depends on another. True or False?

2. A module is declared using what keyword?
3. The keywords that support modules are context sensitive. Explain what this

means.
4. What is module-info.java and why is it important?
5. To declare that one module depends on another module, what keyword do you

use?
6. To make the public members of a package accessible outside the module in

which it is contained, it must be specified in an _________ statement.
7. When compiling or running a module-based application, why is the module path

important?
8. What does requires transitive do?
9. Does an exports statement export another module, or does it export a package?

10. In the first module example, if you remove
exports appfuncs.simplefuncs;

from the appfuncs module-info file and then attempt to compile the program,
what error do you see?

11. Module-based services are supported by what keywords?
12. A service specifies the general form of a unit of program functionality using

either an interface or abstract class. True or False?
13. A service provider ____________ a service.
14. To load a service, what class do you use?
15. Can a module dependency be made optional at run time? If so, how?
16. Briefly describe what open and opens do.

S

Chapter 16

Introducing Swing

Key Skills & Concepts
 Know the origins and design philosophy of Swing

 Understand Swing components and containers

 Know layout manager basics

 Create, compile, and run a simple Swing application

 Learn event handling fundamentals

 Use JButton

 Work with JTextField

 Create a JCheckBox

 Work with JList

 Use anonymous inner classes or lambda expressions to handle events

o far, all of the programs in this book have been console-based. This means
that they do not make use of a graphical user interface (GUI). Although
console-based programs are excellent for teaching the basics of Java and for

some types of programs, such as server-side code, most real-world applications will
be GUI-based. At the time of this writing, the most widely used Java GUI is Swing.

Swing defines a collection of classes and interfaces that support a rich set of visual
components, such as buttons, text fields, scroll panes, check boxes, trees, and tables,
to name a few. Collectively, these controls can be used to construct powerful, yet
easy-to-use graphical interfaces. Because of its widespread use, Swing is something
with which all Java programmers should be familiar. Therefore, this chapter provides
an introduction to this important GUI framework.

It is important to state at the outset that Swing is a very large topic that requires an
entire book of its own. This chapter can only scratch its surface. However, the
material presented here will give you a general understanding of Swing, including its
history, basic concepts, and design philosophy. It then introduces five commonly
used Swing components: the label, push button, text field, check box, and list.
Although this chapter describes only a small part of Swing’s features, after
completing it, you will be able to begin writing simple GUI-based programs. You
will also have a foundation upon which to continue your study of Swing.

Before moving on, it is necessary to mention that beginning with JDK 8, a new
GUI framework called JavaFX has been created for Java. JavaFX provides a
powerful, streamlined, flexible approach that simplifies the creation of visually
exciting GUIs. As such, JavaFX has clearly been positioned as the platform of the
future. Because of its importance, an introduction to JavaFX is provided in Chapter
17. Of course, Swing will continue to be in use for a long time, in part because of the
large amount of legacy code that exists for it. Therefore, both Swing and JavaFX are
likely to be part of any Java programmer’s job going forward.

NOTE
For a comprehensive introduction to Swing, see my book Swing: A Beginner’s Guide
(McGraw-Hill Professional, 2007).

The Origins and Design Philosophy of Swing
Swing did not exist in the early days of Java. Rather, it was a response to
deficiencies present in Java’s original GUI subsystem: the Abstract Window Toolkit
(AWT). The AWT defines a basic set of components that support a usable, but
limited, graphical interface. One reason for the limited nature of the AWT is that it
translates its various visual components into their corresponding, platform-specific
equivalents, or peers. This means that the look and feel of an AWT component is
defined by the platform, not by Java. Because the AWT components use native code
resources, they are referred to as heavyweight.

The use of native peers led to several problems. First, because of differences
between operating systems, a component might look, or even act, differently on
different platforms. This potential variability threatened the overarching philosophy
of Java: write once, run anywhere. Second, the look and feel of each component was
fixed (because it is defined by the platform) and could not be (easily) changed.
Third, the use of heavyweight components caused some frustrating restrictions. For
example, a heavyweight component was always opaque.

Not long after Java’s original release, it became apparent that the limitations and
restrictions present in the AWT were sufficiently serious that a better approach was
needed. The solution was Swing. Introduced in 1997, Swing was included as part of
the Java Foundation Classes (JFC). Swing was initially available for use with Java
1.1 as a separate library. However, beginning with Java 1.2, Swing (and the rest of
JFC) was fully integrated into Java.

Swing addresses the limitations associated with the AWT’s components through
the use of two key features: lightweight components and a pluggable look and feel.
Although they are largely transparent to the programmer, these two features are at
the foundation of Swing’s design philosophy and the reason for much of its power
and flexibility. Let’s look at each.

With very few exceptions, Swing components are lightweight. This means that a
component is written entirely in Java. They do not rely on platform-specific peers.
Lightweight components have some important advantages, including efficiency and
flexibility. Furthermore, because lightweight components do not translate into
platform-specific peers, the look and feel of each component is determined by
Swing, not by the underlying operating system. This means that each component can
work in a consistent manner across all platforms.

Because each Swing component is rendered by Java code rather than by platform-
specific peers, it is possible to separate the look and feel of a component from the
logic of the component, and this is what Swing does. Separating out the look and feel
provides a significant advantage: it becomes possible to change the way that a
component is rendered without affecting any of its other aspects. In other words, it is
possible to “plug in” a new look and feel for any given component without creating
any side effects in the code that uses that component.

Java provides look-and-feels, such as metal and Nimbus, that are available to all
Swing users. The metal look and feel is also called the Java look and feel. It is a
platform-independent look and feel that is available in all Java execution
environments. It is also the default look and feel. For this reason, the default Java
look and feel (metal) is used by the examples in this chapter.

Swing’s pluggable look and feel is made possible because Swing uses a modified
version of the classic model-view-controller (MVC) architecture. In MVC
terminology, the model corresponds to the state information associated with the
component. For example, in the case of a check box, the model contains a field that
indicates if the box is checked or unchecked. The view determines how the
component is displayed on the screen, including any aspects of the view that are
affected by the current state of the model. The controller determines how the
component reacts to the user. For example, when the user clicks a check box, the
controller reacts by changing the model to reflect the user’s choice (checked or

unchecked). This then results in the view being updated. By separating a component
into a model, a view, and a controller, the specific implementation of each can be
changed without affecting the other two. For instance, different view
implementations can render the same component in different ways without affecting
the model or the controller.

Although the MVC architecture and the principles behind it are conceptually
sound, the high level of separation between the view and the controller was not
beneficial for Swing components. Instead, Swing uses a modified version of MVC
that combines the view and the controller into a single logical entity called the UI
delegate. For this reason, Swing’s approach is called either the model-delegate
architecture or the separable model architecture. Therefore, although Swing’s
component architecture is based on MVC, it does not use a classical implementation
of it. Although you won’t work directly with models or UI delegates in this chapter,
they are, nevertheless, present behind the scene.

As you work through this chapter, you will see that even though Swing embodies
very sophisticated design concepts, it is easy to use. In fact, one could argue that
Swing’s ease of use is its most important advantage. Simply stated, Swing makes
manageable the often difficult task of developing your program’s user interface. This
lets you concentrate on the GUI itself, rather than on implementation details.

Ask the Expert
Q: You say that Swing defines a GUI that is superior to the AWT. Does

this mean that Swing replaces the AWT?
A: No, Swing does not replace the AWT. Rather, Swing builds upon the

foundation provided by aspects of the AWT. Thus, portions of the AWT
are still a crucial part of Java. Although knowledge of the AWT is not
required by this chapter, you need a solid understanding of its structure
and features if you seek full Swing mastery.

Components and Containers
A Swing GUI consists of two key items: components and containers. However, this
distinction is mostly conceptual because all containers are also components. The
difference between the two is found in their intended purpose: As the term is

commonly used, a component is an independent visual control, such as a push button
or text field. A container holds a group of components. Thus, a container is a special
type of component that is designed to hold other components. Furthermore, in order
for a component to be displayed, it must be held within a container. Thus, all Swing
GUIs will have at least one container. Because containers are components, a
container can also hold other containers. This enables Swing to define what is called
a containment hierarchy, at the top of which must be a top-level container.

Components
In general, Swing components are derived from the JComponent class. (The only
exceptions to this are the four top-level containers, described in the next section.)
JComponent provides the functionality that is common to all components. For
example, JComponent supports the pluggable look and feel. JComponent inherits
the AWT classes Container and Component. Thus, a Swing component is built on
and compatible with an AWT component.

All of Swing’s components are represented by classes defined within the package
javax.swing. The following table shows the class names for Swing components
(including those used as containers):

Notice that all component classes begin with the letter J. For example, the class
for a label is JLabel, the class for a push button is JButton, and the class for a check

box is JCheckBox. This chapter introduces five commonly used components:
JLabel, JButton, JTextField, JCheckBox, and JList. Once you understand their
basic operation, it will be easy for you to learn to use the others.

Containers
Swing defines two types of containers. The first are top-level containers: JFrame,
JApplet, JWindow, and JDialog. (JApplet, which supports Swing-based applets,
has been deprecated by JDK 9.) These containers do not inherit JComponent. They
do, however, inherit the AWT classes Component and Container. Unlike Swing’s
other components, which are lightweight, the top-level containers are heavyweight.
This makes the top-level containers a special case in the Swing component library.

As the name implies, a top-level container must be at the top of a containment
hierarchy. A top-level container is not contained within any other container.
Furthermore, every containment hierarchy must begin with a top-level container. The
one most commonly used for applications is JFrame.

The second type of container supported by Swing is the lightweight container.
Lightweight containers do inherit JComponent. Examples of lightweight containers
are JPanel, JScrollPane, and JRootPane. Lightweight containers are often used to
collectively organize and manage groups of related components because a
lightweight container can be contained within another container. Thus, you can use
lightweight containers to create subgroups of related controls that are contained
within an outer container.

The Top-Level Container Panes
Each top-level container defines a set of panes. At the top of the hierarchy is an
instance of JRootPane. JRootPane is a lightweight container whose purpose is to
manage the other panes. It also helps manage the optional menu bar. The panes that
compose the root pane are called the glass pane, the content pane, and the layered
pane.

The glass pane is the top-level pane. It sits above and completely covers all other
panes. The glass pane enables you to manage mouse events that affect the entire
container (rather than an individual control) or to paint over any other component,
for example. In most cases, you won’t need to use the glass pane directly. The
layered pane allows components to be given a depth value. This value determines
which component overlays another. (Thus, the layered pane lets you specify a Z-
order for a component, although this is not something that you will usually need to
do.) The layered pane holds the content pane and the (optional) menu bar. Although
the glass pane and the layered panes are integral to the operation of a top-level

container and serve important purposes, much of what they provide occurs behind
the scene.

The pane with which your application will interact the most is the content pane,
because this is the pane to which you will add visual components. In other words,
when you add a component, such as a button, to a top-level container, you will add it
to the content pane. Therefore, the content pane holds the components that the user
interacts with.

Layout Managers
Before you begin writing a Swing program, there is one more thing that you need to
be aware of: the layout manager. The layout manager controls the position of
components within a container. Java offers several layout managers. Most are
provided by the AWT (within java.awt), but Swing adds a few of its own. All layout
managers are instances of a class that implements the LayoutManager interface.
(Some will also implement the LayoutManager2 interface.) Here is a list of a few
of the layout managers available to the Swing programmer:

Frankly, the topic of layout managers is quite large, and it is not possible to
examine it in detail in this book. Fortunately, this chapter uses only two layout
managers—BorderLayout and FlowLayout—and both are very easy to use.

BorderLayout is the default layout manager for the content pane. It implements a
layout style that defines five locations to which a component can be added. The first
is the center. The other four are the sides (i.e., borders), which are called north,
south, east, and west. By default, when you add a component to the content pane,
you are adding the component to the center. To add a component to one of the other
regions, specify its name.

Although a border layout is useful in some situations, often another, more flexible

layout manager is needed. One of the simplest is FlowLayout. A flow layout lays
out components one row at a time, top to bottom. When one row is full, layout
advances to the next row. Although this scheme gives you little control over the
placement of components, it is quite simple to use. However, be aware that if you
resize the frame, the position of the components will change.

A First Simple Swing Program
Swing programs differ from the console-based programs shown earlier in this book.
Not only do Swing programs use the Swing component set to handle user interaction,
but they also have special requirements that relate to threading. The best way to
understand the structure of a Swing program is to work through an example.

NOTE
The type of Swing programs shown in this chapter are desktop applications. In the
past, Swing was also used to create applets. However, applets have been deprecated
by JDK 9 and are not recommended for new code. For this reason, they are not
discussed in this book.

Although quite short, the following program shows one way to write a Swing
application. In the process it demonstrates several key features of Swing. It uses two
Swing components: JFrame and JLabel. JFrame is the top-level container that is
commonly used for Swing applications. JLabel is the Swing component that creates
a label, which is a component that displays information. The label is Swing’s
simplest component because it is passive. That is, a label does not respond to user
input. It just displays output. The program uses a JFrame container to hold an
instance of a JLabel. The label displays a short text message.

Swing programs are compiled and run in the same way as other Java applications.
Thus, to compile this program, you can use this command line:

javac SwingDemo.java

Figure 16-1 The window produced by the SwingDemo program

To run the program, use this command line:

java SwingDemo

When the program is run, it will produce the window shown in Figure 16-1.

The First Swing Example Line by Line
Because the SwingDemo program illustrates several key Swing concepts, we will
examine it carefully, line by line. The program begins by importing the following
package:

import javax.swing.*;

This javax.swing package contains the components and models defined by Swing.
For example, it defines classes that implement labels, buttons, edit controls, and
menus. This package will be included in all programs that use Swing. Beginning
with JDK 9, javax.swing is in the java.desktop module.

Next, the program declares the SwingDemo class and a constructor for that class.
The constructor is where most of the action of the program occurs. It begins by
creating a JFrame, using this line of code:

JFrame jfrm = new JFrame("A Simple Swing Application.");

This creates a container called jfrm that defines a rectangular window complete with
a title bar; close, minimize, maximize, and restore buttons; and a system menu. Thus,
it creates a standard, top-level window. The title of the window is passed to the
constructor.

Next, the window is sized using this statement:

jfrm.setSize(275, 100);

The setSize() method sets the dimensions of the window, which are specified in
pixels. Its general form is shown here:

void setSize(int width, int height)

In this example, the width of the window is set to 275 and the height is set to 100.
By default, when a top-level window is closed (such as when the user clicks the

close box), the window is removed from the screen, but the application is not
terminated. While this default behavior is useful in some situations, it is not what is
needed for most applications. Instead, you will usually want the entire application to
terminate when its top-level window is closed. There are a couple of ways to achieve
this. The easiest way is to call setDefaultCloseOperation(), as the program does:

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

After this call executes, closing the window causes the entire application to
terminate. The general form of setDefaultCloseOperation() is shown here:

void setDefaultCloseOperation(int what)

The value passed in what determines what happens when the window is closed.
There are several other options in addition to JFrame.EXIT_ON_CLOSE. They are
shown here:

JFrame.DISPOSE_ON_CLOSE

JFrame.HIDE_ON_CLOSE

JFrame.DO_NOTHING_ON_CLOSE

Their names reflect their actions. These constants are declared in
WindowConstants, which is an interface declared in javax.swing that is
implemented by JFrame.

The next line of code creates a JLabel component:

JLabel jlab = new JLabel(" GUI programming with Swing.");

JLabel is the easiest-to-use Swing component because it does not accept user input.
It simply displays information, which can consist of text, an icon, or a combination
of the two. The label created by the program contains only text, which is passed to its
constructor.

The next line of code adds the label to the content pane of the frame:

jfrm.add(jlab);

As explained earlier, all top-level containers have a content pane in which
components are stored. Thus, to add a component to a frame, you must add it to the
frame’s content pane. This is accomplished by calling add() on the JFrame
reference (jfrm in this case). The add() method has several versions. The general
form of the one used by the program is shown here:

Component add(Component comp)

By default, the content pane associated with a JFrame uses a border layout. This
version of add() adds the component (in this case, a label) to the center location.
Other versions of add() enable you to specify one of the border regions. When a
component is added to the center, its size is automatically adjusted to fit the size of
the center.

The last statement in the SwingDemo constructor causes the window to become
visible.

jfrm.setVisible(true);

The setVisible() method has this general form:

void setVisible(boolean flag)

If flag is true, the window will be displayed. Otherwise, it will be hidden. By
default, a JFrame is invisible, so setVisible(true) must be called to show it.

Inside main(), a SwingDemo object is created, which causes the window and the
label to be displayed. Notice that the SwingDemo constructor is invoked using these
lines of code:

This sequence causes a SwingDemo object to be created on the event-dispatching
thread rather than on the main thread of the application. Here’s why. In general,
Swing programs are event-driven. For example, when a user interacts with a
component, an event is generated. An event is passed to the application by calling an
event handler defined by the application. However, the handler is executed on the
event-dispatching thread provided by Swing and not on the main thread of the
application. Thus, although event handlers are defined by your program, they are
called on a thread that was not created by your program. To avoid problems (such as

two different threads trying to update the same component at the same time), all
Swing GUI components must be created and updated from the event-dispatching
thread, not the main thread of the application. However, main() is executed on the
main thread. Thus, it cannot directly instantiate a SwingDemo object. Instead, it
must create a Runnable object that executes on the event-dispatching thread, and
have this object create the GUI.

To enable the GUI code to be created on the event-dispatching thread, you must
use one of two methods that are defined by the SwingUtilities class. These methods
are invokeLater() and invokeAndWait(). They are shown here:

static void invokeLater(Runnable obj)

static void invokeAndWait(Runnable obj)
throws InterruptedException, InvocationTargetException

Here, obj is a Runnable object that will have its run() method called by the event-
dispatching thread. The difference between the two methods is that invokeLater()
returns immediately, but invokeAndWait() waits until obj.run() returns. You can
use these methods to call a method that constructs the GUI for your Swing
application, or whenever you need to modify the state of the GUI from code not
executed by the event-dispatching thread. For the types of programs shown in this
chapter, you will normally want to use invokeLater(), as the preceding program
does.

One more point: The preceding program does not respond to any events, because
JLabel is a passive component. In other words, a JLabel does not generate any
events. Therefore, the preceding program does not include any event handlers.
However, all other components generate events to which your program must
respond, as the subsequent examples in this chapter show.

Ask the Expert
Q: You state that it is possible to add a component to the other regions

of a border layout by using an overloaded version of add(). Can you
explain?

A: As explained, BorderLayout implements a layout style that defines five
locations to which a component can be added. The first is the center. The
other four are the sides (i.e., borders), which are called north, south, east,
and west. By default, when you add a component to the content pane, you

are adding the component to the center. To specify one of the other
locations, use this form of add():

void add(Component comp, Object loc)

Here, comp is the component to add and loc specifies the location to which it
is added. The loc value is typically one of the following:

In general, BorderLayout is most useful when you are creating a
JFrame that contains a centered component (which might be a group of
components held within one of Swing’s lightweight containers) that has a
header and/or footer component associated with it. In other situations, one of
Java’s other layout managers will be more appropriate.

Swing Event Handling
As just explained, in general, Swing programs are event driven, with components
interacting with the program through events. For example, an event is generated
when the user clicks a button, moves the mouse, types a key, or selects an item from
a list. Events can also be generated in other ways. For example, an event is generated
when a timer goes off. When an event is sent to a program, the program responds to
the event by use of an event handler. Thus, event handling is an important part of
nearly all Swing applications.

The event handling mechanism used by Swing is called the delegation event
model. Its concept is quite simple. An event source generates an event and sends it to
one or more listeners. With this approach, the listener simply waits until it receives
an event. Once an event arrives, the listener processes the event and then returns.
The advantage of this design is that the application logic that processes events is
cleanly separated from the user interface logic that generates the events. Therefore, a
user interface element is able to “delegate” the handling of an event to a separate
piece of code. In the delegation event model, a listener must register with a source in
order to receive an event.

Let’s look at events, event sources, and listeners a bit more closely.

Events

In Java, an event is an object that describes a state change in an event source. It can
be generated as a consequence of a person interacting with an element in a graphical
user interface or generated under program control. The superclass for all events is
java.util.EventObject. Many events are declared in java.awt.event. Events
specifically related to Swing are found in javax.swing.event.

Event Sources
An event source is an object that generates an event. When a source generates an
event, it sends that event to all registered listeners. Therefore, in order for a listener
to receive an event, it must register with the source of that event. In Swing, listeners
register with a source by calling a method on the event source object. Each type of
event has its own registration method. Typically, events use the following naming
convention:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event and el is a reference to the event listener. For
example, the method that registers a keyboard event listener is called
addKeyListener(). The method that registers a mouse motion listener is called
addMouseMotionListener(). When an event occurs, the event is passed to all
registered listeners.

A source must also provide a method that allows a listener to unregister an interest
in a specific type of event. In Swing, the naming convention of such a method is this:

public void removeTypeListener(TypeListener el)

Again, Type is the name of the event and el is a reference to the event listener. For
example, to remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that
generates events. For example, as you will soon see, the JButton class is a source of
ActionEvents, which are events that indicate that some action, such as a button
press, has occurred. Thus, JButton provides methods to add or remove an action
listener.

Event Listeners
A listener is an object that is notified when an event occurs. It has two major
requirements. First, it must have registered with one or more sources to receive a
specific type of event. Second, it must implement a method to receive and process
that event.

The methods that receive and process events applicable to Swing are defined in a
set of interfaces, such as those found in java.awt.event and javax.swing.event. For
example, the ActionListener interface defines a method that handles an
ActionEvent. Any object may receive and process this event if it provides an
implementation of the ActionListener interface.

There is an important general principle that must be stated now. An event handler
should do its job quickly and then return. In most cases, it should not engage in a
long operation because doing so will slow down the entire application. If a time-
consuming operation is required, then a separate thread should be created for this
purpose.

Event Classes and Listener Interfaces
The classes that represent events are at the core of Swing’s event handling
mechanism. At the root of the event class hierarchy is EventObject, which is in
java.util. It is the superclass for all events in Java. The class AWTEvent, declared
in the java.awt package, is a subclass of EventObject. It is the superclass (either
directly or indirectly) of all AWT-based events used by the delegation event model.
Although Swing uses the AWT events, it also adds several of its own. As mentioned,
these are in javax.swing.event. Thus, Swing supports a large number of events.
However, in this chapter only three are used. They are shown here, along with their
corresponding listener.

The examples that follow illustrate the general procedures that you will use to
these handle events. However, the same basic mechanism applies to Swing event
handling in general. As you will see, the process is both streamlined and easy to use.

Use JButton
One of the most commonly used Swing controls is the push button. A push button is
an instance of JButton. JButton inherits the abstract class AbstractButton, which
defines the functionality common to all buttons. Swing push buttons can contain text,

an image, or both, but this book uses only text-based buttons.

JButton supplies several constructors. The one used here is

JButton(String msg)

Here, msg specifies the string that will be displayed inside the button.
When a push button is pressed, it generates an ActionEvent. JButton provides the

following methods, which are used to add or remove an action listener:

void addActionListener(ActionListener al)

void removeActionListener(ActionListener al)

Here, al specifies an object that will receive event notifications. This object must be
an instance of a class that implements the ActionListener interface.

The ActionListener interface defines only one method: actionPerformed(). It is
shown here:

void actionPerformed(ActionEvent ae)

This method is called when a button is pressed. In other words, it is the event handler
that is called when a button press event has occurred. Your implementation of
actionPerformed() must quickly respond to that event and return. As explained
earlier, as a general rule, event handlers must not engage in long operations, because
doing so will slow down the entire application.

Using the ActionEvent object passed to actionPerformed(), you can obtain
several useful pieces of information relating to the button-press event. The one used
by this chapter is the action command string associated with the button. By default,
this is the string displayed inside the button. The action command is obtained by
calling getActionCommand() on the event object. It is declared like this:

String getActionCommand()

The action command identifies the button. Thus, when using two or more buttons
within the same application, the action command gives you an easy way to determine
which button was pressed.

The following program demonstrates how to create a push button and respond to
button-press events. Figure 16-2 shows how the example appears on the screen.

Let’s take a close look at the new things in this program. First, notice that the
program now imports both the java.awt and java.awt.event packages. The java.awt
package is needed because it contains the FlowLayout class, which supports the
flow layout manager. The java.awt.event package is needed because it defines the
ActionListener interface and the ActionEvent class. Beginning with JDK 9, both
packages are in the java.desktop module.

Next, the class ButtonDemo is declared. Notice that it implements
ActionListener. This means that ButtonDemo objects can be used to receive action
events. Next, a JLabel reference is declared. This reference will be used within the

actionPerformed() method to display which button has been pressed.

Figure 16-2 Output from the ButtonDemo program

The ButtonDemo constructor begins by creating a JFrame called jfrm. It then
sets the layout manager for the content pane of jfrm to FlowLayout, as shown here:

jfrm.setLayout(new FlowLayout());

As explained earlier, by default, the content pane uses BorderLayout as its layout
manager, but for many applications, FlowLayout is more convenient. Recall that a
flow layout lays out components one row at a time, top to bottom. When one row is
full, layout advances to the next row. Although this scheme gives you little control
over the placement of components, it is quite simple to use. However, be aware that
if you resize the frame, the position of the components will change.

After setting the size and the default close operation, ButtonDemo() creates two
buttons, as shown here:

JButton jbtnUp = new JButton("Up");
JButton jbtnDown = new JButton("Down");

The first button will contain the text "Up", and the second will contain "Down".
Next, the instance of ButtonDemo referred to via this is added as an action

listener for the buttons by these two lines:

jbtnUp.addActionListener(this);
jbtnDown.addActionListener(this);

This approach means that the object that creates the buttons will also receive
notifications when a button is pressed.

Each time a button is pressed, it generates an action event and all registered
listeners are notified by calling the actionPerformed() method. The ActionEvent
object representing the button event is passed as a parameter. In the case of
ButtonDemo, this event is passed to this implementation of actionPerformed():

The event that occurred is passed via ae. Inside the method, the action command
associated with the button that generated the event is obtained by calling
getActionCommand(). (Recall that, by default, the action command is the same as
the text displayed by the button.) Based on the contents of that string, the text in the
label is set to show which button was pressed.

One last point: Remember that actionPerformed() is called on the event-
dispatching thread as explained earlier. It must return quickly in order to avoid
slowing down the application.

Work with JTextField
Another commonly used control is JTextField. It enables the user to enter a line of
text. JTextField inherits the abstract class JTextComponent, which is the
superclass of all text components. JTextField defines several constructors. The one
we will use is shown here:

JTextField(int cols)

Here, cols specifies the width of the text field in columns. It is important to
understand that you can enter a string that is longer than the number of columns. It’s
just that the physical size of the text field on the screen will be cols columns wide.

When you press ENTER when inputting into a text field, an ActionEvent is
generated. Therefore, JTextField provides the addActionListener() and
removeActionListener() methods. To handle action events, you must implement
the actionPerformed() method defined by the ActionListener interface. The
process is similar to handling action events generated by a button, as described
earlier.

Like a JButton, a JTextField has an action command string associated with it. By
default, the action command is the current content of the text field. However, this
default is seldom used. Instead, you will usually set the action command to a fixed
value of your own choosing by calling the setActionCommand() method, shown
here:

void setActionCommand(String cmd)

The string passed in cmd becomes the new action command. The text in the text field
is unaffected. Once you set the action command string, it remains the same no matter
what is entered into the text field. One reason that you might want to explicitly set
the action command is to provide a way to recognize the text field as the source of an
action event. This is especially important when another control in the same frame
also generates action events and you want to use the same event handler to process
both events. Setting the action command gives you a way to tell them apart. Also, if
you don’t set the action command associated with a text field, then by happenstance
the contents of the text field might match the action command of another component.

Ask the Expert
Q: You explained that the action command associated with a text field

can be set by calling setActionCommand(). Can I use this method to
set the action command associated with a push button?

A: Yes. As explained, by default the action command associated with a push
button is the name of the button. To set the action command to a different
value, you can use the setActionCommand() method. It works the same
for JButton as it does for JTextField.

To obtain the string that is currently displayed in the text field, call getText() on
the JTextField instance. It is declared as shown here:

String getText()

You can set the text in a JTextField by calling setText(), shown next:

void setText(String text)

Here, text is the string that will be put into the text field.
The following program demonstrates JTextField. It contains one text field, one

push button, and two labels. One label prompts the user to enter text into the text
field. When the user presses ENTER while focus is within the text field, the contents
of the text field are obtained and displayed within a second label. The push button is

called Reverse. When pressed, it reverses the contents of the text field. Sample
output is shown in Figure 16-3.

Figure 16-3 Sample output from the TFDemo program

Much of the program will be familiar, but a few parts warrant special attention.
First, notice that the action command associated with the text field is set to "myTF"
by the following line:

jtf.setActionCommand("myTF");

After this line executes, the action command string will always be "myTF" no matter
what text is currently held in the text field. Therefore, the action command generated
by jtf will not accidentally conflict with the action command associated with the
Reverse push button. The actionPerformed() method makes use of this fact to
determine what event has occurred. If the action command string is "Reverse", it can
mean only one thing: that the Reverse push button has been pressed. Otherwise, the
action command was generated by the user pressing ENTER while the text field had
input focus.

Finally, notice this line from within the actionPerformed() method:

As explained, when the user presses ENTER while focus is inside the text field, an
ActionEvent is generated and sent to all registered action listeners, through the
actionPerformed() method. For TFDemo, this method simply obtains the text
currently held in the text field by calling getText() on jtf. It then displays the text
through the label referred to by jlabContents.

Create a JCheckBox
After the push button, perhaps the next most widely used control is the check box. In
Swing, a check box is an object of type JCheckBox. JCheckBox inherits
AbstractButton and JToggleButton. Thus, a check box is, essentially, a special
type of button.

JCheckBox defines several constructors. The one used here is

JCheckBox(String str)

It creates a check box that has the text specified by str as a label.
When a check box is selected or deselected (that is, checked or unchecked), an

item event is generated. Item events are represented by the ItemEvent class. Item
events are handled by classes that implement the ItemListener interface. This
interface specifies only one method, itemStateChanged(), which is shown here:

void itemStateChanged(ItemEvent ie)

The item event is received in ie.
To obtain a reference to the item that changed, call getItem() on the ItemEvent

object. This method is shown here:

Object getItem()

The reference returned must be cast to the component class being handled, which in
this case is JCheckBox.

You can obtain the text associated with a check box by calling getText(). You
can set the text after a check box is created by calling setText(). These methods
work the same as they do for JButton, described earlier.

The easiest way to determine the state of a check box is to call the isSelected()
method. It is shown here:

boolean isSelected()

It returns true if the check box is selected and false otherwise.
The following program demonstrates check boxes. It creates three check boxes

called Alpha, Beta, and Gamma. Each time the state of a box is changed, the current
action is displayed. Also, the list of all currently selected check boxes is displayed.
Sample output is shown in Figure 16-4.

The main point of interest in this program is the item event handler,
itemStateChanged(). It performs two functions. First, it reports whether the check
box has been selected or cleared. Second, it displays all selected check boxes. It
begins by obtaining a reference to the check box that generated the ItemEvent, as
shown here:

JCheckBox cb = (JCheckBox) ie.getItem();

The cast to JCheckBox is necessary because getItem() returns a reference of
type Object. Next, itemStateChanged() calls isSelected() on cb to determine the
current state of the check box. If isSelected() returns true, it means that the user
selected the check box. Otherwise, the check box was cleared. It then sets the
jlabChanged label to reflect what happened.

Finally, itemStateChanged() checks the selected state of each check box,
building a string that contains the names of those that are selected. It displays this
string in the jlabSelected label.

Figure 16-4 Sample output from the CBDemo program

Work with JList
The last component that we will examine is JList. This is Swing’s basic list class. It
supports the selection of one or more items from a list. Although often the list
consists of strings, it is possible to create a list of just about any object that can be
displayed. JList is so widely used in Java that it is highly unlikely that you have not
seen one before.

In the past, the items in a JList were represented as Object references. However,
beginning with JDK 7, JList was made generic, and it is now declared like this:

class JList<E>

Here, E represents the type of the items in the list. As a result, JList is now type-
safe.

JList provides several constructors. The one used here is

JList(E[] items)

This creates a JList that contains the items in the array specified by items.
Although a JList will work properly by itself, most of the time you will wrap a

JList inside a JScrollPane, which is a container that automatically provides
scrolling for its contents. Here is the constructor that we will use:

JScrollPane(Component comp)

Here, comp specifies the component to be scrolled, which in this case will be a
JList. When you wrap a JList in a JScrollPane, long lists will automatically be
scrollable. This simplifies GUI design. It also makes it easy to change the number of
entries in a list without having to change the size of the JList component.

A JList generates a ListSelectionEvent when the user makes or changes a
selection. This event is also generated when the user deselects an item. It is handled

by implementing ListSelectionListener, which is packaged in javax.swing.event.
This listener specifies only one method, called valueChanged(), which is shown
here:

void valueChanged(ListSelectionEvent le)

Here, le is a reference to the object that generated the event. Although
ListSelectionEvent does provide some methods of its own, often you will
interrogate the JList object itself to determine what has occurred.
ListSelectionEvent is also packaged in javax.swing.event.

By default, a JList allows the user to select multiple ranges of items within the
list, but you can change this behavior by calling setSelectionMode(), which is
defined by JList. It is shown here:

void setSelectionMode(int mode)

Here, mode specifies the selection mode. It must be one of these values defined by
the ListSelectionModel interface (which is packaged in javax.swing):

SINGLE_SELECTION

SINGLE_INTERVAL_SELECTION

MULTIPLE_INTERVAL_SELECTION

The default, multiple-interval selection lets the user select multiple ranges of items
within a list. With single-interval selection, the user can select one range of items.
With single selection, the user can select only a single item. Of course, a single item
can be selected in the other two modes, too. It’s just that they also allow a range to
be selected.

You can obtain the index of the first item selected, which will also be the index of
the only selected item when using single-selection mode, by calling
getSelectedIndex(), shown here:

int getSelectedIndex()

Indexing begins at zero. So, if the first item is selected, this method will return 0. If
no item is selected, –1 is returned.

You can obtain an array containing all selected items by calling
getSelectedIndices(), shown next:

int[] getSelectedIndices()

In the returned array, the indices are ordered from smallest to largest. If a zero-length
array is returned, it means that no items are selected.

The following program demonstrates a simple JList, which holds a list of names.
Each time a name is selected in the list, a ListSelectionEvent is generated, which is
handled by the valueChanged() method defined by ListSelectionListener. It
responds by obtaining the index of the selected item and displaying the
corresponding name. Sample output is shown in Figure 16-5.

Let’s look closely at this program. First, notice the names array near the top of the
program. It is initialized to a list of strings that contain various names. Inside
ListDemo(), a JList called jlst is constructed using the names array. As mentioned,
when the array constructor is used (as it is in this case), a JList instance is
automatically created that contains the contents of the array. Thus, the list will
contain the names in names.

Next, the selection mode is set to single selection. This means that only one item
in this list can be selected at any one time. Then, jlst is wrapped inside a
JScrollPane, and the preferred size of the scroll pane is set to 120 by 90. This makes
for a compact, but easy-to-use scroll pane. In Swing, the setPreferredSize() method
sets the ideal size of a component. Be aware that some layout managers are free to
ignore this request, but most often the preferred size determines the size of the
component.

A list selection event occurs whenever the user selects an item or changes the item
selected. Inside the valueChanged() event handler, the index of the item selected is
obtained by calling getSelectedIndex(). Because the list has been set to single-
selection mode, this is also the index of the only item selected. This index is then
used to index the names array to obtain the selected name. Notice that this index
value is tested against –1. Recall that this is the value returned if no item has been
selected. This will be the case when the selection event handler is called if the user
has deselected an item. Remember: A selection event is generated when the user
selects or deselects an item.

Figure 16-5 Output from the ListDemo program

Try This 16-1 A Swing-Based File Comparison Utility

Although you know only a small amount about Swing, you can still put it to use to
create a practical application. In Try This 10-1, you created a console-based file
comparison utility. This project creates a Swing-based version of the program. As
you will see, giving this application a Swing-based user interface substantially
improves its appearance and makes it easier to use. Here is how the Swing version
looks:

Because Swing streamlines the creation of GUI-based programs, you might be
surprised by how easy it is to create this program.

1. Begin by creating a file called SwingFC.java and then enter the following
comment and import statements:

2. Next, begin the SwingFC class, as shown here:

The names of the files to compare are entered into the text fields defined by
jtfFirst and jtfSecond. To compare the files, the user presses the jbtnComp
button. Prompting messages are displayed in jlabFirst and jlabSecond. The
results of the comparison, or any error messages, are displayed in jlabResult.

3. Code the SwingFC constructor like this:

Most of the code in this constructor should be familiar to you. However, notice
one thing: an action listener is added only to the push button jbtnCompare.
Action listeners are not added to the text fields. Here’s why: the contents of the
text fields are needed only when the Compare button is pushed. At no other time
are their contents required. Thus, there is no reason to respond to any text field
events. As you begin to write more Swing programs, you will find that this is
often the case when using a text field.

4. Begin creating the actionPerformed() event handler, as shown next. This
method is called when the Compare button is pressed.

The method begins by confirming that the user has entered a file name into each
of the text fields. If this is not the case, the missing file name is reported and the
handler returns.

5. Now, finish actionPerformed() by adding the code that actually opens the files
and then compares them.

6. Finish SwingFC by adding the following main() method.

7. The entire Swing-based file comparison program is shown here:

Use Anonymous Inner Classes or Lambda
Expressions to Handle Events
Up to this point, the programs in this chapter have used a simple, straightforward
approach to handling events in which the main class of the application has
implemented the listener interface itself and all events are sent to an instance of that
class. While this is perfectly acceptable, it is not the only way to handle events. For
example, you could use separate listener classes. Thus, different classes could handle
different events and these classes would be separate from the main class of the
application. However, two other approaches offer powerful alternatives. First, you

can implement listeners through the use of anonymous inner classes. Second, in
some cases, you can use a lambda expression to handle an event. Let’s look at
each approach.

Anonymous inner classes are inner classes that don’t have a name. Instead, an
instance of the class is simply generated “on the fly” as needed. Anonymous inner
classes make implementing some types of event handlers much easier. For example,
given a JButton called jbtn, you could implement an action listener for it like this:

Here, an anonymous inner class is created that implements the ActionListener
interface. Pay special attention to the syntax. The body of the inner class begins after
the { that follows new ActionListener(). Also notice that the call to
addActionListener() ends with a) and a ; just like normal. The same basic syntax
and approach is used to create an anonymous inner class for any event handler. Of
course, for different events, you specify different event listeners and implement
different methods.

One advantage to using an anonymous inner class is that the component that
invokes the class’ methods is already known. For instance, in the preceding example,
there is no need to call getActionCommand() to determine what component
generated the event, because this implementation of actionPerformed() will only be
called by events generated by jbtn.

In the case of an event whose listener defines a functional interface, you can
handle the event by use of a lambda expression. For example, action events can be
handled with a lambda expression because ActionListener defines only one abstract
method, actionPerformed(). Using a lambda expression to implement
ActionListener provides a compact alternative to explicitly declaring an anonymous
inner class. For example, again assuming a JButton called jbtn, you could
implement the action listener like this:

As was the case with the anonymous inner class approach, the object that generates
the event is known. In this case, the lambda expression applies only to the jbtn
button.

Of course, in cases in which an event can be handled by use of a single expression,
it is not necessary to use a block lambda. For example, here is an action event
handler for the Up button in the ButtonDemo program shown earlier. It requires
only an expression lambda.

jbtnUp.addActionListener((ae) -> jlab.setText("You pressed Up."));

Notice how much shorter this code is compared with the original approach. It is also
shorter than it would be if you explicitly used an anonymous inner class.

In general, you can use a lambda expression to handle an event when its listener
defines a functional interface. For example, ItemListener is also a functional
interface. Of course, whether you use the traditional approach, an anonymous inner
class, or a lambda expression will be determined by the precise nature of your
application. To gain experience with each, try converting the event handlers in the
foregoing examples to lambda expressions or anonymous inner classes.

 Chapter 16 Self Test

1. In general, AWT components are heavyweight and Swing components are
____________.

2. Can the look and feel of a Swing component be changed? If so, what feature
enables this?

3. What is the most commonly used top-level container for an application?
4. Top-level containers have several panes. To what pane are components added?
5. Show how to construct a label that contains the message "Select an entry from

the list".
6. All interaction with GUI components must take place on what thread?
7. What is the default action command associated with a JButton? How can the

action command be changed?
8. What event is generated when a push button is pressed?
9. Show how to create a text field that has 32 columns.

10. Can a JTextField have its action command set? If so, how?
11. What Swing component creates a check box? What event is generated when a

check box is selected or deselected?

12. JList displays a list of items from which the user can select. True or False?
13. What event is generated when the user selects or deselects an item in a JList?
14. What method sets the selection mode of a JList? What method obtains the index

of the first selected item?
15. Add a check box to the file comparer developed in Try This 15-1 that has the

following text: Show position of mismatch. When this box is checked, have the
program display the location of the first point in the files at which a mismatch
occurs.

16. Change the ListDemo program so that it allows multiple items in the list to be
selected.

17. Bonus challenge: Convert the Help class developed in Try This 4-1 into a
Swing-based GUI program. Display the keywords (for, while, switch, and so
on) in a JList. When the user selects one, display the keyword’s syntax. To
display multiple lines of text within a label, you can use HTML. When doing so,
you must begin the text with the sequence <html>. When this is done, the text is
automatically formatted as described by the markup. In addition to other
benefits, using HTML enables you to create labels that span two or more lines.
For example, this creates a label that displays two lines of text, with the string
"Top" over the string "Bottom".
JLabel jlabhtml = new JLabel("<html>Top
Bottom</html>");

No answer is shown for this exercise. You have reached the point where you are
ready to apply your Java skills on your own!

I

Chapter 17

Introducing JavaFX

Key Skills & Concepts
 Understand JavaFX’s concepts of a stage, a scene, a node, and a scene graph

 Know the JavaFX life-cycle methods

 Know the general form of a JavaFX application

 Understand how to launch a JavaFX application

 Create a Label

 Use Button

 Handle events

 Use CheckBox

 Work with ListView

 Create a TextField

 Add effects

 Apply transforms

n the fast-paced world of computing, change is constant, and the art and science
of programming continue to evolve and advance. It should not then be surprising
that Java’s GUI frameworks have also participated in this process. Recall that

Java’s original GUI framework was the AWT. It was soon followed by Swing,
which offered a far superior approach. Although Swing has been very successful, it
can be difficult to create the “visual sparkle” that many of today’s applications
demand. Furthermore, the conceptual basis that underpins the design of GUI
frameworks has advanced. To better handle the demands of the modern GUI and

advances in GUI design, a new approach was needed. The result was JavaFX, Java’s
next-generation GUI framework. This chapter provides an introduction to this
powerful system.

It is important to mention that the development of JavaFX occurred in two main
phases. The original JavaFX was based on a scripting language called JavaFX Script.
However, JavaFX Script has been discontinued. Beginning with the release of
JavaFX 2.0, JavaFX has been programmed in Java itself and provides a
comprehensive API. JavaFX has been bundled with Java since JDK 7, update 4. The
latest version of JavaFX is JavaFX 9, which is included with JDK 9. Because, at the
time of this writing, JavaFX 9 represents the latest version of JavaFX, it is the
version of JavaFX discussed here.

Before we begin, it is useful to answer one question that naturally arises relating to
JavaFX: Is JavaFX designed as a replacement for Swing? The answer is, essentially,
Yes. However, Swing will be part of Java programming for some time to come. The
reason is that there is a large amount of Swing legacy code. Furthermore, there are
legions of programmers who know how to program for Swing. Nevertheless, JavaFX
has clearly been positioned as the platform of the future. It is expected that over the
next few years, JavaFX will supplant Swing for new projects, and many Swing-
based applications will migrate to JavaFX. Simply put: JavaFX is something that no
Java programmer can afford to ignore.

NOTE
This chapter assumes that you have an understanding of GUI basics, including event
handling, as introduced in Chapter 16.

JavaFX Basic Concepts
Before you can create a JavaFX application, there are several key concepts and
features you must understand. Although JavaFX has similarities with Swing
(discussed in the previous chapter), it has substantial differences. For example, like
Swing, JavaFX components are lightweight and events are handled in an easy-to-
manage, straightforward manner. However, the overall organization of JavaFX and
the relationship of its main components differ significantly from Swing. Therefore, a
careful reading of the following sections is recommended.

The JavaFX Packages
The JavaFX framework is contained in packages that begin with the javafx prefix.
At the time of this writing, there are more than 30 JavaFX packages in its API

library. Here are four examples: javafx.application, javafx.stage, javafx.scene, and
javafx.scene.layout. Although we will only use a few JavaFX packages in this
chapter, you will want to spend some time browsing their capabilities. JavaFX offers
a wide array of functionality. Beginning with JDK 9, the JavaFX packages are
organized into modules, such as javafx.base, javafx.graphics, and javafx.controls.

The Stage and Scene Classes
The central metaphor implemented by JavaFX is the stage. As in the case of an
actual stage play, a stage contains a scene. Thus, loosely speaking, a stage defines a
space and a scene defines what goes in that space. Or, put another way, a stage is a
container for scenes and a scene is a container for the items that comprise the scene.
As a result, all JavaFX applications have at least one stage and one scene. These
elements are encapsulated in the JavaFX API by the Stage and Scene classes. To
create a JavaFX application, you will, at minimum, add at least one Scene object to a
Stage. Let’s look a bit more closely at these two classes.

Stage is a top-level container. All JavaFX applications automatically have access
to one Stage, called the primary stage. The primary stage is supplied by the run-time
system when a JavaFX application is started. Although you can create other stages,
for many applications, the primary stage will be the only one required.

As mentioned, Scene is a container for the items that comprise the scene. These
can consist of controls, such as push buttons and check boxes, text, and graphics. To
create a scene, you will add those elements to an instance of Scene.

Nodes and Scene Graphs
The individual elements of a scene are called nodes. For example, a push button
control is a node. However, nodes can also consist of groups of nodes. Furthermore,
a node can have a child node. In this case, a node with a child is called a parent node
or branch node. Nodes without children are terminal nodes and are called leaves.
The collection of all nodes in a scene creates what is referred to as a scene graph,
which comprises a tree.

There is one special type of node in the scene graph, called the root node. This is
the top-level node and is the only node in the scene graph that does not have a
parent. Thus, with the exception of the root node, all other nodes have parents, and
all nodes either directly or indirectly descend from the root node.

The base class for all nodes is Node. There are several other classes that are, either
directly or indirectly, subclasses of Node. These include Parent, Group, Region,
and Control, to name a few.

Layouts
JavaFX provides several layout panes that manage the process of placing elements in
a scene. For example, the FlowPane class provides a flow layout and the GridPane
class supports a row/column grid-based layout. Several other layouts, such as
BorderPane (which is similar to the AWT’s BorderLayout), are available. Each
inherits Node. The layouts are packaged in javafx.scene.layout.

The Application Class and the Life-cycle Methods
A JavaFX application must be a subclass of the Application class, which is
packaged in javafx.application. Thus, your application class will extend
Application. The Application class defines three life-cycle methods that your
application can override. These are called init(), start(), and stop(), and are shown
here, in the order in which they are called:

void init()

abstract void start(Stage primaryStage)

void stop()

The init() method is called when the application begins execution. It is used to
perform various initializations. As will be explained, it cannot, however, be used to
create a stage or build a scene. If no initializations are required, this method need not
be overridden because an empty, default version is provided.

The start() method is called after init(). This is where your application begins
and it can be used to construct and set the scene. Notice that it is passed a reference
to a Stage object. This is the stage provided by the run-time system and is the
primary stage. Notice that this method is abstract. Thus, it must be overridden by
your application.

When your application is terminated, the stop() method is called. It is here that
you can handle any cleanup or shutdown chores. In cases in which no such actions
are needed, an empty, default version is provided.

Launching a JavaFX Application
To start a free-standing JavaFX application, you must call the launch() method
defined by Application. It has two forms. Here is the one used in this chapter:

public static void launch(String ... args)

Here, args is a possibly empty list of strings that typically specify command-line
arguments. When called, launch() causes the application to be constructed, followed
by calls to init() and start(). The launch() method will not return until after the
application has terminated. This version of launch() starts the subclass of
Application from which launch() is called. The second form of launch() lets you
specify a class other than the enclosing class to start.

Before moving on, it is necessary to make an important point: JavaFX applications
that have been packaged by using the javafxpackager tool (or its equivalent in an
IDE) do not need to include a call to launch(). However, its inclusion often
simplifies the test/debug cycle, and it lets you use the program without creating a
JAR file. Thus, it is included in the programs in this chapter.

A JavaFX Application Skeleton
All JavaFX applications share the same basic skeleton. Therefore, before looking at
any more JavaFX features, it will be useful to see what that skeleton looks like. In
addition to showing the general form of a JavaFX application, the skeleton also
illustrates how to launch the application and demonstrates when the life-cycle
methods are called. A message noting when each life-cycle method is called is
displayed on the console. The complete skeleton is shown here:

Although the skeleton is quite short, it can be compiled and run. It produces an
empty window. However, it also produces the following output on the console:

When you close the window, this message is displayed on the console:

Inside the stop() method.

Of course, in a real program, the life-cycle methods would not normally output
anything to System.out. They do so here simply to illustrate when each method is
called. Furthermore, as explained earlier, you will need to override the init() and
stop() methods only if your application must perform special startup or shutdown
actions. Otherwise, you can use the default implementations of these methods
provided by the Application class.

Let’s examine this program in detail. It begins by importing four packages. The
first is javafx.application, which contains the Application class. The Scene class is
packaged in javafx.scene, and Stage is packaged in javafx.stage. The
javafx.scene.layout package provides several layout panes. The one used by the
program is FlowPane.

Next, the application class JavaFXSkel is created. Notice that it extends
Application. As explained, Application is the class from which all JavaFX
applications are derived. JavaFXSkel contains four methods. The first is main(). It
is used to launch the application via a call to launch(). Notice that the args
parameter to main() is passed to the launch() method. Although this is a common
approach, you can pass a different set of parameters to launch(), or none at all. One
other point: launch() is required by a free-standing application, but not in other
cases. When it is not needed, main() is also not needed. However, for reasons
already explained, both main() and launch() are included in the programs in this
chapter.

When the application begins, the init() method is called first by the JavaFX run-
time system. For the sake of illustration, it simply displays a message on
System.out, but it would normally be used to initialize some aspect of the
application. Of course, if no initialization is required, it is not necessary to override
init() because an empty, default implementation is provided. It is important to
emphasize that init() cannot be used to create the stage or scene portions of a GUI.
Rather, these items should be constructed and displayed by the start() method.

After init() finishes, the start() method executes. It is here that the initial scene is
created and set to the primary stage. Let’s look at this method line-by-line. First,
notice that start() has a parameter of type Stage. When start() is called, this
parameter will receive a reference to the primary stage of the application. It is to this
stage that you will set a scene for the application.

After displaying a message on the console that start() has begun execution, it sets
the title of the stage using this call to setTitle():

myStage.setTitle("JavaFX Skeleton."); //

Although this step is not necessarily required, it is customary for stand-alone
applications. This title becomes the name of the main application window.

Next, a root node for a scene is created. The root node is the only node in a scene
graph that does not have a parent. In this case, a FlowPane is used for the root node,
but there are several other classes that can be used for the root.

FlowPane rootNode = new FlowPane(); //

As mentioned, a FlowPane uses a flow layout. This is a layout in which elements are
positioned line-by-line, with lines wrapping as needed. (Thus, it works much like the
FlowLayout class used by Swing.) In this case, a horizontal flow is used, but it is
possible to specify a vertical flow. Although not needed by this skeletal application,
it is also possible to specify other layout properties, such as a vertical and horizontal
gap between elements, and an alignment.

The following line uses the root node to construct a Scene:

Scene myScene = new Scene(rootNode, 300, 200);

Scene provides several versions of its constructor. The one used here creates a scene
that has the specified root with the specified width and height. It is shown here:

Scene(Parent rootnode, double width, double height)

Notice that the type of rootnode is Parent. It is a subclass of Node and encapsulates
nodes that can have children. Also notice that the width and the height are double
values. This lets you pass fractional values, if needed. In the skeleton, the root is
rootNode, the width is 300, and the height is 200.

The next line in the program sets myScene as the scene for myStage:

myStage.setScene(myScene);

Here, setScene() is a method defined by Stage that sets the scene to that specified
by its argument.

In cases in which you don’t make further use of the scene, you can combine the
previous two steps, as shown here:

myStage.setScene(new Scene(rootNode, 300, 200));

Because of its compactness, this form will be used by most of the subsequent
examples.

The last line in start() displays the stage and its scene:

myStage.show();

In essence, show() shows the window that was created by the stage and scene.
When you close the application, its window is removed from the screen and the

stop() method is called by the JavaFX run-time system. In this case, stop() simply
displays a message on the console, illustrating when it is called. However, stop()
would not normally display anything. Furthermore, if your application does not need
to handle any shutdown actions, there is no reason to override stop() because an
empty, default implementation is provided.

Compiling and Running a JavaFX Program
One important advantage of JavaFX is that the same program can be run in a variety
of different execution environments. For example, you can run a JavaFX program as
a stand-alone desktop application or as a Java Web Start application. However,
different ancillary files may be needed in some cases, such as an HTML file or a
Java Network Launch Protocol (JNLP) file.

In general, a JavaFX program is compiled like any other Java program. However,
depending on the target execution environment, some additional steps may be
required. For this reason, often the easiest way to compile a JavaFX application is to
use an Integrated Development Environment (IDE) that fully supports JavaFX
programming. If you just want to compile and test the JavaFX applications shown in
this chapter, you can easily do so using the command-line tools. Just compile and run
the application in the normal way, using javac and java. This creates a stand-alone
application that runs on the desktop.

The Application Thread
In the preceding discussion, it was mentioned that you cannot use the init() method
to construct a stage or scene. You also cannot create these items inside the
application’s constructor. The reason is that a stage or scene must be constructed on
the application thread. However, the init() method and the application’s constructor
are called on the main thread, also called the launcher thread. Thus, they can’t be
used to construct a stage or scene. Instead, you must use the start() method, as the
skeleton demonstrates, to create the initial GUI because start() is called on the

application thread.
Furthermore, any changes to the GUI currently displayed must be made from the

application thread. Fortunately, in JavaFX, events are sent to your program on the
application thread. Therefore, event handlers can be used to interact with the GUI.
The stop() method is also called on the application thread.

A Simple JavaFX Control: Label
The primary ingredient in most user interfaces is the control because a control
enables the user to interact with the application. As you would expect, JavaFX
supplies a rich assortment of controls. The simplest control is the label because it just
displays a message or an image. Although quite easy to use, the label is a good way
to introduce the techniques needed to begin building a scene graph.

The JavaFX label is an instance of the Label class, which is packaged in
javafx.scene.control. Label inherits Labeled and Control, among other classes.
The Labeled class defines several features that are common to all labeled elements
(that is, those that can contain text), and Control defines features related to all
controls.

The Label constructor that we will use is shown here:

Label(String str)

The string that is displayed is specified by str.
Once you have created a label (or any other control) it must be added to the

scene’s content, which means adding it to the scene graph. To do this, you will first
call getChildren() on the root node of the scene graph. It returns a list of the child
nodes in the form of an ObservableList<Node>. ObservableList is packaged in
javafx.collections, and it inherits java.util.List, which is part of Java’s Collections
Framework. List defines a collection that represents a list of objects. Although a
discussion of List and the Collections Framework is beyond the scope of this book,
it is easy to use ObservableList to add child nodes. Simply call add() on the list of
child nodes returned by getChildren(), passing in a reference to the node to add,
which in this case is a label.

The following program puts the preceding discussion into action by creating a
simple JavaFX application that displays a label:

Ask the Expert
Q: You have explained how to add a node to the scene graph. Is there a

way to remove one?
A: Yes, to remove a control from the scene graph, call remove() on the

ObservableList. For example,
rootNode.getChildren().remove(myLabel);

removes myLabel from the scene. In general, ObservableList supports a
wide range of list-management methods. Here are two examples. You can
determine if the list is empty by calling isEmpty(). You can obtain the
number of nodes in the list by calling size(). You will want to explore
ObservableList on your own as you advance in your study of JavaFX.

This program produces the following window:

In the program, pay special attention to this line:

rootNode.getChildren().add(myLabel);

It adds the label to the list of children for which rootNode is the parent. Although
this line could be separated into its individual pieces if necessary, you will often see
it as shown here.

Before moving on, it is useful to point out that ObservableList provides a method
called addAll() that can be used to add two or more children to the scene graph in a
single call. You will see an example of this shortly.

Using Buttons and Events
Although the program in the preceding section presents a simple example of using a
JavaFX control and constructing a scene graph, it does not show how to handle
events. Event handling is important because most GUI controls generate events that
are handled by your program. For example, buttons, check boxes, and lists all
generate events when they are used. In many ways, event handling in JavaFX is
similar to event handling in Swing as shown in the preceding chapter, but it’s more
streamlined. One commonly used control is the button. This makes button events one
of the most frequently handled. Therefore, a button is a good way to introduce event
handling in JavaFX. For this reason, the fundamentals of event handling and the
button are described together.

Event Basics
The base class for JavaFX events is the Event class, which is packaged in
javafx.event. Event inherits java.util.EventObject, which means that JavaFX
events share the same basic functionality as other Java events. Several subclasses of
Event are defined. The one that we will use here is ActionEvent. It encapsulates
action events generated by a button.

In general, JavaFX uses what is, in essence, the delegation event model approach
to event handling. To handle an event, you must first register the handler that acts as
a listener for the event. When the event occurs, the listener is called. It must then
respond to the event and return. In this regard, JavaFX events are managed much like
Swing events.

Events are handled by implementing the EventHandler interface, which is also in
javafx.event. It is a generic interface with the following form:

Interface EventHandler<T extends Event>

Here, T specifies the type of event that the handler will handle. It defines one
method, called handle(), which receives the event object as a parameter. It is shown
here:

void handle(T eventObj)

In this case, eventObj is the event that was generated. Typically, event handlers are
implemented through anonymous inner classes or lambda expressions, but you can
use stand-alone classes for this purpose if it is more appropriate to your application
(for example, if one event handler will handle events from more than one source).

Introducing the Button Control
In JavaFX, the push button control is provided by the Button class, which is in
javafx.scene.control. Button inherits a fairly long list of base classes that include
ButtonBase, Labeled, Region, Control, Parent, and Node. If you examine the API
documentation for Button, you will see that much of its functionality comes from its
base classes. Furthermore, it supports a wide array of options. However, here we will
use its default form. Buttons can contain text, graphics, or both. In this example, we
will use text-based buttons.

The Button constructor we will use is shown here:

Button(String str)

In this case, str is the message that is displayed in the button.
When a button is pressed, an ActionEvent is generated. ActionEvent is packaged

in javafx.event. You can register a listener for this event by calling setOnAction()
on the button. It has this general form:

final void setOnAction(EventHandler<ActionEvent> handler)

Here, handler is the handler being registered. As mentioned, often you will use an
anonymous inner class or lambda expression for the handler. The setOnAction()
method sets the property onAction, which stores a reference to the handler. As with
all other Java event handling, your handler must respond to the event as fast as
possible and then return. If your handler consumes too much time, it will noticeably
slow down the application. For lengthy operations, you must use a separate thread of
execution.

Demonstrating Event Handling and the Button
The following program demonstrates event handling and the Button control. It uses
two buttons and a label. The buttons are called Up and Down. Each time a button is
pressed, the content of the label is set to display which button was pressed. Thus, it
functions similarly to the JButton example in the preceding chapter. You might find
it interesting to compare the code for each.

Sample output from this program is shown here:

Let’s examine a few key portions of this program. First, notice how buttons are
created by these two lines:

Button btnUp = new Button("Up");
Button btnDown = new Button("Down");

This creates two text-based buttons. The first displays the string Up; the second
displays Down.

Next, an action event handler is set for each of these buttons. The sequence for the
Up button is shown here:

As explained, buttons respond to events of type ActionEvent. To register a handler
for these events, the setOnAction() method is called on the button. It uses an
anonymous inner class to implement the EventHandler interface. (Recall that
EventHandler defines only the handle() method.) Inside handle(), the text in the
response label is set to reflect the fact that the Up button was pressed. Notice that
this is done by calling the setText() method on the label. Events are handled by the
Down button in the same way.

After the event handlers have been set, the response label and the buttons btnUp
and btnDown are added to the scene graph by using a call to addAll():

rootNode.getChildren().addAll(btnUp, btnDown, response);

The addAll() method adds a list of nodes to the invoking parent node. Of course,
these nodes could have been added by three separate calls to add(), but the addAll(
) method is more convenient to use in this situation.

There are two other things of interest in this program that relate to the way the
controls are displayed in the window. First, when the root node is created, this
statement is used:

FlowPane rootNode = new FlowPane(10, 10);

Here, the FlowPane constructor is passed two values. These specify the horizontal
and vertical gap that will be left around elements in the scene. If these gaps are not
specified, then two elements (such as two buttons) would be positioned in such a

way that no space was between them. Thus, the controls would run together, creating
a very unappealing user interface. Specifying gaps prevents this.

The second point of interest is the following line, which sets the alignment of the
elements in the FlowPane:

rootNode.setAlignment(Pos.CENTER);

Here, the alignment of the elements is centered. This is done by calling
setAlignment() on the FlowPane. The value Pos.CENTER specifies that both a
vertical and horizontal center will be used. Other alignments are possible. Pos is an
enumeration that specifies alignment constants. It is packaged in javafx.geometry.

Before moving on, one more point needs to be made. The preceding program used
anonymous inner classes to handle button events. However, because the
EventHandler interface defines only one abstract method, handle(), a lambda
expression could have been passed to setOnAction(), instead. For example, here is
the handler for the Up button, rewritten to use a lambda:

Notice that the lambda expression is more compact than the anonymous inner class.
(You will use lambda expressions when you modify this example as part of exercise
10 in the Self Test.)

Three More JavaFX Controls
JavaFX defines a rich set of controls, which are packaged in javafx.scene.control.
You have already seen two of them: Label and Button. Here, we will look at three
more: CheckBox, ListView, and TextField. As their names imply, they support a
check box, a list control, and a text field. Combined, these provide a representative
sampling of the JavaFX controls. They also help demonstrate several common
techniques. Once you understand the basics, you will be able to explore the other
controls on your own.

The controls described here provide functionality similar to that of the Swing
controls presented by the preceding Swing chapter. As you work through this
section, you might find it interesting to compare the way these controls are
implemented by the two frameworks.

CheckBox

In JavaFX, the check box is encapsulated by the CheckBox class. Its immediate
superclass is ButtonBase. Thus it is a special type of button. Although you are no
doubt familiar with check boxes because they are widely used controls, the JavaFX
check box is a bit more sophisticated than you may at first think. This is because
CheckBox supports three states. The first two are checked or unchecked, as you
would expect, and this is the default behavior. The third state is indeterminate (also
called undefined). This state is typically used to indicate that the state of the check
box has not been set or that it is not relevant to a specific situation. To use the
indeterminate state, you will need to explicitly enable it. This procedure is
demonstrated in Try This 17-1. Here, we will examine the CheckBox’s traditional
operation.

Here is the CheckBox constructor that we will use:

CheckBox(String str)

It creates a check box that has the text specified by str as a label. As with other
buttons, a CheckBox generates an action event when it is selected.

The following program demonstrates check boxes. It displays four check boxes
that represent different types of computers. They are labeled Smartphone, Tablet,
Notebook, and Desktop. Each time a check-box state changes, an action event is
generated. It is handled by displaying the new state (selected or cleared) and by
displaying a list of all selected boxes.

Sample output is shown here:

The operation of this program is straightforward. Each time a check box is
changed, an ActionEvent is generated. The handlers for these events first report
whether the check box was selected or cleared. To do this, they call the isSelected()
method on the event source. It returns true if the check box was just selected, and
false if it was just cleared. Next, the showAll() method is called, which displays all
selected check boxes.

There is one other point of interest in the program. Notice that it uses a vertical
flow pane for the layout, as shown here:

FlowPane rootNode = new FlowPane(Orientation.VERTICAL, 10, 10);

By default, FlowPane flows horizontally. A vertical flow is created by passing the
value Orientation.VERTICAL as the first argument to the FlowPane constructor.

Try This 17-1 Use the CheckBox Indeterminate State

As explained, by default, CheckBox implements two states: checked and unchecked.
However, CheckBox also supports a third, indeterminate state, which can be used to
indicate that the state of the box has not yet been set or that an option is not
applicable to a situation. The indeterminate state for a check box must be explicitly
enabled. It is not provided by default. Also, the event handler for the check box must
also handle the indeterminate state. The project illustrates the process. It does so by
adding support for the indeterminate state to the Smartphone check box in
CheckboxDemo program, just shown.

1. To enable the indeterminate state in a check box, call setAllowIndeterminate(),
shown here:

final void setAllowIndeterminate(boolean enable)

If enable is true, the indeterminate state is enabled. Otherwise, it is disabled.
When the indeterminate state is enabled, the user can select between checked,
unchecked, and indeterminate. Therefore, to enable the indeterminate state on
the Smartphone check box, add this line:
cbSmartphone.setAllowIndeterminate(true);

2. To determine if a check box is in the indeterminate state, call isIndeterminate(),
shown here:

final boolean isIndeterminate()

It returns true if the check box state is indeterminate and false otherwise. The
event handler for the check box will need to test for the indeterminate state. To

do so, add it to the Smartphone event handler, as shown here:

3. After making these changes, compile and run the program. Now, you can set the
state of the Smartphone check box to indeterminate, as shown here:

ListView
Another commonly used control is the list view, which in JavaFX is encapsulated by
ListView. A ListView can display a list of entries from which you can select one or
more. One very useful feature of ListView is that scroll bars are automatically added
when the number of items in the list exceeds the number that can be displayed within
the control’s dimensions. Because of its ability to make efficient use of limited
screen space, ListView is a popular alternative to other types of selection controls.

ListView is a generic class that is declared like this:

class ListView<T>

Here, T specifies the type of entries stored in the list view. Often, these are entries of
type String, but other types are also allowed.

Here is the ListView constructor that we will use:

ListView(ObservableList<T> list)

The list of items to be displayed is specified by list. It is an object of type
ObservableList. As explained earlier, ObservableList supports a list of objects. By
default, a ListView allows only one item in the list to be selected at any one time.
You can allow multiple selections by changing the selection mode, but we will use
the default, single-selection mode.

Probably the easiest way to create an ObservableList for use in a ListView is to
use the factory method observableArrayList(), which is a static method defined by
the FXCollections class (which is packaged in javafx.collections). The version we
will use is shown here:

static <E> ObservableList<E> observableArrayList(E ... elements)

In this case, E specifies the type of elements, which are passed via elements.
Although ListView provides a default size, sometimes you will want to set the

preferred height and/or width to best match your needs. One way to do this is to call
the setPrefHeight() and setPrefWidth() methods, shown here:

final void setPrefHeight(double height)

final void setPrefWidth(double width)

Alternatively, you can use a single call to set both dimensions at the same time by
use of setPrefSize(), shown here:

void setPrefSize(double width, double height)

There are two basic ways in which you can use a ListView. First, you can ignore
events generated by the list and simply obtain the selection in the list when your
program needs it. Second, you can monitor the list for changes by registering a
change listener. This lets you respond each time the user changes a selection in the
list. This is the approach used here.

A change listener is supported by the ChangeListener interface, which is
packaged in javafx.beans.value. The ChangeListener interface defines only one

method, called changed(). It is shown here:

void changed(ObservableValue<? extends T> changed, T oldVal, T newVal)

In this case, changed is the instance of ObservableValue<T> which encapsulates an
object that can be watched for changes. The oldVal and newVal parameters pass the
previous value and the new value, respectively. Thus, in this case, newVal holds a
reference to the list item that has just been selected.

To listen for change events, you must first obtain the selection model used by the
ListView. This is done by calling getSelectionModel() on the list. It is shown here:

final MultipleSelectionModel<T> getSelectionModel()

It returns a reference to the model. MulitpleSelectionModel is a class that defines
the model used for multiple selections, and it inherits SelectionModel. However,
multiple selections are allowed in a ListView only if multiple-selection mode is
turned on.

Using the model returned by getSelectionModel(), you will obtain a reference to
the selected item property that defines what takes place when an element in the list is
selected. This is done by calling selectedItemProperty(), shown next:

final ReadOnlyObjectProperty<T> selectedItemProperty()

You will add the change listener to this property by using the addListener() method
on the returned property. The addListener() method is shown here:

void addListener(ChangeListener<? super T> listener)

In this case, T specifies the type of the property.
The following example puts the preceding discussion into action. It creates a list

view that displays a list of computer types, allowing the user to select one. When one
is chosen, the selection is displayed.

Sample output is shown here.

Notice that a vertical scroll bar has been included so that the list can be scrolled to

see all of its entries. As mentioned, when the contents of a ListView exceed its size,
a scroll bar is automatically added. This makes ListView a very convenient control.

In the program, pay special attention to how the ListView is constructed. First, an
ObservableList is created by this line:

It uses the observableArrayList() method to create a list of strings. Then, the
ObservableList is used to initialize a ListView, as shown here:

ListView<String> lvComputers = new ListView<String>(computerTypes);

The program then sets the preferred width and height of the control.
Now, notice how the selection model is obtained for lvComputers:

As explained, ListView uses MultipleSelectionModel, even when only a single
selection is allowed. The selectedItemProperty() method is then called on the
model and a change listener is registered, as shown here:

As a point of interest, the same basic mechanism used to listen for and handle
change events can be applied to any control that generates change events.

Ask the Expert
Q: How do I enable multiple selections in a ListView?

A: When using a ListView, if you want to allow more than one item to be
selected, you must explicitly request it. To do so, you must set the
selection mode by calling setSelectionMode() on the ListView model. It
is shown here:

final void setSelectionMode(SelectionMode mode)

In this case, mode must be either SelectionMode.MULTIPLE or
SelectionMode.SINGLE. To enable multiple selections, use
SelectionMode.MULTIPLE.

One way to get a list of the selected items is to call getSelectedItems()
on the selection model. It is shown here:

ObservableList<T> getSelectedItems()

It returns an ObservableList of the items. You could then cycle through the
returned list using a for-each for, for example, to examine the items.

TextField
Controls such as Button, CheckBox, and ListView are, obviously, quite useful, but
they all implement a means of selecting a predetermined option or action.
Sometimes, however, you will want the user to enter a string of his or her own
choosing. To accommodate this type of input, JavaFX includes several text-based
controls. The one we will look at is TextField. It allows one line of text to be
entered. Thus, it is useful for obtaining names, ID strings, addresses, and the like.
Like all JavaFX text controls, TextField inherits TextInputControl, which defines
much of its functionality.

TextField defines two constructors. The first is the default constructor, which
creates an empty text field that has the default size. The second lets you specify the
initial contents of the field. Here, we will use the default constructor.

Although the default size of a TextField is sometimes adequate, often you will
want to specify its size. This is done by calling setPrefColumnCount(), shown
here:

final void setPrefColumnCount(int columns)

The columns value is used by TextField to determine its size.
You can set the text in a text field by calling setText(). You can obtain the current

text by calling getText(). In addition to these fundamental operations, TextField

supports several other capabilities that you might want to explore, such as cut, paste,
and append. You can also select a portion of the text under program control.

One especially useful TextField option is the ability to set a prompting message
inside the text field when the user attempts to use a blank field. To do this, call
setPromptText(), shown here:

final void setPromptText(String str)

In this case, str is the string displayed in the text field when no text has been entered.
It is displayed using low-intensity (such as a gray tone).

When the user presses ENTER while inside a TextField, an action event is
generated. Although handling this event is often helpful, in some cases, your
program will simply obtain the text when it is needed, rather than handling action
events. Both approaches are demonstrated by the following program. It creates a text
field that requests a name. When the user presses enter while the text field has input
focus, or presses the Get Name button, the string is obtained and displayed. Notice
that a prompting message is also included.

Sample output is shown here:

In the program, notice that lambda expressions are used as event handlers. Each
handler consists of a single method call. This makes them perfect candidates for
lambda expressions.

Ask the Expert

Q: What other text controls does JavaFX support?
A: Other text controls include TextArea, which supports multiline text, and

PasswordField, which can be used to input passwords. You might also
find HTMLEditor and TextInputDialog helpful.

Introducing Effects and Transforms
A principal advantage of JavaFX is its ability to alter the precise look of a control (or
any node in the scene graph) through the application of an effect and/or a transform.
Both effects and transforms help give your GUI the sophisticated, modern look that
users have come to expect. As you will see, the ease with which effects and/or
transforms can be used in JavaFX is one of its strongest features. Although the topic
of effects and transforms is quite large, the following introduction will give you an
idea of the benefits they provide.

Effects
Effects are supported by the abstract Effect class and its concrete subclasses, which
are packaged in javafx.scene.effect. Using these effects, you can customize the way
a node in a scene graph looks. Several built-in effects are provided. Here is a
sampling:

These, and the other effects, are easy to use and are available to any Node, including
controls. Of course, depending on the control, some effects will be more appropriate
than others.

To set an effect on a node, call setEffect(), which is defined by Node. It is shown
here:

final void setEffect(Effect effect)

In this case, effect is the effect that will be applied. To specify no effect, pass null.
Thus, to add an effect to a node, first create an instance of that effect and then pass it
to setEffect(). Once this has been done, the effect will be used whenever the node is
rendered (as long as the effect is supported by the environment). To demonstrate the
power of effects, we will use two of them: Reflection and BoxBlur. However, the
process of adding an effect is essentially the same no matter what effect you choose.

BoxBlur blurs the node on which it is used. It is called BoxBlur because it uses a
blurring technique based on adjusting pixels within a rectangular region. The amount
of blurring is under your control. To use a blur effect, you must first create a
BoxBlur instance. BoxBlur supplies two constructors. Here is the constructor that
we will use:

BoxBlur(double width, double height, int iterations)

Here, width and height specify the size of box into which a pixel will be blurred.
These values must be between 0 and 255, inclusive. Typically, these values are at the
lower end of this range. The number of times that the blur effect is applied is
specified by iterations, which must be between 0 and 3, inclusive. A default
constructor is also supported, which sets the width and height to 5.0 and the
iterations to 1.

After a BoxBlur instance has been created, the width and height of the box can be
changed by using setWidth() and setHeight(), shown here:

final void setWidth(double width)

final void setHeight(double height)

The number of iterations can be changed by calling setIterations():

final void setIterations(int iterations)

By using these methods, you can change the blur effect during the execution of your
program.

Reflection produces an effect that simulates a reflection of the node on which it is
called. It is particularly useful on text, such as that contained in a label. Reflection
gives you significant control over how the reflection will look. For example, you can
set the opacity of both the top and the bottom of the reflection. You can also set the
space between the image and its reflection, and the amount reflected. These can set

by the following Reflection constructor:

Reflection(double offset, double fraction, double topOpacity, double bottomOpacity)

Here, offset specifies the distance between the bottom of the image and its reflection.
The amount of the reflection that is shown is specified as a fraction, specified by
fraction. It must be between 0 and 1.0. The top and bottom opacity is specified by
topOpacity and bottomOpacity. Both must be between 0 and 1.0. A default
constructor is also supplied, which sets the offset to 0, the amount to 0.75, the top
opacity to 0.5, and the bottom opacity to 0.

The offset, amount shown, and opacities can also be changed during program
execution. For example, the opacities are set using setTopOpacity() and
setBottomOpacity(), shown here:

final void setTopOpacity(double opacity)

final void setBottomOpacity(double opacity)

The offset is changed by calling setTopOffset():

final void setTopOffset(double offset)

The amount of the reflection displayed can be set by calling setFraction():

final void setFraction(double amount)

These methods let you adjust the reflection during program execution.

Transforms
Transforms are supported by the abstract Transform class, which is packaged in
javafx.scene.transform. Four of its subclasses are Rotate, Scale, Shear, and
Translate. Each does what its name suggests. (Another subclass is Affine, but
typically you will use one or more of the preceding transform classes.) It is possible
to perform more than one transform on a node. For example, you could rotate and
scale it. Transforms are supported by the Node class as described next.

One way to add a transform to a node is to add it to the list of transforms
maintained by the node. This list is obtained by calling getTransforms(), which is
defined by Node. It is shown here:

final ObservableList<Transform> getTransforms()

It returns a reference to the list of transforms. To add a transform, simply add it to
this list by calling add(). You can clear the list by calling clear(). You can use
remove() to remove a specific element.

In some cases, you can specify a transform directly by setting one of Node’s
properties. For example, you can set the rotation angle of a node, with the pivot point
being at the center of the node, by calling setRotate(), passing in the desired angle.
You can set a scale by using setScaleX() and setScaleY(), and you can translate a
node by using setTranslateX() and setTranslateY(). (Z axis transforms may also
be supported by the platform.) However, using the transforms list offers the greatest
flexibility, and that is the approach demonstrated here.

To demonstrate the use of transforms, we will use the Rotate and Scale classes.
(The other transforms are used in the same general way.) Rotate rotates a node
through a specified angle around a specified point. These values can be set when a
Rotate instance is created. For example, here is one Rotate constructor:

Rotate(double angle, double x, double y)

In this case, angle specifies the number of degrees to rotate. The center of rotation,
called the pivot point, is specified by x and y.

It is also possible to use the default constructor and set the rotation values after a
Rotate object has been created, which is what the demonstration program shown in
the next section will do. This is done by using the setAngle(), setPivotX(), and
setPivotY() methods, shown here:

final void setAngle(double angle)

final void setPivotX(double x)

final void setPivotY(double y)

As before, angle specifies the number of degrees to rotate and the center of rotation
is specified by x and y. Using these methods, you can rotate a node during program
execution. This can create a very dramatic effect.

Scale scales a node as specified by a scale factor. Thus, it changes a node’s size.
Scale defines several constructors. Here is the one that we will use:

Scale(double widthFactor, double heightFactor)

In this case, widthFactor specifies the scaling factor applied to the node’s width, and
heightFactor specifies the scaling factor applied to the node’s height. These factors

can be changed after a Scale instance has been created by using setX() and setY(),
shown here:

final void setX(double widthFactor)

final void setY(double heightFactor)

As before, widthFactor specifies the scaling factor applied to the node’s width, and
heightFactor specifies the scaling factor applied to the node’s height. You might use
these methods to change the size of a control during program execution, possibly to
draw attention to it.

Demonstrating Effects and Transforms
The following program demonstrates the use of effects and transforms. It does so by
creating three buttons and a label. The buttons are called Rotate, Scale, and Blur.
Each time one of these buttons is pressed, the corresponding effect or transform is
applied to the button. Specifically, each time you press Rotate, the button is rotated
by 15 degrees. Each time you press Scale, the button size is changed. Each time you
press Blur, the button is progressively blurred. The label illustrates the reflection
effect. When you examine the program, you will see how easy it is to customize the
look of your GUI. You might find it interesting to experiment with it, trying different
transforms or effects, or trying the effects on different types of nodes other than
buttons.

Sample output is shown here:

Before leaving the topic of effects and transforms, it is useful to mention that
several of them are particularly pleasing when used on a Text node. Text is a class
packaged in javafx.scene.text. It creates a node that consists of text. Because it is a
node, the text can be easily manipulated as a unit and various effects and transforms
can be applied.

What Next?
Congratulations! If you have read and worked through the preceding 17 chapters,
then you can call yourself a Java programmer. Of course, there are still many, many
things to learn about Java, its libraries, and its subsystems, but you now have a solid
foundation upon which you can build your knowledge and expertise.

Here are a few of the topics that you will want to learn more about:

 JavaFX and Swing—both are an important part of today’s Java programming
environment.

 Event handling.

 Java’s networking classes.

 Java’s utility classes, especially its Collections Framework, which simplifies a
number of common programming tasks.

 The Concurrent API, which offers detailed control over high-performance
multithreaded applications.

 Java Beans, which supports the creation of software components in Java.

 Servlets. If you will be writing high-powered web applications, then you will
want to learn about servlets.

To continue your study of Java, I recommend my book Java: The Complete
Reference, Tenth Edition (Oracle Press/McGraw-Hill Education, 2018). In it, you
will find comprehensive coverage of the Java language, its key libraries, and many
more example programs.

 Chapter 17 Self Test

1. What is the top-level package name of the JavaFX framework?
2. Two concepts central to JavaFX are a stage and a scene. What classes

encapsulate them?
3. A scene graph is composed of ________.
4. The base class for all nodes is ________.
5. What class will all JavaFX applications extend?
6. What are the three JavaFX life-cycle methods?
7. In what life-cycle method can you construct an application’s stage?
8. The launch() method is called to start a free-standing JavaFX application. True

or False?
9. What are the names of the JavaFX classes that support a label and a button?

10. One way to terminate a free-standing JavaFX application is to call
Platform.exit(). Platform is packaged in javafx.Application. When called,
exit() immediately terminates the program. With this in mind, change the
JavaFXEventDemo program shown in this chapter so that it has two buttons
called Run and Exit. If Run is pressed, have the program display that choice in a
label. If Exit is pressed, have the application terminate. Use lambda expressions
for the event handlers.

11. What JavaFX control implements a check box?
12. ListView is a control that displays a directory list of files on the local file

system. True or False?
13. Convert the Swing-based file comparison program in Try This 16-1 so it uses

JavaFX instead. In the process, make use of another of JavaFX’s features: its
ability to fire an action event on a button under program control. This is done by
calling fire() on the button instance. For example, assuming a Button called
myButtton, the following will fire an action event on it: myButton.fire(). Use

this fact when implementing the event handlers for the text fields that hold the
names of the files to compare. If the user presses enter when in either of these
fields, simply fire an action event on the Compare button. The event-handling
code for the Compare button will then handle the file comparison.

14. Modify the EffectsAndTransformsDemo program so the Rotate button is also
blurred. Use a blur width and height of 5 and an iteration count of 2.

15. On your own, experiment with other effects and transforms. For example, try the
Glow effect and the Translate transform.

16. Continue to advance in your knowledge of Java. A good way to start is by
examining Java’s core packages, such as java.lang, java.util, and java.net.
Write sample programs that demonstrate their various classes and interfaces. In
general, the best way to become a great Java programmer is to write lots of code.

Appendix A

Answers to Self Tests

Chapter 1: Java Fundamentals
 What is bytecode and why is it important to Java’s use for Internet programming?

Bytecode is a highly optimized set of instructions that is executed by the Java
Virtual Machine.
Bytecode helps Java achieve both portability and security.

 What are the three main principles of object-oriented programming?
Encapsulation, polymorphism, and inheritance.

 Where do Java programs begin execution?
Java programs begin execution at main().

 What is a variable?
A variable is a named memory location. The contents of a variable can be
changed during the execution of a program.

 Which of the following variable names is invalid?
The invalid variable is D. Variable names cannot begin with a digit.

 How do you create a single-line comment? How do you create a multiline comment?
A single-line comment begins with // and ends at the end of the line. A
multiline comment begins with /* and ends with */.

 Show the general form of the if statement. Show the general form of the for loop.
The general form of the if:
if(condition) statement;

The general form of the for:
for(initialization; condition; iteration) statement;

 How do you create a block of code?
A block of code is started with a { and ended with a }.

 The moon’s gravity is about 17 percent that of the earth’s. Write a program that
computes your effective weight on the moon.

 Adapt Try This 1-2 so that it prints a conversion table of inches to meters. Display
12 feet of conversions, inch by inch. Output a blank line every 12 inches. (One meter
equals approximately 39.37 inches.)

 If you make a typing mistake when entering your program, what sort of error will
result?

A syntax error.
 Does it matter where on a line you put a statement?

No, Java is a free-form language.

Chapter 2: Introducing Data Types and
Operators

 Why does Java strictly specify the range and behavior of its primitive types?
Java strictly specifies the range and behavior of its primitive types to ensure

portability across platforms.
 What is Java’s character type, and how does it differ from the character type used by

some other programming languages?
Java’s character type is char. Java characters are Unicode rather than ASCII,
which is used by some other computer languages.

 A boolean value can have any value you like because any non-zero value is true.
True or False?

False. A boolean value must be either true or false.
 Given this output,

One
Two
Three
use a single string to show the println() statement that produced it.
System.out.println("One\nTwo\nThree");

 What is wrong with this fragment?

There are two fundamental flaws in the fragment. First, sum is created each
time the block defined by the for loop is entered and destroyed on exit. Thus, it
will not hold its value between iterations. Attempting to use sum to hold a
running sum of the iterations is pointless. Second, sum will not be known
outside of the block in which it is declared. Thus, the reference to it in the
println() statement is invalid.

 Explain the difference between the prefix and postfix forms of the increment
operator.

When the increment operator precedes its operand, Java will perform the
increment prior to obtaining the operand’s value for use by the rest of the
expression. If the operator follows its operand, then Java will obtain the
operand’s value before incrementing.

 Show how a short-circuit AND can be used to prevent a divide-by-zero error.

if((b != 0) && (val / b)) ...
 In an expression, what type are byte and short promoted to?

In an expression, byte and short are promoted to int.
 In general, when is a cast needed?

A cast is needed when converting between incompatible types or when a
narrowing conversion is occurring.

 Write a program that finds all of the prime numbers between 2 and 100.

 Does the use of redundant parentheses affect program performance?
No.

 Does a block define a scope?
Yes.

Chapter 3: Program Control Statements
 Write a program that reads characters from the keyboard until a period is received.

Have the program count the number of spaces. Report the total at the end of the

program.

 Show the general form of the if-else-if ladder.

 Given

to what if does the last else associate?
The last else associates with if(y > 100).

 Show the for statement for a loop that counts from 1000 to 0 by –2.
for(int i = 1000; i >= 0; i -= 2) // ...

 Is the following fragment valid?

No; i is not known outside of the for loop in which it is declared.
 Explain what break does. Be sure to explain both of its forms.

A break without a label causes termination of its immediately enclosing loop
or switch statement.A break with a label causes control to transfer to the end
of the labeled block.

 In the following fragment, after the break statement executes, what is displayed?

After break executes, “after while” is displayed.
 What does the following fragment print?

Here is the answer:

 The iteration expression in a for loop need not always alter the loop control variable
by a fixed amount. Instead, the loop control variable can change in any arbitrary
way. Using this concept, write a program that uses a for loop to generate and display
the progression 1, 2, 4, 8, 16, 32, and so on.

 The ASCII lowercase letters are separated from the uppercase letters by 32. Thus, to
convert a lowercase letter to uppercase, subtract 32 from it. Use this information to
write a program that reads characters from the keyboard. Have it convert all
lowercase letters to uppercase, and all uppercase letters to lowercase, displaying the
result. Make no changes to any other character. Have the program stop when the
user enters a period. At the end, have the program display the number of case
changes that have taken place.

 What is an infinite loop?
An infinite loop is a loop that runs indefinitely.

 When using break with a label, must the label be on a block that contains the
break?

Yes.

Chapter 4: Introducing Classes, Objects, and
Methods

 What is the difference between a class and an object?
A class is a logical abstraction that describes the form and behavior of an
object. An object is a physical instance of the class.

 How is a class defined?
A class is defined by using the keyword class. Inside the class statement, you
specify the code and data that comprise the class.

 What does each object have its own copy of?
Each object of a class has its own copy of the class’ instance variables.

 Using two separate statements, show how to declare an object called counter of a
class called MyCounter.

MyCounter counter;
counter = new MyCounter();

 Show how a method called myMeth() is declared if it has a return type of double
and has two int parameters called a and b.

double myMeth(int a, int b) { // ...
 How must a method return if it returns a value?

A method that returns a value must return via the return statement, passing
back the return value in the process.

 What name does a constructor have?
A constructor has the same name as its class.

 What does new do?
The new operator allocates memory for an object and initializes it using the
object’s constructor.

 What is garbage collection and how does it work?
Garbage collection is the mechanism that recycles unused objects so that their
memory can be reused.

 What is this?
The this keyword is a reference to the object on which a method is invoked. It
is automatically passed to a method.

 Can a constructor have one or more parameters?
Yes.

 If a method returns no value, what must its return type be?
void

Chapter 5: More Data Types and Operators
 Show two ways to declare a one-dimensional array of 12 doubles.

double x[] = new double[12];
double[] x = new double[12];

 Show how to initialize a one-dimensional array of integers to the values 1 through 5.
int x[] = { 1, 2, 3, 4, 5 };

 Write a program that uses an array to find the average of ten double values. Use any
ten values you like.

 Change the sort in Try This 5-1 so that it sorts an array of strings. Demonstrate that it
works.

 What is the difference between the String methods indexOf() and lastIndexOf()?
The indexOf() method finds the first occurrence of the specified substring.
lastIndexOf() finds the last occurrence.

 Since all strings are objects of type String, show how you can call the length() and
charAt() methods on this string literal: "I like Java".

As strange as it may look, this is a valid call to length():
System.out.println("I like Java".length());
The output displayed is 11. charAt() is called in a similar fashion.

 Expanding on the Encode cipher class, modify it so that it uses an eight-character
string as the key.

 Can the bitwise operators be applied to the double type?
No.

 Show how this sequence can be rewritten using the ? operator.
if(x < 0) y = 10;
else y = 20;
Here is the answer:
y = x < 0 ? 10 : 20;

 In the following fragment, is the & a bitwise or logical operator? Why?
boolean a, b;
// ...
if(a & b) ...
It is a logical operator because the operands are of type boolean.

 Is it an error to overrun the end of an array?
Yes.
Is it an error to index an array with a negative value?
Yes. All array indexes start at zero.

 What is the unsigned right-shift operator?
>>>

 Rewrite the MinMax class shown earlier in this chapter so that it uses a for-each
style for loop.

 Can the for loops that perform sorting in the Bubble class shown in Try This 5-1 be
converted into for-each style loops? If not, why not?

No, the for loops in the Bubble class that perform the sort cannot be converted
into for-each style loops. In the case of the outer loop, the current value of its
loop counter is needed by the inner loop. In the case of the inner loop, out-of-
order values must be exchanged, which implies assignments. Assignments to
the underlying array cannot take place when using a for-each style loop.

 Can a String control a switch statement?
Beginning with JDK 7, the answer is Yes.

Chapter 6: A Closer Look at Methods and

Classes
 Given this fragment,

is the following fragment correct?

No; a private member cannot be accessed outside of its class.
 An access modifier must __________ a member’s declaration.

precede
 The complement of a queue is a stack. It uses first-in, last-out accessing and is often

likened to a stack of plates. The first plate put on the table is the last plate used.
Create a stack class called Stack that can hold characters. Call the methods that
access the stack push() and pop(). Allow the user to specify the size of the stack
when it is created. Keep all other members of the Stack class private. (Hint: You can
use the Queue class as a model; just change the way that the data is accessed.)

Here is the output from the program:

 Given this class,

write a method called swap() that exchanges the contents of the objects
referred to by two Test object references.

 Is the following fragment correct?

No. Overloaded methods can have different return types, but they do not play a
role in overload resolution. Overloaded methods must have different parameter
lists.

 Write a recursive method that displays the contents of a string backwards.

 If all objects of a class need to share the same variable, how must you declare that
variable?

Shared variables are declared as static.
 Why might you need to use a static block?

A static block is used to perform any initializations related to the class, before
any objects are created.

 What is an inner class?
An inner class is a nonstatic nested class.

 To make a member accessible by only other members of its class, what access
modifier must be used?

private
 The name of a method plus its parameter list constitutes the method’s __________.

signature
 An int argument is passed to a method by using call-by-__________.

value
 Create a varargs method called sum() that sums the int values passed to it. Have it

return the result. Demonstrate its use.
There are many ways to craft the solution. Here is one:

 Can a varargs method be overloaded?
Yes.

 Show an example of an overloaded varargs method that is ambiguous.
Here is one example of an overloaded varargs method that is ambiguous:
double myMeth(double ... v) { // ...
double myMeth(double d, double ... v) { // ...
If you try to call myMeth() with one argument, like this,
myMeth(1.1);
the compiler can’t determine which version of the method to invoke.

Chapter 7: Inheritance
 Does a superclass have access to the members of a subclass? Does a subclass have

access to the members of a superclass?
No, a superclass has no knowledge of its subclasses. Yes, a subclass has access
to all nonprivate members of its superclass.

 Create a subclass of TwoDShape called Circle. Include an area() method that
computes the area of the circle and a constructor that uses super to initialize the
TwoDShape portion.

 How do you prevent a subclass from having access to a member of a superclass?
To prevent a subclass from having access to a superclass member, declare that
member as private.

 Describe the purpose and use of the two versions of super described in this chapter.
The super keyword has two forms. The first is used to call a superclass
constructor. The general form of this usage is
super (param-list);

The second form of super is used to access a superclass member. It has this
general form:
super.member

 Given the following hierarchy, in what order do the constructors for these classes
complete their execution when a Gamma object is instantiated?

Constructors complete their execution in order of derivation. Thus, when a
Gamma object is created, the order is Alpha, Beta, Gamma.

 A superclass reference can refer to a subclass object. Explain why this is important as
it is related to method overriding.

When an overridden method is called through a superclass reference, it is the
type of the object being referred to that determines which version of the
method is called.

 What is an abstract class?
An abstract class contains at least one abstract method.

 How do you prevent a method from being overridden? How do you prevent a class
from being inherited?

To prevent a method from being overridden, declare it as final. To prevent a
class from being inherited, declare it as final.

 Explain how inheritance, method overriding, and abstract classes are used to support
polymorphism.

Inheritance, method overriding, and abstract classes support polymorphism by
enabling you to create a generalized class structure that can be implemented by
a variety of classes. Thus, the abstract class defines a consistent interface that is
shared by all implementing classes. This embodies the concept of “one
interface, multiple methods.”

 What class is a superclass of every other class?
The Object class.

 A class that contains at least one abstract method must, itself, be declared abstract.

True or False?
True.

 What keyword is used to create a named constant?
final

Chapter 8: Packages and Interfaces
 Using the code from Try This 8-1, put the ICharQ interface and its three

implementations into a package called qpack. Keeping the queue demonstration
class IQDemo in the default package, show how to import and use the classes in
qpack.

To put ICharQ and its implementations into the qpack package, you must
separate each into its own file, make each implementation class public, and
add this statement to the top of each file.
package qpack;
Once this has been done, you can use qpack by adding this import statement
to IQDemo.
import qpack.*;

 What is a namespace? Why is it important that Java allows you to partition the
namespace?

A namespace is a declarative region. By partitioning the namespace, you can
prevent name collisions.

 Packages are stored in __________.
directories

 Explain the difference between protected and default access.
A member with protected access can be used within its package and by a
subclass in other packages.
A member with default access can be used only within its package.

 Explain the two ways that the members of a package can be used by other packages.
To use a member of a package, you can either fully qualify its name, or you
can import it using import.

 “One interface, multiple methods” is a key tenet of Java. What feature best

exemplifies it?
The interface best exemplifies the one interface, multiple methods principle of
OOP.

 How many classes can implement an interface? How many interfaces can a class
implement?

An interface can be implemented by an unlimited number of classes. A class
can implement as many interfaces as it chooses.

 Can interfaces be extended?
Yes, interfaces can be extended.

 Create an interface for the Vehicle class from Chapter 7. Call the interface IVehicle.

 Variables declared in an interface are implicitly static and final. Can they be shared
with other parts of a program?

Yes, interface variables can be used as named constants that are shared by all
files in a program. They are brought into view by importing their interface.

 A package is, in essence, a container for classes. True or False?
True.

 What standard Java package is automatically imported into a program?
java.lang

 What keyword is used to declare a default interface method?
default

 Beginning with JDK 8, is it possible to define a static method in an interface?
Yes

 Assume that the ICharQ interface shown in Try This 8-1 has been in widespread
use for several years. Now, you want to add a method to it called reset(), which will
be used to reset the queue to its empty, starting condition. Assuming JDK 8 or later,
how can this be accomplished without breaking preexisting code?

To avoid breaking preexisting code, you must use a default interface method.
Because you can’t know how to reset each queue implementation, the default
reset() implementation will need to report an error that indicates that it is not
implemented. (The best way to do this is to use an exception. Exceptions are
examined in the following chapter.) Fortunately, since no preexisting code
assumes that ICharQ defines a reset() method, no preexisting code will
encounter that error, and no preexisting code will be broken.

 How is a static method in an interface called?
A static interface method is called through its interface name, by use of the dot
operator.

 Can an interface have a private method?
Beginning with JDK 9, the answer is Yes.

Chapter 9: Exception Handling
 What class is at the top of the exception hierarchy?

Throwable is at the top of the exception hierarchy.
 Briefly explain how to use try and catch.

The try and catch statements work together. Program statements that you want
to monitor for exceptions are contained within a try block. An exception is
caught using catch.

 What is wrong with this fragment?

There is no try block preceding the catch statement.
 What happens if an exception is not caught?

If an exception is not caught, abnormal program termination results.
 What is wrong with this fragment?

In the fragment, a superclass catch precedes a subclass catch. Since the
superclass catch will catch all subclasses too, unreachable code is created.

 Can an inner catch rethrow an exception to an outer catch?
Yes, an exception can be rethrown.

 The finally block is the last bit of code executed before your program ends. True or
False? Explain your answer.

False. The finally block is the code executed when a try block ends.
 What type of exceptions must be explicitly declared in a throws clause of a method?

All exceptions except those of type RuntimeException and Error must be
declared in a throws clause.

 What is wrong with this fragment?

MyClass does not extend Throwable. Only subclasses of Throwable can be

thrown by throw.
 In question 3 of the Chapter 6 Self Test, you created a Stack class. Add custom

exceptions to your class that report stack full and stack empty conditions.

 What are the three ways that an exception can be generated?
An exception can be generated by an error in the JVM, by an error in your
program, or explicitly via a throw statement.

 What are the two direct subclasses of Throwable?
Error and Exception

 What is the multi-catch feature?
The multi-catch feature allows one catch clause to catch two or more
exceptions.

 Should your code typically catch exceptions of type Error?
No.

Chapter 10: Using I/O
 Why does Java define both byte and character streams?

The byte streams are the original streams defined by Java. They are especially
useful for binary I/O, and they support random-access files. The character
streams are optimized for Unicode.

 Even though console input and output is text-based, why does Java still use byte
streams for this purpose?

The predefined streams, System.in, System.out, and System.err, were defined
before Java added the character streams.

 Show how to open a file for reading bytes.
Here is one way to open a file for byte input:
FileInputStream fin = new FileInputStream("test");

 Show how to open a file for reading characters.
Here is one way to open a file for reading characters:
FileReader fr = new FileReader("test");

 Show how to open a file for random-access I/O.

Here is one way to open a file for random access:
randfile = new RandomAccessFile("test", "rw");

 How do you convert a numeric string such as "123.23" into its binary equivalent?
To convert numeric strings into their binary equivalents, use the parsing
methods defined by the type wrappers, such as Integer or Double.

 Write a program that copies a text file. In the process, have it convert all spaces into
hyphens. Use the byte stream file classes. Use the traditional approach to closing a
file by explicitly calling close().

 Rewrite the program in question 7 so that it uses the character stream classes. This
time, use the try-with-resources statement to automatically close the file.

 What type of stream is System.in?
InputStream

 What does the read() method of InputStream return when an attempt is made to
read at the end of the stream?

–1
 What type of stream is used to read binary data?

DataInputStream
 Reader and Writer are at the top of the ____________ class hierarchies.

character-based I/O
 The try-with-resources statement is used for ___________ ____________

____________.
automatic resource management

 If you are using the traditional method of closing a file, then closing a file within a
finally block is generally a good approach. True or False?

True

Chapter 11: Multithreaded Programming
 How does Java’s multithreading capability enable you to write more efficient

programs?
Multithreading allows you to take advantage of the idle time that is present in
nearly all programs. When one thread can’t run, another can. In multicore
systems, two or more threads can execute simultaneously.

 Multithreading is supported by the __________ class and the __________ interface.
Multithreading is supported by the Thread class and the Runnable interface.

 When creating a runnable object, why might you want to extend Thread rather than
implement Runnable?

You will extend Thread when you want to override one or more of Thread’s
methods other than run().

 Show how to use join() to wait for a thread object called MyThrd to end.
MyThrd.join();

 Show how to set a thread called MyThrd to three levels above normal priority.
MyThrd.setPriority(Thread.NORM_PRIORITY+3);

 What is the effect of adding the synchronized keyword to a method?
Adding synchronized to a method allows only one thread at a time to use the
method for any given object of its class.

 The wait() and notify() methods are used to perform ____________________.
interthread communication

 Change the TickTock class so that it actually keeps time. That is, have each tick take
one half second, and each tock take one half second. Thus, each tick-tock will take
one second. (Don’t worry about the time it takes to switch tasks, etc.)

To make the TickTock class actually keep time, simply add calls to sleep(), as
shown here:

 Why can’t you use suspend(), resume(), and stop() for new programs?
The suspend(), resume(), and stop() methods have been deprecated because
they can cause serious run-time problems.

 What method defined by Thread obtains the name of a thread?
getName()

 What does isAlive() return?
It returns true if the invoking thread is still running, and false if it has been
terminated.

Chapter 12: Enumerations, Autoboxing, Static
Import, and Annotations

 Enumeration constants are said to be self-typed. What does this mean?
In the term self-typed, the “self” refers to the type of the enumeration in which
the constant is defined. Thus, an enumeration constant is an object of the
enumeration of which it is a part.

 What class do all enumerations automatically inherit?
The Enum class is automatically inherited by all enumerations.

 Given the following enumeration, write a program that uses values() to show a list
of the constants and their ordinal values.

 The traffic light simulation developed in Try This 12-1 can be improved with a few
simple changes that take advantage of an enumeration’s class features. In the version
shown, the duration of each color was controlled by the TrafficLightSimulator
class by hard-coding these values into the run() method. Change this so that the
duration of each color is stored by the constants in the TrafficLightColor
enumeration. To do this, you will need to add a constructor, a private instance
variable, and a method called getDelay(). After making these changes, what
improvements do you see? On your own, can you think of other improvements?
(Hint: Try using ordinal values to switch light colors rather than relying on a switch
statement.)

The improved version of the traffic light simulation is shown here. There are
two major improvements. First, a light’s delay is now linked with its
enumeration value, which gives more structure to the code. Second, the run()
method no longer needs to use a switch statement to determine the length of
the delay. Instead, sleep() is passed tlc.getDelay(), which causes the delay
associated with the current color to be used automatically.

 Define boxing and unboxing. How does autoboxing/unboxing affect these actions?
Boxing is the process of storing a primitive value in a type wrapper object.
Unboxing is the process of retrieving the primitive value from the type
wrapper. Autoboxing automatically boxes a primitive value without having to
explicitly construct an object. Auto-unboxing automatically retrieves the
primitive value from a type wrapper without having to explicitly call a method,
such as intValue().

 Change the following fragment so that it uses autoboxing.
Double val = Double.valueOf(123.0);

The solution is
Double val = 123.0;

 In your own words, what does static import do?
Static import brings into the global namespace the static members of a class or
interface. This means that static members can be used without having to be
qualified by their class or interface name.

 What does this statement do?
import static java.lang.Integer.parseInt;
The statement brings into the global namespace the parseInt() method of the
type wrapper Integer.

 Is static import designed for special-case situations, or is it good practice to bring all
static members of all classes into view?

Static import is designed for special cases. Bringing many static members into
view will lead to namespace collisions and destructure your code.

 An annotation is syntactically based on a/an ________________ .
interface

 What is a marker annotation?
A marker annotation is one that does not take arguments.

 An annotation can be applied only to methods. True or False?
False. Any type of declaration can have an annotation. Beginning with JDK 8,
a type use can also have an annotation.

Chapter 13: Generics
 Generics are important to Java because they enable the creation of code that is

A. Type-safe
B. Reusable
C. Reliable
D. All of the above
D. All of the above

 Can a primitive type be used as a type argument?

No, type arguments must be object types.
 Show how to declare a class called FlightSched that takes two generic parameters.

The solution is
class FlightSched<T, V> {

 Beginning with your answer to question 3, change FlightSched’s second type
parameter so that it must extend Thread.

The solution is
class FlightSched<T, V extends Thread> {

 Now, change FlightSched so that its second type parameter must be a subclass of its
first type parameter.

The solution is
class FlightSched<T, V extends T> {

 As it relates to generics, what is the ? and what does it do?
The ? is the wildcard argument. It matches any valid type.

 Can the wildcard argument be bounded?
Yes, a wildcard can have either an upper or lower bound.

 A generic method called MyGen() has one type parameter. Furthermore, MyGen()
has one parameter whose type is that of the type parameter. It also returns an object
of that type parameter. Show how to declare MyGen().

The solution is
<T> T MyGen(T o) { // ...

 Given this generic interface
interface IGenIF<T, V extends T> { // ...
show the declaration of a class called MyClass that implements IGenIF.
The solution is
class MyClass<T, V extends T> implements IGenIF<T, V> { // ...

 Given a generic class called Counter<T>, show how to create an object of its raw
type.

To obtain Counter<T>’s raw type, simply use its name without any type
specification, as shown here:
Counter x = new Counter();

 Do type parameters exist at run time?
No. All type parameters are erased during compilation, and appropriate casts
are substituted. This process is called erasure.

 Convert your solution to question 10 of the Self Test for Chapter 9 so that it is
generic. In the process, create a stack interface called IGenStack that generically
defines the operations push() and pop().

 What is < >?
The diamond operator.

 How can the following be simplified?
MyClass<Double,String> obj = new MyClass<Double,String>(1.1,"Hi");
It can be simplified by use of the diamond operator as shown here:
MyClass<Double,String> obj = new MyClass<>(1.1,"Hi");

Chapter 14: Lambda Expressions and Method
References
1. What is the lambda operator?

The lambda operator is –>.
 What is a functional interface?

A functional interface is an interface that contains one and only one abstract
method.

 How do functional interfaces and lambda expressions relate?
A lambda expression provides the implementation for the abstract method
defined by the functional interface. The functional interface defines the target
type.

 What are the two general types of lambda expressions?
The two types of lambda expressions are expression lambdas and block
lambdas. An expression lambda specifies a single expression, whose value is
returned by the lambda. A block lambda contains a block of code. Its value is
specified by a return statement.

 Show a lambda expression that returns true if a number is between 10 and 20,
inclusive.

(n) -> (n > 9 && n < 21)
 Create a functional interface that can support the lambda expression you created in

question 5. Call the interface MyTest and its abstract method testing().

 Create a block lambda that computes the factorial of an integer value. Demonstrate
its use. Use NumericFunc, shown in this chapter, for the functional interface.

 Create a generic functional interface called MyFunc<T>. Call its abstract method
func(). Have func() return a reference of type T. Have it take a parameter of type
T. (Thus, MyFunc will be a generic version of NumericFunc shown in the chapter.)
Demonstrate its use by rewriting your answer to 7 so it uses MyFunc<T> rather
than NumericFunc.

 Using the program shown in Try This 14-1, create a lambda expression that removes
all spaces from a string and returns the result. Demonstrate this method by passing it
to changeStr().

Here is the lambda expression that removes spaces. It is used to initialize the
remove reference variable.

Here is an example of its use:
outStr = changeStr(remove, inStr);

 Can a lambda expression use a local variable? If so, what constraint must be met?

Yes, but the variable must be effectively final.
 If a lambda expression throws a checked exception, the abstract method in the

functional interface must have a throws clause that includes that exception. True or
False?

True
 What is a method reference?

A method reference is a way to refer to a method without executing it.
 When evaluated, a method reference creates an instance of the ____________

___________ supplied by its target context.
functional interface

 Given a class called MyClass that contains a static method called
myStaticMethod(), show how to specify a method reference to myStaticMethod(
).

MyClass::myStaticMethod
 Given a class called MyClass that contains an instance method called

myInstMethod() and assuming an object of MyClass called mcObj, show how to
create a method reference to myInstMethod() on mcObj.

mcObj::myInstMethod
 To the MethodRefDemo2 program, add a new method to MyIntNum called

hasCommonFactor(). Have it return true if its int argument and the value stored in
the invoking MyIntNum object have at least one factor in common. For example, 9
and 12 have a common factor, which is 3, but 9 and 16 have no common factor.
Demonstrate hasCommonFactor() via a method reference.

Here is MyIntNum with the hasCommonFactor() method added:

Here is an example of its use through a method reference:

 How is a constructor reference specified?
A constructor reference is created by specifying the class name followed by ::
followed by new. For example, MyClass::new.

 Java defines several predefined functional interfaces in what package?
java.util.function

Chapter 15: Modules
 In general terms, modules give you a way to specify when one unit of code depends

on another. True or False?
True

 A module is declared using what keyword?
module

 The keywords that support modules are context sensitive. Explain what this means.
A context-sensitive keyword is recognized as a keyword only in specific
situations that relate to its use and not elsewhere. As it relates to the module
keywords, they are recognized as keywords only within a module declaration.

 What is module-info.java and why is it important?
A module-info.java file contains a module declaration.

 To declare that one module depends on another module, what keyword do you use?

requires
 To make the public members of a package accessible outside the module in which it

is contained, it must be specified in an _________ statement.
exports

 When compiling or running a module-based application, why is the module path
important?

The module path specifies where the modules for the application will be found.
 What does requires transitive do?

By using requires transitive you enable one module to pass along its
dependence on another module so that any module that relies on the current
module also relies on the one specified in the requires transitive statement.
This is called implied dependence or implied readability.

 Does an exports statement export another module, or does it export a package?
An exports statement exports a package.

 In the first module example, if you remove
exports appfuncs.simplefuncs;
from the appfuncs module-info file and then attempt to compile the program,
what error do you see?
The compiler will report that the SimpleMathFuncs package does not exist.
Since this package is required by MyModAppDemo, it will not compile.

 Module-based services are supported by what keywords?
provides, uses, and with

 A service specifies the general form of a unit of program functionality using either
an interface or abstract class. True or False?

True
 A service provider ____________ a service.

implements
 To load a service, what class do you use?

ServiceLoader
 Can a module dependency be made optional at run time? If so, how?

Yes, by using an exports static statement.
 Briefly describe what open and opens do.

Modifying a module declaration with the keyword open enables access to its
packages at run time, including by reflection, whether or not they have been
exported. An opens statement enables run-time access to a package, including
for the purposes of reflection.

Chapter 16: Introducing Swing
 In general, AWT components are heavyweight and Swing components are

lightweight.
 Can the look and feel of a Swing component be changed? If so, what feature enables

this?
Yes. Swing’s pluggable look and feel is the feature that enables this.

 What is the most commonly used top-level container for an application?
JFrame

 Top-level containers have several panes. To what pane are components added?
Content pane

 Show how to construct a label that contains the message "Select an entry from the
list".

JLabel("Select an entry from the list")
 All interaction with GUI components must take place on what thread?

event-dispatching thread
 What is the default action command associated with a JButton? How can the action

command be changed?
The default action command string is the text shown inside the button. It can
be changed by calling setActionCommand().

 What event is generated when a push button is pressed?
ActionEvent

 Show how to create a text field that has 32 columns.
JTextField(32)

 Can a JTextField have its action command set? If so, how?

Yes, by calling setActionCommand().
 What Swing component creates a check box? What event is generated when a check

box is selected or deselected?
JCheckBox creates a check box. An ItemEvent is generated when a check
box is selected or deselected.

 JList displays a list of items from which the user can select. True or False?
True

 What event is generated when the user selects or deselects an item in a JList?
ListSelectionEvent

 What method sets the selection mode of a JList? What method obtains the index of
the first selected item?

setSelectionMode() sets the selection mode. getSelectedIndex() obtains the
index of the first selected item.

 Add a check box to the file comparer developed in Try This 16-1 that has the
following text: Show position of mismatch. When this box is checked, have the
program display the location of the first point in the files at which a mismatch
occurs.

 Change the ListDemo program so that it allows multiple items in the list to be
selected.

Chapter 17: Introducing JavaFX
1. What is the top-level package name of the JavaFX framework?

javafx

 Two concepts central to JavaFX are a stage and a scene. What classes encapsulate
them?

Stage and Scene
 A scene graph is composed of ________.

nodes
 The base class for all nodes is ________.

Node
 What class will all JavaFX applications extend?

Application
 What are the three JavaFX life-cycle methods?

init(), start(), and stop()
 In what life-cycle method can you construct an application’s stage?

start()
 The launch() method is called to start a free-standing JavaFX application. True or

False?
True

 What are the names of the JavaFX classes that support a label and a button?
Label and Button

 One way to terminate a free-standing JavaFX application is to call Platform.exit().
Platform is packaged in javafx.Application. When called, exit() immediately
terminates the program. With this in mind, change the JavaFXEventDemo program
shown in this chapter so that it has two buttons called Run and Exit. If Run is
pressed, have the program display that choice in a label. If Exit is pressed, have the
application terminate. Use lambda expressions for the event handlers.

 What JavaFX control implements a check box?
CheckBox

 ListView is a control that displays a directory list of files on the local file system.

True or False?
False. ListView displays of list of items from which the user can choose.

 Convert the Swing-based file comparison program in Try This 16-1 so it uses
JavaFX instead. In the process, make use of another of JavaFX’s features: its ability
to fire an action event on a button under program control. This is done by calling
fire() on the button instance. For example, assuming a Button called myButtton,
the following will fire an action event on it: myButton.fire(). Use this fact when
implementing the event handlers for the text fields that hold the names of the files to
compare. If the user presses ENTER when in either of these fields, simply fire an
action event on the Compare button. The event-handling code for the Compare
button will then handle the file comparison.

 Modify the EffectsAndTransformsDemo program so the Rotate button is also
blurred. Use a blur width and height of 5 and an iteration count of 2.

To add blur to the Rotate button, first create the BoxBlur instance like this:
 BoxBlur rotateBlur = new BoxBlur(5.0, 5.0, 2);
Then add the following line:
btnRotate.setEffect(rotateBlur);
After making these changes, the Rotate button will be blurred and can also be
rotated.

A

Appendix B

Using Java’s Documentation Comments
s explained in Chapter 1, Java supports three types of comments. The first
two are the // and the /* */. The third type is called a documentation comment.
It begins with the character sequence /**. It ends with */. Documentation

comments allow you to embed information about your program into the program
itself. You can then use the javadoc utility program (supplied with the JDK) to
extract the information and put it into an HTML file. Documentation comments
make it convenient to document your programs. You have almost certainly seen
documentation that uses such comments, because that is the way the Java API library
was documented. Beginning with JDK 9, javadoc includes support for modules.

The javadoc Tags
The javadoc utility recognizes several tags, including those shown here:

Document tags that begin with an “at” sign (@) are called stand-alone tags (also
called block tags), and they must be used on their own line. Tags that begin with a
brace, such as {@code}, are called in-line tags, and they can be used within a larger
description. You may also use other, standard HTML tags in a documentation
comment. However, some tags such as headings should not be used, because they

disrupt the look of the HTML file produced by javadoc.
As it relates to documenting source code, you can use documentation comments to

document classes, interfaces, fields, constructors, methods, and modules. In all cases,
the documentation comment must immediately precede the item being documented.
Some tags, such as @see, @since, and @deprecated, can be used to document any
element. Other tags apply to only the relevant elements. Several key tags are
examined next.

NOTE
Documentation comments can also be used for documenting a package and
preparing an overview, but the procedures differ from those used to document source
code. See the javadoc documentation for details on these uses. Beginning wtih JDK
9, javadoc can also document a module-info.java file.

@author
The @author tag documents the author of a program element. It has the following
syntax:

@author description

Here, description will usually be the name of the author. You will need to specify the
-author option when executing javadoc in order for the @author field to be
included in the HTML documentation.

{@code}
The {@code} tag enables you to embed text, such as a snippet of code, into a
comment. That text is then displayed as-is in code font, without any further
processing such as HTML rendering. It has the following syntax:

{@code code-snippet}

@deprecated
The @deprecated tag specifies that a program element is deprecated. It is
recommended that you include @see or {@link} tags to inform the programmer
about available alternatives. The syntax is the following:

@deprecated description

Here, description is the message that describes the deprecation. The @deprecated
tag can be used in documentation for fields, methods, constructors, classes, and
interfaces.

{@docRoot}
{@docRoot} specifies the path to the root directory of the current documentation.

@exception
The @exception tag describes an exception to a method. It has the following syntax:

@exception exception-name explanation

Here, the fully qualified name of the exception is specified by exception-name, and
explanation is a string that describes how the exception can occur. The @exception
tag can be used only in documentation for a method or constructor.

@hidden
The @hidden tag prevents an element from appearing in the documentation. This
tag was added by JDK 9.

{@index}
The {@index} tag specifies an item that will be indexed, and thus found when using
the search feature added by JDK 9. It has the following syntax:

{@index term usage-str }

Here, term is the item (which can be a quoted string) to be indexed. usage-str is
optional. Thus, in the following @exception tag, {@index} causes the term "error"
to be added to the index:

@exception IOException On input {@index error}.

Note that the word “error” is still displayed as part of the description. It’s just that
now it is also indexed. If you include the optional usage-str, then that description
will be shown in the index and in the search box to indicate how the term is used.
For example, {@index error Serious execution failure} will show “Serious
execution failure” under "error" in the index and in the search box. This tag was
added by JDK 9.

{@inheritDoc}
This tag inherits a comment from the immediate superclass.

{@link}
The {@link} tag provides an in-line link to additional information. It has the
following syntax:

{@link pkg.class#member text}

Here, pkg.class#member specifies the name of a class or method to which a link is
added, and text is the string that is displayed.

{@linkplain}
The {@linkplain} tag inserts an in-line link to another topic. The link is displayed in
plain-text font. Otherwise, it is similar to {@link}.

{@literal}
The {@literal} tag enables you to embed text into a comment. That text is then
displayed as-is, without any further processing such as HTML rendering. It has the
following syntax:

{@literal description}

Here, description is the text that is embedded.

@param
The @param tag documents a parameter. It has the following syntax:

@param parameter-name explanation

Here, parameter-name specifies the name of a parameter. The meaning of that
parameter is described by explanation. The @param tag can be used only in
documentation for a method, a constructor, or a generic class or interface.

@provides
The @provides tag documents a service provided by a module. It has the following
syntax:

@provides type explanation

Here, type specifies a service provider type and explanation describes the service
provider. This tag was added by JDK 9.

@return
The @return tag describes the return value of a method. It has the following syntax:

@return explanation

Here, explanation describes the type and meaning of the value returned by a method.
The @return tag can be used only in documentation for a method.

@see
The @see tag provides a reference to additional information. Two commonly used
forms are shown here:

@see anchor

@see pkg.class#member text

In the first form, anchor is a link to an absolute or relative URL. In the second form,
pkg.class#member specifies the name of the item, and text is the text displayed for
that item. The text parameter is optional, and if not used, then the item specified by
pkg.class#member is displayed. The member name, too, is optional. Thus, you can
specify a reference to a package, class, or interface in addition to a reference to a
specific method or field. The name can be fully qualified or partially qualified.
However, the dot that precedes the member name (if it exists) must be replaced by a
hash character.

@since
The @since tag states that an element was introduced in a specific release. It has the
following syntax:

@since release

Here, release is a string that designates the release or version in which this feature
became available.

@throws
The @throws tag has the same meaning as the @exception tag.

@uses
The @uses tag documents a service provider needed by a module. It has the
following syntax:

@uses type explanation

Here, type specifies a service provider type and explanation describes the service.
This tag was added by JDK 9.

{@value}
{@value} has two forms. The first displays the value of the constant that it precedes,
which must be a static field. It has this form:

{@value}

The second form displays the value of a specified static field. It has this form:

{@value pkg.class#field}

Here, pkg.class#field specifies the name of the static field.

@version
The @version tag specifies the version of a program element. It has the following
syntax:

@version info

Here, info is a string that contains version information, typically a version number,
such as 2.2. You will need to specify the -version option when executing javadoc in
order for the @version field to be included in the HTML documentation.

The General Form of a Documentation
Comment
After the beginning /**, the first line or lines become the main description of your

class, interface, field, constructor, method, or module. After that, you can include
one or more of the various @ tags. Each @ tag must start at the beginning of a new
line or follow one or more asterisks (*) that are at the start of a line. Multiple tags of
the same type should be grouped together. For example, if you have three @see tags,
put them one after the other. In-line tags (those that begin with a brace) can be used
within any description.

Here is an example of a documentation comment for a class:

What javadoc Outputs
The javadoc program takes as input your Java program’s source file and outputs
several HTML files that contain the program’s documentation. Information about
each class will be in its own HTML file. javadoc will also output an index and a
hierarchy tree. Other HTML files can be generated. Beginning with JDK 9, a search
box feature is also included.

An Example That Uses Documentation
Comments
Following is a sample program that uses documentation comments. Notice the way
each comment immediately precedes the item that it describes. After being processed
by javadoc, the documentation about the SquareNum class will be found in
SquareNum.html.

A

Appendix C

An Overview of Java Web Start
s mentioned in Chapter 1, with the release of JDK 9, applets are no longer
recommended for the development of web-based applications. Although
applets served Java well for many years, they rely on a browser plug-in, and

support for the Java browser plug-in has been eroding. For this, and other reasons,
the use of Java Web Start is now recommended for the deployment of web-based
programs. The key advantage to Java Web Start is that no browser plug-in is
required. Thus, an application deployed via Java Web Start can run independently of
the browser.

It is important to state at the outset that the subject of Java Web Start, and
deployment strategies in general, is quite large. Furthermore, Java Web Start relies
on many other deployment-related features, such as JAR files, manifest files,
application signing, and JNLP files. Additionally, there are several other
considerations relating to the deployment of commercial applications. Normally, a
discussion of deployment would be outside the scope of this book. However,
because of the increased importance of Java Web Start, a brief discussion that
introduces several of its key aspects is included here. The goal is to give you a
general sense of how Java Web Start works. As you advance in your Java
programming career you will want to study Java Web Start in detail.

NOTE
Because deployment of Java applications is subject to change and/or enhancement,
especially as it relates to security issues, it is strongly recommended that you consult
the Oracle documentation pertaining to deployment for the latest information. Also,
the following discussion assumes an environment that supports a modern version of
Java.

What Is Java Web Start?
At its core, Java Web Start is a mechanism that supports the web-based deployment
of Java applications. Unlike a Java applet, which must extend either the Applet or

JApplet class and support the general applet architecture by supplying the init(),
start(), stop(), and destroy() methods, Java Web Start applications are “normal,”
client-based programs, such as those shown in the Swing and JavaFX chapters of this
book. In other words, a Java Web Start application is essentially a rich client
application that is downloaded and executed from the Web. For example, a program
such as ButtonDemo in the Swing chapter can be run as a Java Web Start
application with no changes whatsoever.

Because Java Web Start does not use a browser plug-in, a Java Web Start
application requires that only the JRE be installed on the host computer. This
eliminates the problem with missing, disabled, or out-of-date plug-ins. Because the
Java Web Start application runs on the desktop (not within the browser), your
program will look and feel like a “normal” application on the host. Furthermore,
once a Java Web Start application has been downloaded, it is possible to execute it
offline. It is also possible to create a shortcut to the application. Frankly, Java Web
Start offers the application developer the ability to create applications whose
functionality exceeds what would have normally been appropriate or feasible for an
applet.

By default, Java Web Start applications run in the same security “sandbox” used
by unsigned applets, and thus have the same restrictions. Thus, by default, Java Web
Start applications provide security protections similar to that of unsigned applets. It
is possible, however, to give a Java Web Start application additional security
permissions, if required.

Four Key Java Web Start Essentials
Although there are many features, techniques, and nuances associated with
deploying an application using Java Web Start, there are four essential elements.
First, a Java Web Start application must be packaged in a JAR file. Second, the JAR
file should be signed. Third, a JNLP file must be created that specifies the
application’s launch information. Finally, typically, you will create a link to the
JNLP file that launches the application. Each is briefly described here.

Java Web Start Apps Require a JAR File
All Java Web Start applications must be packaged in a JAR file. As explained earlier
in this book, JAR stands for Java ARchive. A JAR file is created by use of the jar
command-line tool. When creating a JAR file for Java Web Start, you will specify all
of the files, such as classes and resources, used by the application, and information to
include in the application’s manifest. The manifest contains information about the
JAR files, including a security setting.

The jar tool supports many options, but for simple applications, you will only
need to use three. They are c, f, and m. The c option tells jar to create an archive, f
specifies the name of the archive, and m tells jar to include the information in the
specified manifest file. For example, the following command line creates a JAR file
called MyJar.jar that contains the class in MyClass.class and includes the manifest
information specified by MyMan.txt.

jar cfm MyJar.jar MyMan.txt MyClass.class

Notice that each filename is specified in the same order as the option list.

Java Web Start Apps Are Signed
In general, a Java Web Start app must be signed using a valid certificate. This is
done by signing the application’s JAR file. In simplified terms, signing identifies the
owner of an application. It also helps to ensure the integrity of the files associated
with the application because the signed JAR file will be invalid if it has been
changed after it is signed. The certificate must be obtained from a legitimate, third-
party certificate authority. Typically, such certificates are not free and must be
purchased.

Before moving on, it is important to mention a special type of certificate referred
to as “self-signed.” A “self-signed” certificate is simply a certificate created by you
instead of being obtained from a certificate authority. At the time of this writing, it is
possible to sign a Java Web Start application using a self-signed certificate. It is
important to understand that for modern versions of Java, a self-signed application
will be prevented from executing unless it is explicitly specified in the Exception
Site List in the Java Control Panel. Even then, you will still see a security prompt
when you try to run the application. As a result, a self-signed application should not
be used for deployment. This is especially true for commercial applications.
Remember, all commercial Java Web Start applications must be signed with a valid,
recognized certificate. That said, in some cases self-signing can be helpful when
learning about Java Web Start or when developing and debugging Java Web Start
applications.

To sign JAR files, you will use the jarsigner command-line tool. Before you can
use jarsigner, you need to have a certificate. As just explained, for general
deployment, especially for commercial code, you must use a certificate from a third-
party certificate authority. However, when learning or experimenting, you can obtain
a self-signed certificate by use of the keytool command-line tool. In Java, digital
signatures are based on the public/private key security mechanism. The keytool
works with a keystore file that holds the keys and manages certificates. The example
shown later in this appendix demonstrates the use of both jarsigner and keytool to

self-sign the sample application.

NOTE
At the time of this writing, it is technically possible to use an unsigned JAR file with
Java Web Start if the JNLP file is included in the Exception Site List of the Java
Control Panel. Of course, deploying an unsigned application is, in the strongest
possible terms, not advised.

Java Web Start Relies on JNLP
A Java Web Start application is launched by use of a JNLP file. JNLP stands for
Java Network Launch Protocol. A JNLP file is essentially an XML file that uses the
jnlp element and has the .jnlp extension. Within the jnlp element, the Java Web
Start application is described. Although the jnlp element supports many options, for
simple applications you will need to use only a few. For example, you will typically
need to specify a description of the application, the resources that it uses, and
information about the application. For example, here is a simple JNLP file that
launches the ButtonDemo program from Chapter 16.

Let’s take a close look at the contents of this file. The file begins by specifying the
minimal XML version and the UTF encoding. While not required, this is the
recommended procedure. The values shown here are common, but you can adjust
them as required based on the needs of your specific application. Inside the jnlp
element, the href attribute specifies this JNLP file’s name. The minimum JNLP
version number is specified by the spec attribute. In this example, 6.0 or greater is
indicated. The version can be changed to fit your needs.

The application is described by application-desc. Notice that it identifies the main
class of the application with the main-class attribute. The resources for the
application are specified by resources. In this example, the JAR file for the
application is indicated with the jar element. The minimum version of Java required

to execute the application is specified by the java element. (In JNLP versions prior
to 6, this element is called j2se and this name is still allowed.) Here, Java 8 is
specified as the minimum version, but this can be changed to best fit the
requirements of your application. In general, you should use the lowest version
number that will work with your application.

Information pertaining to the application is contained in the information element.
Here, the name and vendor of the application are specified. Also note that the
application can be run offline because the offline-allowed element is included.
Offline execution is especially useful for stand-alone programs that do not require
Internet access to run.

It is important to state that the JNLP element supports more options and attributes
than shown here. You will want to explore them in detail. Precisely tailoring the
JNLP file for your application produces the best user experience.

One last point: Although a JNLP file is used to launch an application from within
a browser, the application runs outside the browser. Thus, using JNLP to launch an
application eliminates the need for the Java browser plug-in. This is one of the
primary benefits of Java Web Start.

Linking to the Java Web Start JNLP File
In general, you will provide a link in a web page that launches the application. Here
is a very simple one:

Here, jnlp-path specifies the path to the JNLP file for the application that you want
to launch. Replace jnlp-path with the actual path to your JNLP file. When this link is
clicked, the browser is redirected to the specified JNLP file and Java Web Start is
used to launch the program. The program will run on the desktop, as explained
earlier. Thus, you can leave the page the link is on, and the program remains active
until you close it.

Experimenting with Java Web Start Using the
Local File System
In this section we will develop a simple Java Web Start example that you can try. As
explained earlier, Java Web Start applications are normally downloaded from the
network. However, assuming that your browser enables you to open a file, it is

possible to experiment with Java Web Start by running the application from the local
file system. Doing so gives you an easy way to see how Java Web Start works
without having to use a web server. It also lets you run an application in much the
same way that a user of your program will, by clicking on a link on a web page.

As mentioned earlier, applications deployed by Java Web Start are, essentially,
normal Java applications. Thus, Swing and JavaFX programs can be used with Java
Web Start. In this example, we will use the Swing ButtonDemo program shown in
Chapter 16. Although the process involves several steps, once you have worked
through the procedure you will have a better idea of how Java Web Start works.

Here are the steps that you will follow to create and deploy ButtonDemo from a
file on your machine.

1. Create a JAR file for ButtonDemo called ButtonDemo.jar.
2. Create a keystore that contains a self-signed certificate and sign

ButtonDemo.jar.
3. Create a JNLP file called ButtonDemo.jnlp that describes and launches

ButtonDemo.
4. Create a short HTML file called StartBD.html that contains a link to

ButtonDemo.jnlp.
5. Add ButtonDemo.jnlp to the Exception Site List in the Java Control Panel.
6. In your browser, open StartBD.html, then click on the link. After a security

check, ButtonDemo will execute on the desktop (not in the browser, the way
applets do).

The following sections walk through these steps in detail.
Before we begin, it is important to point out that not all of these steps are

necessarily required to run a Java Web Start application from the local file system.
For example, at the time of this writing self-signing an application provides no
benefit. Self-signing is included here simply as a way to demonstrate signing a JAR
file. Also, an HTML file may not be technically required because it may be possible
to execute the JNLP file directly. All steps are shown, however, because they help
provide insight into the process. Furthermore, in the future, additional steps or a
modified procedure may be required.

Create a JAR File for ButtonDemo
First, if you have not already done so, using the code shown in Chapter 16, compile
ButtonDemo.java. This will create two class files: ButtonDemo.class and

ButtonDemo$1.class. The first contains the main class of the application. The
second contains the runnable instance created by the call to
SwingUtilities.invokeLater(). Both of these classes are required by the application.
As such, both will need to be included in the application’s JAR file.

To create the JAR file for an application you will use the jar command. Here is
the form we will use for the ButtonDemo program:

jar cfm ButtonDemo.jar MyMan.txt ButtonDemo.class ButtonDemo$1.class

Here, the option c tells jar to create a JAR file. The f option specifies the name of
the file, which is ButtonDemo.jar in this case. The m option causes the information
in MyMan.txt to be included the manifest information associated with the JAR file.

A JAR file’s manifest contains information related to the file. All JAR files have a
manifest, and the m option causes the information in the specified text file to be
added to it. For ButtonDemo, create the following file called MyMan.txt:

Main-Class: ButtonDemo
Permissions: sandbox

This specifies that the main class of the program is ButtonDemo and that execution
of the program is restricted to the sandbox, which is Java’s most restrictive setting.
This setting must match that specified by the application’s JNLP file, which is
sandbox by default.

Create a Keystore and Sign ButtonDemo.jar
For all modern versions of Java, a Java Web Start application must be signed with a
valid security certificate. A certificate identifies the owner of the application, and
signing helps to ensure the integrity of its JAR file. In Java, certificates are based on
a public/private key security mechanism. The keys are stored in a special file called a
keystore. Before you can sign an application, you need to create a keystore that
contains a certificate. Keystores and certificates are managed by using keytool,
which is provided with the JDK.

As explained earlier, for general deployment, you will need a certificate obtained
from a legitimate third-party certificate authority. However, you can gain insight into
the signing process by using a self-signed certificate. Remember, a self-signed
application is not suitable for distribution because it will cause a security prompt that
discourages the use of your application. It also may be blocked completely.
However, using a self-signed certificate gives you an easy, cost-free way to see JAR
signing in action.

As you might expect, keytool supports a number of options, but only a few are

needed for the purposes of this example. Here is one approach you can use:

keytool -genkeypair -alias devName -keystore devKeys

Here, genkeypair tells keytool to generate a new key pair and to create a self-signed
certificate with that pair. The name you specify after the alias option, in this case
devName, identifies the entry in the keystore. The name of the keystore is specified
by keystore and is devKeys in this case.

After you enter this command, you will be prompted for the following
information: a password, your name, the name of your organizational unit, the name
of the organization, the city, the state, and a country code (which for the United
States is US). This command then automatically creates a self-signed certificate
using information you specified. Be sure to remember the password because it will
be needed by the next step.

NOTE
Versions of keytool prior to Java 6 required the use of the -selfcert option to
generate a self-signed certificate.

Now that you have a certificate, you can use jarsigner to sign ButtonDemo.jar.
This tool also supports many options, but for this example only one is needed. It
specifies the keystore:

jarsigner -keystore devKeys ButtonDemo.jar devName

Here, the keystore option specifies the keystore file, which is devKeys in this
example. This is followed by the name of the JAR file to sign, which is
ButtonDemo.jar. Finally, the certificate alias is specified. When you execute this
command, you will be prompted for the password you specified in the previous step.
Understand that any time you change the ButtonDemo.jar file, it must be re-signed.

NOTE
Remember, although self-signing is helpful when demonstrating the JAR signing
procedure, a self-signed certificate must not be used for actual application
deployment. A certificate obtained from a valid certificate authority is required.
Furthermore, a self-signed application that you did not create constitutes a security
risk. Therefore, as a general rule, you should exercise great caution before
attempting to run self-signed applications that you did not create.

Create a JNLP file for ButtonDemo
The next step is to create a JNLP file that will launch ButtonDemo. Here is the one
shown earlier. Although it is very simple, it is sufficient for this example. Call this
file ButtonDemo.jnlp.

Create a Short HTML File Called StartBD.html
Although it is often possible to use a JNLP file directly from the Web, usually a link
is provided to launch the application. Here is a very simple one for ButtonDemo:

Call this file StartBD.html. When you click on the link, the browser is redirected to
ButtonDemo.jnlp and Java Web Start is used to launch the program. It will run on
the desktop, as explained earlier. Thus, you can leave the page the link is on, and the
program remains active until you close it.

Add ButtonDemo.jnlp to the Exception Site List in the Java
Control Panel
Because ButtonDemo.jar was self-signed, and because it will be executed from the
local file system, you will need to add the URL of ButtonDemo.jnlp to the
Exception Site List maintained by the Java Control Panel. (The Exception Site List
was added to Java in Java 7, update 51.) Assuming that ButtonDemo.jnlp is
contained in the C:\Java\MyDevFiles directory, you would add the following to the
Exception Site List:

FILE:/C:\Java\MyDevFiles\ButtonDemo.jnlp

Here, FILE: denotes a file on the local file system. For normal deployment, you
would specify a network address.

NOTE
As a general rule, a URL in the Exception Site List that uses the FILE: prefix (i.e.,
one that refers to a file on the local file system) constitutes a security risk. Therefore,
you should use great caution before adding such a URL to the Exception Site List for
programs that you did not create.

Execute ButtonDemo via Your Browser
At this point, you can launch ButtonDemo from your browser. To do so, open the
ButtonDemo.html file in your browser. For example, in Internet Explorer, use the
Open option in the File menu. (As mentioned at the start of this section, this
example requires that your browser allows you to open a file on the local file
system.) Once the file is displayed, click the Launch ButtonDemo App link. Even
though you have added ButtonDemo.jnlp to the Exception Site List, you may still
receive a security prompt the first time you run the program. After responding to a
security prompt, ButtonDemo will run. It will look exactly like it does when run
normally from the command line as you did in Chapter 16.

NOTE
Remember, executing a Java Web Start application from a file on the local file
system and using a self-signed certificate are for development, debugging,
experimenting, and learning purposes only. For actual deployment, a certificate from
a recognized authority is required and the application will be deployed via the
network.

Running a Java Web Start Application Using
javaws
When developing Java Web Start applications it is not necessary to use a browser to
run your application. Instead, you can use the javaws tool to run the application
directly from the command line. Simply specify the name of the JNLP file. For
example, assuming that ButtonDemo.jnlp and ButtonDemo.jar are in your current
working directory, then

javaws ButtonDemo.jnlp

causes the ButtonDemo program to be executed without the use of a browser or an
HTML file. This can enable faster compile/test/debug cycles. Of course, security
requirements will apply.

Using Java Web Start with an Applet
Although applets are being phased out, they are currently still supported by Java
Web Start and can be run by a JNLP file. You may see this approach in legacy code.
The element that describes an applet is called applet-desc. When updating older
code you should rework an applet into an application and specify it with
application-desc, as used earlier.

B

Appendix D

Introducing JShell
eginning with JDK 9, Java has included a tool called JShell. It provides an
interactive environment that enables you to quickly and easily experiment
with Java code. JShell implements what is referred to as read-evaluate-print

loop (REPL) execution. Using this mechanism, you are prompted to enter a fragment
of code. This fragment is then read and evaluated. Next, JShell displays output
related to the code, such as the output produced by a println() statement, the result
of an expression, or the current value of a variable. JShell then prompts for the next
piece of code, and the process continues (i.e., loops). In the language of JShell, each
code sequence you enter is called a snippet.

A key point to understand about JShell is that you do not need to enter a complete
Java program to use it. Each snippet you enter is simply evaluated as you enter it.
This is possible because JShell handles many of the details associated with a Java
program for you automatically. This lets you concentrate on a specific feature
without having to write a complete program, which makes JShell especially helpful
when you are first learning Java.

As you might expect, JShell can also be useful to experienced programmers.
Because JShell stores state information, it is possible to enter multiline code
sequences and run them inside JShell. This makes JShell quite useful when you need
to prototype a concept because it lets you interactively experiment with your code
without having to develop and compile a complete program.

This appendix introduces JShell and explores several of its key features, with the
primary focus being on those features most useful to beginning Java programmers.

JShell Basics
JShell is a command-line tool. Thus, it runs in a command-prompt window. To start
a JShell session, execute jshell from the command line. After doing so, you will see
the JShell prompt:

jshell>

When this prompt is displayed, you can enter a code snippet or a JShell command.
In its simplest form, JShell lets you enter an individual statement and immediately

see the result. To begin, think back to the first example Java program in this book. It
is shown again here.

In this program, only the println() statement actually performs an action, which is
displaying its message on the screen. The rest of the code simply provides the
required class and method declarations. In JShell, it is not necessary to explicitly
specify the class or method in order to execute the println() statement. JShell can
execute it directly on its own. To see how, enter the following line at the JShell
prompt:

System.out.println("Java drives the Web.");

Then, press ENTER. This output is displayed:

Java drives the Web.

jshell>

As you can see, the call to println() is evaluated and its string argument is output.
Then, the prompt is redisplayed.

Before moving on it is useful to explain why JShell can execute a single
statement, such as the call to println(), when the Java compiler, javac, requires a
complete program. JShell is able to evaluate a single statement because JShell
automatically provides the necessary program framework for you, behind the scenes.
This consists of a synthetic class and a synthetic method. Thus, in this case, the
println() statement is embedded in a synthetic method that is part of a synthetic
class. As a result, the preceding code is still part of a valid Java program even though
you don’t see all of the details. This approach provides a very fast and convenient
way to experiment with Java code.

Next, let’s look at how variables are supported. In JShell, you can declare a
variable, assign the variable a value, and use it in any valid expressions. For
example, enter the following line at the prompt:

int count;

After doing so you will see the following response:

count ==> 0

This indicates that count has been added to the synthetic class and initialized to zero.
Furthermore, it has been added as a static variable of the synthetic class.

Next, give count the value 10 by entering this statement:

count = 10;

You will see this response:

count ==> 10

As you can see, count’s value is now 10. Because count is static, it can be used
without reference to an object.

Now that count has been declared, it can be used in an expression. For example,
enter this println() statement:

System.out.println("Reciprocal of count: " + 1.0 / count);

JShell responds with

Reciprocal of count: 0.1

Here, the result of the expression 1.0 / count is 0.1 because count was previously
assigned the value 10.

In addition to demonstrating the use of a variable, the preceding example
illustrates another important aspect of JShell: it maintains state information. In this
case, count is assigned the value 10 in one statement, and then this value is used in
the expression 1.0 / count in the subsequent call to println() in a second statement.
Between these two statements, JShell stores count’s value. In general, JShell
maintains the current state and effect of the code snippets that you enter. This lets
you experiment with larger code fragments that span multiple lines.

Before moving on, let’s try one more example. In this case, we will create a for
loop that uses the count variable. Begin by entering this line at the prompt:

for(count = 0; count < 5; count++)

At this point, JShell responds with the following prompt:

...>

This indicates that additional code is required to finish the statement. In this case, the
target of the for loop must be provided. Enter the following:

System.out.println(count);

After entering this line, the for statement is complete and both lines are executed.
You will see the following output:

0
1
2
3
4

In addition to statements and variable declarations, JShell lets you declare classes
and methods and use import statements. Examples are shown in the following
sections. One other point: Any code that is valid for JShell will also be valid for
compilation by javac, assuming the necessary framework is provided to create a
complete program. Thus, if a code fragment can be executed by JShell, then that
fragment represents valid Java code. In other words, JShell code is Java code.

List, Edit, and Rerun Code
JShell supports a large number of commands that let you control the operation of
JShell. At this point, three are of particular interest because they let you list the code
that you have entered, edit a line of code, and rerun a code snippet. As the
subsequent examples become longer, you will find these commands to be very
helpful.

In JShell, all commands start with a / followed by the command. Perhaps the most
commonly used command is /list, which lists the code that you have entered.
Assuming that you have followed along with the examples shown in the preceding
section, you can list your code by entering /list at this time. Your JShell session will
respond with a numbered list of the snippets you entered. Pay special attention to the
entry that shows the for loop. Although it consists of two lines, it constitutes one
statement. Thus, only one snippet number is used.

You can edit a snippet by using the /edit command. This command causes an edit
window to open in which you can modify your code. The /edit command has three
forms. First, if you specify /edit by itself, the edit window contains all of the lines
you have entered and lets you edit any part of it. Second, you can specify a snippet to
edit by using /edit n, where n specifies the snippet’s number. For example, to edit

snippet 3, use /edit 3. Finally, you can specify a named element, such as a variable.
For example, to change the value of count, use /edit count.

As you have seen, JShell executes code as you enter it. However, you can also
rerun what you have entered. To rerun the last fragment that you entered, use /!. To
rerun a specific snippet, specify its number using this form: /n, where n specifies the
snippet to run. For example, to rerun the fourth snippet, enter /4. You can rerun a
snippet by specifying its position relative to the current fragment by use of a negative
offset. For example, to rerun a fragment that is three snippets before the current one,
use /-3.

There is one other important command that you need to know about now: /exit.
This terminates JShell.

Add a Method
You first learned about methods in Chapter 4. As you saw there, methods occur
within classes. However, when using JShell, it is possible to experiment with a
method without having to explicitly declare it within a class. As explained earlier,
this is because JShell automatically wraps code fragments within a synthetic class.
As a result, you can easily and quickly write a method without having to provide a
class framework. You can also call the method without having to create an object.
This feature of JShell is especially beneficial when learning the basics of methods in
Java or when prototyping new code. To understand the process, we will work
through an example.

To begin, start a new JShell session and enter the following method at the prompt:

This creates a method that returns the reciprocal of its argument. After you enter this,
JShell responds with the following:

| created method reciprocal(double)

This indicates the method has been added to JShell’s synthetic class and is ready for
use.

To call reciprocal(), simply specify its name, without any object or class
reference. For example, try this:

System.out.println(reciprocal(4.0));

JShell responds by displaying 0.25.
You might be wondering why you can call reciprocal() without using the dot

operator and an object reference. Here is the answer. When you create a stand-alone
method in JShell, such as reciprocal(), JShell automatically makes that method a
static member of the synthetic class. As you know from Chapter 5, static methods
are called relative to their class, not on a specific object. So, no object is required.
This is similar to the way that stand-alone variables become static variables of the
synthetic class, as described earlier.

Another important aspect of JShell is its support for a forward reference inside a
method. This feature lets one method call another method, even if the second method
has not yet been defined. This enables you to enter a method that depends on another
method without having to worry about which one you enter first. Here is a simple
example. Enter this line in JShell:

void myMeth() { myMeth2(); }

JShell responds with the following:

As you can see, JShell knows that myMeth2() has not yet been declared, but it still
lets you define myMeth(). As you would expect, if you try to call myMeth() at this
time, you will see an error message since myMeth2() is not yet defined, but you are
still able to enter the code for myMeth().

Next, define myMeth2() like this:

void myMeth2() { System.out.println("JShell is powerful."); }

Now that myMeth2() has been defined, you can call myMeth().
In addition to its use in a method, you can use a forward reference in a field

initializer in a class.

Create a Class
Although JShell automatically supplies a synthetic class that wraps code snippets,
you can also create your own class in JShell. Furthermore, you can instantiate
objects of your class. This allows you to experiment with classes inside JShell’s
interactive environment. The following example illustrates the process.

Start a new JShell session and enter the following class, line by line:

When you finish entering the code, JShell will respond with

| created class MyClass

Now that you have added MyClass, you can use it. For example, you can create a
MyClass object with the following line:

MyClass ob = new MyClass(10.0);

JShell will respond by telling you that it added ob as a variable of type MyClass.
Next, try the following line:

System.out.println(ob.reciprocal());

JShell responds by displaying the value 0.1.
As a point of interest, when you add a class to JShell, it becomes a static nested

member of a synthetic class.

Use an Interface
Interfaces are supported by JShell in the same way as classes. Therefore, you can
declare an interface and implement it by a class within JShell. Let’s work through a
simple example. Before beginning, start a new JShell session.

The interface that we will use declares a method called isLegalVal() that is used
to determine if a value is valid for some purpose. It returns true if the value is legal
and false otherwise. Of course, what constitutes a legal value will be determined by
each class that implements the interface. Begin by entering the following interface
into JShell:

JShell responds with

| created interface MyIf

Next, enter the following class, which implements MyIF:

JShell responds with

| created class MyClass

Notice that MyClass implements isLegalVal() by determining if the value v is
within the range (inclusive) of the values in the MyClass instance variables start
and end.

Now that both MyIF and MyClass have been added, you can create a MyClass
object and call isLegalVal() on it, as shown here:

MyClass ob = new MyClass(0.0, 10.0);

System.out.println(ob.isLegalVal(5.0));

In this case, the value true is displayed because 5 is within the range 0 through 10.
Because MyIF has been added to JShell, you can also create a reference to an

object of type MyIF. For example, the following is also valid code:

MyIF ob2 = new MyClass(1.0, 3.0);
boolean result = ob2.isLegalVal(1.1);

In this case, the value of result will be true and will be reported as such by JShell.

One other point: Enumerations and annotations are supported in JShell in the same
way as classes and interfaces.

Evaluate Expressions and Use Built-in
Variables
JShell includes the ability to directly evaluate an expression without it needing to be
part of a full Java statement. This is especially useful when you are experimenting
with code and don’t need to execute the expression in a larger context. Here is a
simple example. Using a new JShell session, enter the following at the prompt:

3.0 / 16.0

JShell responds with:

$1 ==> 0.1875

As you can see, the result of the expression is computed and displayed. However,
note that this value is also assigned to a temporary variable called $1. In general,
each time an expression is evaluated directly, its result is stored in a temporary
variable of the proper type. Temporary variable names all begin with a $ followed by
a number, which is increased each time a new temporary variable is needed. You can
use these temporary variables like any other variable. For example, the following
displays the value of $1, which is 0.1875 in this case.

System.out.println($1);

Here is another example:

double v = $1 * 2;

Here, the value $1 times 2 is assigned to v. Thus, v will contain 0.375.
You can change the value of a temporary variable. For example, this reverses the

sign of $1:

$1 = -$1

JShell responds with

$1 ==> -0.1875

Expressions are not limited to numeric values. For example, here is one that

concatenates a String with the value returned by Math.abs($1).

"The absolute value of $1 is " + Math.abs($1)

This results in a temporary variable that contains the string

The absolute value of $1 is 0.1875

Importing Packages
As described in Chapter 8, an import statement is used to bring members of a
package into view. Furthermore, any time you use a package other than java.lang,
you must import it. The situation is much the same in JShell except that by default,
JShell imports several commonly used packages automatically. These include
java.io and java.util, among several others. Since these packages are already
imported, no explicit import statement is required to use them.

For example, because java.io is automatically imported, the following statement
can be entered:

FileInputStream fin = new FileInputStream("myfile.txt");

Recall that FileInputStream is packaged in java.io. Since java.io is automatically
imported, it can be used without having to include an explicit import statement.
Assuming that you actually have a file called myfile.txt in the current directory,
JShell will respond by adding the variable fin and opening the file. You can then
read and display the file by entering these statements:

This is the same basic code that was discussed in Chapter 10, but no explicit import
java.io statement is required.

Keep in mind that JShell automatically imports only a handful of packages. If you
want to use a package not automatically imported by JShell, then you must explicitly
import it as you do with a normal Java program. One other point: You can see a list
of the current imports by using the /imports command.

Exceptions

In the I/O example shown in the preceding section on imports, the code snippets also
illustrate another very important aspect of JShell. Notice that there are no try/catch
blocks that handle I/O exceptions. If you look back at the similar code in Chapter 10,
the code that opens the file catches a FileNotFoundException, and the code that
reads the file watches for an IOException. The reason that you don’t need to catch
these exceptions in the snippets shown earlier is because JShell automatically
handles them for you. More generally, JShell will automatically handle checked
exceptions in many cases.

Some More JShell Commands
In addition to the commands discussed earlier, JShell supports several others. One
command that you will want to try immediately is /help. It displays a list of the
commands. You can also use /? to obtain help. Several other commonly used
commands are examined here.

You can reset JShell by using the /reset command. This is especially useful when
you want to change to a new project. By use of /reset you avoid the need to exit and
then restart JShell. Be aware, however, that /reset resets the entire JShell
environment, so all state information is lost.

You can save a session by using /save. Its simplest form is shown here:

/save filename

Here, filename specifies the name of the file to save into. By default, /save saves
your current source code, but it supports three options, of which two are of particular
interest. By specifying -all you save all lines that you enter, including those that you
entered incorrectly. You can use the -history option to save your session history
(i.e., the list of the commands that you have entered).

You can load a saved session by using /open. Its form is shown next:

/open filename

Here, filename is the name of the file to load.
JShell provides several commands that let you list various elements of your work.

They are shown here:

For example, if you entered the following lines:

int start = 0;
int end = 10;
int count = 5;

and then entered the /vars command, you would see

| int start = 0;|
| int end = 10;|
| int count = 5;

Another often useful command is /history. It lets you view the history of the
current session. The history contains a list of what you have typed at the command
prompt.

Exploring JShell Further
The best way to get proficient with JShell is to work with it. Try entering several
different Java constructs and watching the way that JShell responds. As you
experiment with JShell you will find the usage patterns that work best for you. This
will enable you to find effective ways to integrate JShell into your learning or
development process. Also, keep in mind that JShell is not just for beginners. It also
excels when prototyping code. Thus, as you advance in your study of Java, you will
still find JShell helpful whenever you need to explore new areas.

You will also want to closely examine the JShell commands and their options.
Because JShell is new, it is likely that by the time you read this, it will include
additional features. It is also likely that JShell’s features will be incorporated into
Java IDEs, further streamlining the prototype/development process. JShell is an
important tool that further enhances the overall Java development experience.

T

Appendix E

More Java Keywords
here are six Java keywords not discussed elsewhere in this book. They are:

 transient

 volatile

 instanceof

 native

 strictfp

 assert

These keywords are most often used in programs more advanced than those found in
this book. However, an overview of each is presented so that you will know their
purpose. In addition, another form of this is described.

The transient and volatile Modifiers
The transient and volatile keywords are type modifiers that handle somewhat
specialized situations. When an instance variable is declared as transient, then its
value need not persist when an object is stored. Thus, a transient field is one that
does not affect the persisted state of an object.

The volatile modifier tells the compiler that a variable can be changed
unexpectedly by other parts of your program. One of these situations involves
multithreaded programs. In a multithreaded program, sometimes two or more threads
will share the same variable. For efficiency considerations, each thread can keep its
own, private copy of such a shared variable, possibly in a register of the CPU. The
real (or master) copy of the variable is updated at various times, such as when a
synchronized method is entered. While this approach works fine, there may be times
when it is inappropriate. In some cases, all that really matters is that the master copy
of a variable always reflects the current state, and that this current state is used by all
threads. To ensure this, declare the variable as volatile.

instanceof
Sometimes it is useful to know the type of an object during run time. For example,
you might have one thread of execution that generates various types of objects and
another thread that processes these objects. In this situation, it might be useful for the
processing thread to know the type of each object when it receives it. Another
situation in which knowledge of an object’s type at run time is important involves
casting. In Java, an invalid cast causes a run-time error. Many invalid casts can be
caught at compile time. However, casts involving class hierarchies can produce
invalid casts that can only be detected at run time. Because a superclass reference
can refer to subclass objects, it is not always possible to know at compile time
whether or not a cast involving a superclass reference is valid. The instanceof
keyword addresses these types of situations. The instanceof operator has this general
form:

objref instanceof type

Here, objref is a reference to an instance of a class, and type is a class or interface
type. If the object referred to by objref is of the specified type or can be cast into the
specified type, then the instanceof operator evaluates to true. Otherwise, its result is
false. Thus, instanceof is the means by which your program can obtain run-time
type information about an object.

strictfp
One of the more esoteric keywords is strictfp. When Java 2 was released several
years ago, the floating-point computation model was relaxed slightly. Specifically,
the new model does not require the truncation of certain intermediate values that
occur during a computation. This prevents overflow or underflow in some cases. By
modifying a class, method, or interface with strictfp, you ensure that floating-point
calculations (and thus all truncations) take place precisely as they did in earlier
versions of Java. When a class is modified by strictfp, all of the methods in the class
are also strictfp automatically.

assert
The assert keyword is used during program development to create an assertion,
which is a condition that is expected to be true during the execution of the program.
For example, you might have a method that should always return a positive integer
value. You might test this by asserting that the return value is greater than zero using

an assert statement. At run time, if the condition actually is true, no other action
takes place. However, if the condition is false, then an AssertionError is thrown.
Assertions are often used during testing to verify that some expected condition is
actually met. They are not usually used for released code.

The assert keyword has two forms. The first is shown here:

assert condition;

Here, condition is an expression that must evaluate to a Boolean result. If the result
is true, then the assertion is true and no other action takes place. If the condition is
false, then the assertion fails and a default AssertionError object is thrown. For
example,

assert n > 0;

If n is less than or equal to zero, then an AssertionError is thrown. Otherwise, no
action takes place.

The second form of assert is shown here:

assert condition : expr;

In this version, expr is a value that is passed to the AssertionError constructor. This
value is converted to its string format and displayed if an assertion fails. Typically,
you will specify a string for expr, but any non-void expression is allowed as long as
it defines a reasonable string conversion.

To enable assertion checking at run time, you must specify the -ea option. For
example, to enable assertions for Sample, execute it using this line:

java -ea Sample

Assertions are quite useful during development because they streamline the type
of error checking that is common during testing. But be careful—you must not rely
on an assertion to perform any action actually required by the program. The reason is
that normally, released code will be run with assertions disabled and the expression
in an assertion will not be evaluated.

Native Methods
Although rare, there may occasionally be times when you will want to call a
subroutine that is written in a language other than Java. Typically, such a subroutine
will exist as executable code for the CPU and environment in which you are working

—that is, native code. For example, you may wish to call a native code subroutine in
order to achieve faster execution time. Or you may want to use a specialized, third-
party library, such as a statistical package. However, since Java programs are
compiled to bytecode, which is then interpreted (or compiled on the fly) by the Java
run-time system, it would seem impossible to call a native code subroutine from
within your Java program. Fortunately, this conclusion is false. Java provides the
native keyword, which is used to declare native code methods. Once declared, these
methods can be called from inside your Java program just as you call any other Java
method.

To declare a native method, precede the method with the native modifier, but do
not define any body for the method. For example:

public native int meth() ;

Once you have declared a native method, you must provide the native method and
follow arather complex series of steps in order to link it with your Java code.

Another Form of this
There is another form of this that enables one constructor to invoke another
constructor within the same class. The general form of this use of this is shown here:

this(arg-list)

When this() is executed, the overloaded constructor that matches the parameter
list specified by arg-list is executed first. Then, if there are any statements inside the
original constructor, they are executed. The call to this() must be the first statement
within the constructor. Here is a simple example:

In MyClass, only the first constructor actually assigns a value to a and b. The
second constructor simply invokes the first. Therefore, when this statement executes:

MyClass mc = new MyClass(8);

the call to MyClass(8) causes this(8, 8) to be executed, which translates into a call to
MyClass(8, 8).

Invoking overloaded constructors through this() can be useful because it can
prevent the unnecessary duplication of code. However, you need to be careful.
Constructors that call this() may execute a bit slower than those that contain all of
their initialization code in-line. This is because the call and return mechanism used
when the second constructor is invoked adds overhead. Remember that object
creation affects all users of your class. If your class will be used to create large
numbers of objects, then you must carefully balance the benefits of smaller code
against the increased time it takes to create an object. As you gain more experience
with Java, you will find these types of decisions easier to make.

There are two restrictions you need to keep in mind when using this(). First, you
cannot use any instance variable of the constructor’s class in a call to this(). Second,
you cannot use super() and this() in the same constructor because each must be the
first statement in the constructor.

Index

Please note that index links point to page beginnings from the print edition.
Locations are approximate in e-readers, and you may need to page down one or
more times after clicking a link to get to the indexed material.

& (bitwise AND), 166-168
& (Boolean logical AND), 50, 51, 52, 54
&& (short-circuit AND), 50, 52-53, 54
*

multiplication operator, 19, 48
used in import statement, 277, 439

@ (annotation syntax), 440
@ tags (javadoc), 674-678
\ used for character escape sequences (backslash character constants), 42
| (bitwise OR), 166, 167, 168-169
| (Boolean logical OR), 50, 51, 52, 54
|| (short-circuit OR), 50, 52, 53, 54
[], 58, 137, 142, 145-146
^ (bitwise exclusive OR), 166, 167, 169-170
^ (Boolean logical exclusive OR), 50, 51
:, 92, 177
::

constructor reference syntax, 510, 512
method reference syntax, 504, 506, 508, 509, 510

{ }, 15, 16, 25, 26, 27, 45, 85, 112, 113, 139, 144, 493, 519
$ used in temporary variable names, 698-699

=, 18, 44, 53-55
= = (relational operator), 23, 50, 51, 417

versus equals(), 162
! (Boolean logical unary NOT), 50, 51
!=, 23, 50, 51
/

arithmetic operator, 19, 48
used for JShell commands, 694

/* */, 15
/** */, 674, 679
//, 15
<, 23, 40, 50, 51
< >

diamond operator (type inference), 476-477
generic type parameter syntax, 449, 450

<<, 166, 171, 172-173
<=, 23, 50, 51
–, 19, 48
– >, lambda (or arrow) operator, 485
– –, 25, 48, 49-50
%, 48-49
(), 16, 58, 62, 112, 117, 118, 128, 130, 422, 486, 491

and casts, 56
and operator precedence, 40, 58, 62
used with super, 233
used with this, 706-707

. (dot operator), 58, 108, 114, 148, 206, 238, 297

... (variable-length argument syntax), 218, 221
+

addition, 19, 48
concatenation operator, 19, 161

++, 25, 48, 49-50
?

ternary operator, 176-178

wildcard argument specifier, 458, 462, 463
>, 23, 50, 51
>>, 166, 171-173
>>>, 166, 171, 172
>=, 23, 50, 51
; (semicolon), 16, 27, 78, 144, 346, 422
~ (bitwise NOT), 166, 167, 170-171
_ (underscore)

used with integer or floating-point literals, 41
used as a keyword, 29

A

abs(), 198
Abstract method(s), 259-262, 278, 485, 486, 487

and lambda expressions, 486-487, 488, 489, 492, 502
abstract type modifier, 259, 262, 263, 486
Abstract Window Toolkit. See AWT (Abstract Window Toolkit)
AbstractButton class, 560, 567
Access control, 182-187

and Java’s default access, 183, 272, 279
and interfaces, 279
and modules, 520, 526, 527, 543
and packages, 183, 268, 269, 272-276

Access modifiers, 16, 183-184
Accessor methods, 184, 230-232
Action command string, 561, 563, 564, 567
Action events, 559, 560-561, 562, 563, 564, 567, 594-595, 597, 598, 601, 608, 610
ActionEvent class, 559, 560, 561, 562, 563, 564, 567

JavaFX, 594, 597, 601
ActionListener interface, 559, 560, 562, 564, 581
actionPerformed(), 560-561, 563, 564, 567, 581
add(), 556, 558, 591, 597, 613
addActionListener(), 560, 564, 581

addAll(), 593, 597
addKeyListener(), 559
addListener(), 604
addMouseMotionListener(), 559
addTypeListener(), 559
Affine class, 613
AND operator

bitwise (&), 166-168
Boolean logical (&), 50, 51, 52, 54
short-circuit or conditional-and (&&), 50, 52-53, 54

Annotation interface, 442
Annotations, 442-444

built-in, table of, 443
and JShell, 698
marker, 443
type use, 442

API (Application Programming Interface), Java, 278, 302
and compact profiles, 527
concurrent, 401, 617
and modules, 518, 526-527, 528
stream, 514

Applet
characteristics of an, 5
deprecated, 8, 553
and the Internet, 5-6, 8, 682
and Java Web Start, 692

Applet class, 682
Application architecture, pluggable, 534-535, 536-537
Application class, 586, 589
Application launcher, 12
args parameter to main(), 16, 165-166
Arguments, 110, 115-117

command-line, 16, 165-166
passing, 190-192

type. See Type argument(s)
variable-length. See Varargs
wildcard. See Wildcard arguments

Arithmetic operators, 19, 48-50
ArithmeticException, 307-308, 321, 322
Array(s), 16, 136-153

boundaries, 139-140, 184, 304, 307
constructor reference for creating an, 512
declaration syntax, alternative, 145-146
“fail-soft”, example of a, 184-187
for-each for loop and, 153-158
and generics, 479-480
index, 137
initializing, 139, 144-145
irregular, 143-144
length instance variable of, 147-149
multidimensional, 142-145, 156-158
as a lambda expression parameter, using an, 503
as objects, implemented, 136, 137
one-dimensional, 137-140
searching an unsorted, 158
sorting, 140-141
of strings, 162
and varargs, 217-218, 221

Array reference variables
assigning, 146-147
declaring, 137

ArrayIndexOutOfBoundsException, 140, 304, 307-309, 311, 321
Arrow (or lambda) operator (–>), 485
ASCII character set, 37, 38, 167
Assembly language, 9
assert keyword, 705-706
Assertion, 705
AssertionError, 705, 706

Assignment operator(s)
=, 18, 44, 53-55
bitwise shorthand, 173
compound, 55
shorthand arithmetic and logical (op=), 53-55

Assignment(s)
array reference variables and, 146-147
automatic type conversions in, 55-56
object reference variables and, 111-112

Autoboxing/unboxing, 430, 432-436
definition of the terms, 432
and expressions, 435-436
and generics, 430, 451
and methods, 433-434
when to use, 436

AutoCloseable interface, 345
Automatic resource management, 304, 319, 345
AWT (Abstract Window Toolkit), 584

limitations of, 549
and Swing, 549, 550, 560

AWTEvent class, 560

B

Backslash character constants, 42
Binary to specify an integer literal, using, 42
BinaryOperator<T> predefined functional interface, 513
Bitwise operators, 166-176
Blocks, code, 25-27, 45

labeled break to exit, using a, 92-93
static, 209-210
synchronized, 399-401

Boolean class, 363, 430
boolean data type, 35, 39-40

and bitwise operators, 166
default value of a, 127
and logical operators, 50, 51
and relational operators, 40, 50, 51

Border layout, 553, 556, 558
BorderLayout, 553, 558, 563
BorderPane class, 586
BoxBlur class, 611-612

program demonstrating, 614-617
Boxing, 434. See also Autoboxing/unboxing
break statement, 66, 71, 72-74, 81, 90-95

and the for-each for loop, 156
as a form of goto, 91-95

Bubble sort, 140-141
Buffer

and console I/O, 67, 86
file output, 343
and NIO, 362

BufferedReader class, 335, 355-358, 362
Button class, 594, 608
ButtonBase class, 594, 598
Buttons. See Push buttons, JavaFX; Push buttons, Swing
Buzzwords, Java, 8-9
Byte class, 192, 363, 430-431
byte data type, 35, 36, 41
Bytecode, 6-7, 14, 706
byteValue(), 431

C

C and Java, 4
C++, 3

and Java, 4
C# and Java, 5

Call-by-reference versus call-by-value, 190-192
Case sensitivity and Java, 13, 17, 30, 269
case statement, 71-74
Casts, 56-58, 61

and generics, 447, 450, 451 462, 477
using instanceof with, 704-705

catch statement(s), 303-306, 307-308, 314, 317, 345
and finally, 316-318
and the more-precise (final) rethrow feature, 319, 320-321
multi-catch feature of the, 319-320
using multiple, 309-311
and rethrown exceptions, 313-314

Change events, 604, 607
changed(), 604
ChangeListener interface, 604
Channels, 362
char data type, 35, 37-38, 41

as an integral type, 36
Character class, 192, 363, 430, 499
Character(s), 37-39

constants (literals), 41, 42, 43
escape sequences, 42-43
from the keyboard, inputting, 66-67, 336-338, 355-358

charAt(), 160-161, 163
Charsets, 362
Check box, JavaFX, 598-603

indeterminate state of a, enabling the, 602-603
Check boxes, Swing, 567-570
CheckBox class, 598, 602, 608
Class class, 450, 535
.class file, 14, 109, 269, 270
class keyword, 15, 107
Class(es), 13, 14, 15, 106-110

abstract, 259-262, 263, 278, 283

anonymous inner, 216, 580-581, 594, 595, 597, 598
constructor. See Constructor(s)
data type, as a, 108, 189
definition of the term, 10, 106-107
event, 560
final, 263
general form of a, 107
generic. See Generic class
and generic interfaces, 466-468
that inherits a superclass, general form of a, 229
inner, 213-216
instance of a, 106, 108
and interfaces, 279-283, 291-292, 293
in JShell, creating a, 696-697
libraries, 31, 278
literal, 535
member. See Member, class
name and source file name, 13, 14, 109
nested, 213-216
path, 528
synthetic, 693, 695, 696
well-designed, 107, 120

CLASSPATH, 270
-classpath option, 270
clear(), 611
Client/server relationships, Internet, 5, 8
clone(), 265
close(), 336, 337, 339, 341, 342, 343, 345, 346, 348, 355, 356
Closeable interface, 345
Closures (lambda expressions), 485
Code blocks. See Blocks, code
Code

snippet, 692
unreachable, 310

Collections Framework, 154, 591, 617
Comments, 15

documentation, 674-680
Compact profiles, 527
Comparable<T> interface, 464, 466
compareTo(), 160-161, 367, 425-426
Compilation unit, 13
Compiler, Java, 12, 14, 15, 477. See also javac
Component class, 551, 552
Components, 551-552

class names for Swing, table of, 551
and the event-dispatching thread, 557
heavyweight, 549
lightweight, 549, 552, 585

Concurrency utilities, 401-402
Concurrent API, 401, 617
Conditional-and operator, 53
Conditional-or operator, 53
Console class, 354
Console I/O, 16, 66-67, 86, 332, 336-339, 354, 355-360
console(), 354
const, 29
Constants, 41

enumeration, 417, 418, 419, 421, 422, 423, 425
using final to create named, 264
using an interface to define shared, 290-291

Constructor(s), 126-130, 232-238
in a class hierarchy, order of execution of, 244-245
default, 127, 130, 232, 245
enumeration, 419, 421-422
generic, 465-466
overloading, 199-204
references, 510-513
and super(), 233-238, 244, 245, 250, 707

and this(), 706-707
Consumer<T> predefined interface, 513
Container class, 551, 552
Container(s), 551, 552

top-level, 551, 552
lightweight versus heavyweight, 552
panes, 552

Containment hierarchy, 551, 552
Content pane, 551, 552, 563

adding a component to a, 556
default layout manager for a, 553, 556, 563

continue statement, 66, 96-97
Control class, 586, 591, 594
Control statements. See Statements, control
Control(s), JavaFX, 591, 593-610

button, 594-598
check box. See Check box, JavaFX
label, 591-593
list view. See List view, JavaFX
text, 608, 610
text field, 608-610

currentThread(), 414-415

D

Data engines, 149-150
Data structures, 149, 154
Data type(s), 19, 21, 34-35

class as a, 108, 191
See also Type(s); Types, primitive

DataInput interface, 349, 352, 353
DataInputStream class, 334, 348, 349-351

methods defined by, table of commonly used, 349
DataOutput interface, 348, 352, 353

DataOutputStream class, 334, 348, 349-351
methods defined by, table of commonly used, 348

Deadlock, 408, 409
Decrement operator (– –), 25, 48, 49-50
default statement, 71-73, 88, 293
Delegation event model, 558-560

event, 558, 559, 560
and JavaFX, 594
listener, 558, 559, 560, 594

@Deprecated built-in annotation, 441, 442
Diamond operator (< >), 476-477
Directories and packages, 269, 270, 271
DISPOSE_ON_CLOSE, 556
do-while loop, 66, 84, 85-86, 96
DO_NOTHING_ON_CLOSE, 556
Dot operator (.), 58, 108, 114, 148, 206, 238, 297
Double class, 192, 365, 432-433
double data type, 19-20, 21, 35, 37, 41

and bitwise operators, 166
doubleValue(), 431
Dynamic method dispatch, 253-254

E

Eclipse, 12
Effect class, 611
Effects, 611-612

list of some built-in, 611
program demonstrating, 614-617

else, 67-71
Encapsulation, 10, 15, 45, 119, 182, 268
Enum class, 423
enum keyword, 417, 419
Enumeration(s), 416-430

= = relational operator and, 417
as a class type, 419, 422, 423
constants, 417, 418, 419, 421, 422, 423, 425
constructor, 419, 421-422
as a data type, 416
definition of the term, 416
final variables versus, 417, 419, 423
and inheritance, 423
and instance variables, 419, 421-422
and JShell, 698
and methods, 419, 421-422
ordinal value, 423
restrictions, 423
values in switch statements, using, 417-419
variable, declaring an, 417

equals(), 160-161, 265-266, 365, 485
versus = =, 162

Erasure, 450, 477-478
and ambiguity errors, 478

err, 335. See also System.err standard error stream
Error class, 303, 318, 322
Errors

ambiguity, 478
compile-time, causes of, 259, 318, 450, 454-455, 456, 465, 467, 487
raw types and run-time, 474-475
run-time, 302
syntax, 17
See also Exception; Exception handling; Exceptions, standard built-in

Escape sequences, character, 42-43
Event class, 594
Event classes, 560
Event handling

and action events, 559, 560, 561, 562, 563, 564, 567, 581, 594-595, 597, 598,
601, 608, 610

anonymous inner classes for, using, 580-581, 594, 595, 597
and change events, 604, 607
and item events, 567-568, 570
and JavaFX, 591, 593-598
lambda expressions for, using, 580, 581, 594, 595, 598, 610
and list selection events, 571, 572, 574
and mouse motion events, 559
using separate listener classes, 580
Swing, 557, 558-560
See also Delegation event model

Event listener interfaces, 560
EventHandler interface, 594, 597
EventObject class, 559, 560, 594
Exception

conditions that generate an, 130, 139, 303
consequences of an uncaught, 306-308
definition of the term, 302
from a lambda expression, throwing an, 502-503
suppressed, 347

Exception class, 303, 311, 322, 323
Exception handling, 302-329

benefits of, 302, 308-309
block, general form of, 304, 316-317
and chained exceptions, 322-323
and creating custom exceptions, 323-328, 481
and the default exception handler, 306-307
and the final (more-precise) rethrow feature, 319, 320-321
and JShell, 700
versus error codes, 325, 343
when to use, 325

Exception Site List, 683, 689, 690
Exceptions, standard built-in, 302, 321-322

checked, table of, 322
unchecked, table of, 321

EXIT_ON_CLOSE, 556
exports

keyword, 30, 519
and qualified export, 529-530
statement, 520, 526, 543

Expressions, 60-62
and autoboxing/unboxing, 435-436
using JShell, directly evaluate, 698-699

extends, 226, 229, 280, 291
and bounded wildcard arguments, 461-462
to create a bounded type, using, 455, 456-457, 460

F

false, 30, 39, 51, 127
File comparison utility example

console-based, 351-352
Swing-based, 575-580

File(s)
close() to close a, using, 339, 341, 343, 345, 348
I/O, 332, 339-354, 360-362
JAR. See JAR file
keystore, 684, 687-688
pointer, 352, 353
random-access, 352-354
source, 13, 14, 109
try-with-resources to automatically close a, using, 345-348

FileInputStream class, 334, 339, 345, 349
FileNotFoundException, 339, 342, 343, 361
FileOutputStream, 334, 339, 343, 345, 348
FileReader class, 335, 360, 361-362
FileWriter class, 335, 360-361
final

to prevent class inheritance, 263

to prevent method overriding, 263
variables, 264-265, 417, 419, 423, 501-502

finalize(), 265
finally block, 303, 316-318, 345

to close a file, using a, 341-342
Float class, 192, 363, 430-431
float data type, 19, 21, 35, 37, 41

and bitwise operators, 166
Floating-point literals, 41

hexadecimal, 42
Floating-point types, 19-20, 21, 37

and strictfp, 705
floatValue(), 431
Flow layout, 553, 562, 563, 589
FlowLayout, 553, 562, 563
FlowPane class, 586, 589, 597, 601
for loop, 24-25, 66, 77-82, 84, 85, 96

enhanced. See For-each version of for loop
variations, 79-82

For-each version of for loop, 83, 153-158
break statement and, 156
and collections, 154
general form, 154
to search unsorted arrays, 158

Fork/Join Framework, 401-402
format(), 339
FORTRAN, 9
Frank, Ed, 3
Function<T,R> predefined functional interface, 513
Functional interface(s), 484, 485, 486-488, 489-491, 492, 504

generic, 494-496, 512
predefined, 513-515

FXCollections class, 603

G

Garbage collection, 130-131, 138, 165, 194
program demonstrating, 132-134

Generic class
casting one instance of a generic class into another instance of a, 462
constructor, 449, 450-451
example program with one type parameter, 447-451
example program with two type parameters, 452-453
general form of a, 453
and raw types, 473-475
and static members, 479
and Throwable, 481

Generic constructors, 465-466
Generic interfaces, 466-468
Generic method, 447, 463-465, 479
Generics, 266, 446-481

and ambiguity errors, 478
and arrays, 479-480
and autoboxing/unboxing, 430, 451
and casts, 447, 450, 451, 462, 477
and compatibility with pre-generics (legacy) code, 473-475, 477
and exception classes, 481
restrictions on using, 479-481
type safety and, 447, 450, 452

getActionCommand(), 561, 563, 581
getCause(), 323
getChildren(), 591
getClass(), 265, 266, 450
getItem(), 568, 570
getName(), 375, 380, 384, 450
getPriority(), 375, 393
getSelectedIndex(), 572, 574
getSelectedIndices(), 572

getSelectedItems(), 607
getSelectionModel(), 604
getSuppressed(), 347
getText(), 565, 567, 568, 608
getTransforms(), 613
Glass pane, 552
Gosling, James, 3
goto keyword, 29
goto statement, using labeled break as a form of a, 91-95
Graphical user interface (GUI), 31, 332-333, 584

and JavaFX, 548-549, 584
and Swing, 548, 549, 550, 557

GridPane class, 586
Group class, 586

H

handle(), 594, 597, 598
hashCode(), 265
hasNextX methods, Scanner’s, 371
Heavyweight

components, 549
containers, 552

Hexadecimal literals, 42
HIDE_ON_CLOSE, 556
Hierarchical classification, 11

and inheritance, 226
Hierarchy

containment, 551, 552
multilevel, 242-244

Hoare, C.A.R., 210
HotSpot, 7
HTML (Hypertext Markup Language) file

and javadoc, 674, 679

and JavaFX, 590
HTMLEditor JavaFX control, 610

I

Identifiers, 30
if statement, 22-24, 25-26, 40, 66, 67-71

nested, 69-70
if-else-if ladder, 70-71

switch statement versus, 77, 164
implements clause, 279-280

and bounded types, 468
import statement, 273, 276-277

and static import, 437, 438-439
in, 335. See also System.in standard input stream
Increment operator (++), 25, 48, 49-50
Indentation style, 27
Index, array, 137
indexOf(), 160-161, 492
Inheritance, 10, 11, 226-266

and abstract classes and methods, 259-262
basics of, 226-229
and constructors, 232-238, 244-245
and enumerations, 423
final and, 263
and interfaces, 291-292, 296-297
member access and, 229-232
multilevel, 229, 242-244
and multiple superclasses, 229

init(), 586, 587, 589, 591
initCause(), 323
InputMismatchException, 371
InputStream class, 333, 334, 335, 336, 337, 349, 352, 356, 371

methods, table of, 336

InputStreamReader class, 335, 356, 361
Instance of a class, 106

See also Object(s)
Instance variables, 10

definition of the term, 107
dot operator to access, using the, 108, 114
enumeration, 419, 421-422
final, 264-265
hiding, 132-133
inheritance and private, 229-232
and lambda expressions, 501, 502
as unique to their object, 108, 109-110, 114
super to access hidden, using, 238
this to access hidden, using, 132-133
transient, 704

instanceof operator, 704-705
int data type, 18, 19, 20, 35, 36, 41
Integer class, 192, 363, 430-432
Integer(s), 18, 21, 35-36

literals, 41, 42, 56
interface keyword, 278, 279

used in an annotation declaration, 440
Interface methods

default, 278-279, 292-297, 298-299, 484, 486
private, 279, 298-299
static, 279, 297-298
traditional, 279

Interface(s), 268, 278-298
event listener. See Event listener interfaces
functional. See Functional interface(s)
general form of, 279
generic, 466-468
implementing, 279-283, 293
and inheritance, 291-292, 296-297

and JShell, 697-698
methods. See Interface methods
reference variables, 283-284
variables, 279, 290-291, 293

Internet, 2, 3, 4-5
client/server relationships, 5, 8
and portability, 3, 4, 6, 7
and security, 4-6, 7

Internet of Things (IoT), 518
Interpreter, Java, 12, 14
InterruptedException, 322, 378
intValue(), 431, 432
invokeAndWait(), 557
invokeLater(), 557
I/O, 332-371

binary data, 348-351
channel-based, 362
console, 16, 66-67, 86, 332, 336-339, 354, 355-360
file, 332, 339-354, 360-362
new (NIO), 362
random-access, 352-354
streams. See Stream(s), I/O

io package. See java.io package
IOException, 67, 318-319, 321, 336, 337, 339, 342, 343, 348, 349, 355, 357, 360,

502, 503
isAlive(), 375, 389-390
isEmpty(), 593
isIndeterminate(), 602
isSelected(), 568, 570, 601
isUpperCase(), 499
Item events, 567-568, 570
ItemEvent class, 560, 568, 570
ItemListener interface, 560, 568, 581
itemStateChanged(), 568, 570

Iteration statements, 66, 77-86

J

JApplet container, 551, 552, 682
JAR file, 544, 587, 682, 683, 687

manifest, 683, 687
modular, 544
signing a, 683-684, 687-688

jar tool, 544, 683, 687
jarsigner command-line tool, 683-684, 688
Java

and ahead-of-time compilation, 7
API. See API (Application Programming Interface), Java
Beans, 617
and C, 4
and C++, 4
and C#, 5
compiler, 12, 14, 15
design features (buzzwords), 8-9
and dynamic compilation, 7
history of, 3-4
IDEs, 12
and the Internet, 2, 3, 4-6
as an interpreted language, 7
interpreter, 12, 14
keywords. See Keywords, Java
look and feel (metal), 550
and networking, 5
as a strongly typed language, 34, 246
and the World Wide Web, 3

java (Java interpreter), 12, 14, 270, 518, 544, 591
-m option, 525
--module-path option, 525

Java Control Panel, 683, 689
Java Development Kit (JDK), 11-12
.java filename extension, 13, 270
Java Foundation Classes (JFC), 549
Java Network Launch Protocol (JNLP) file. See JNLP (Java Network Launch

Protocol) file
java package, 278
Java Runtime Environment (JRE), 526, 682
Java Virtual Machine (JVM), 6-7, 14, 16, 35

and exceptions, 303, 304, 306-307
Java Web Start, 682-690

and applets, 690
essentials, 683-685
example using the local file system, 686-690
and JavaFX, 590, 686
and javaws, 690
and Swing, 686
versus applets, 682

Java: The Complete Reference, Tenth Edition, 8, 154, 440, 481, 543, 617
java.awt package, 278, 553, 560, 562
java.awt.event package, 559, 562
java.base module, 526, 527, 545
java.desktop module, 526, 555, 562
java.io package, 278, 319, 333, 334, 335, 345, 362

and JShell, 699
java.io.IOException, 67. See also IOException
java.lang package, 278, 321, 335, 345, 375, 430, 437, 441, 450, 464, 527, 699
java.lang.annotation package, 440, 441, 442
java.lang.Enum, 423
java.net package, 278
java.nio package, 362
java.nio.channels package, 362
java.nio.charset package, 362
java.nio.file package, 362

java.nio.file.attribute package, 362
java.nio.file.spi package, 362
java.util package, 278, 370, 535, 560

and JShell, 699
java.util.concurrent package, 401
java.util.EventObject, 559, 594
java.util.function package, 513
java.util.List, 591
java.util.stream package, 514
java.xml module, 526
javac (Java compiler), 12, 14, 270, 475, 591, 693, 694

-d option, 524, 529
--module-path option, 525
--module-source-path option, 529
and modules, 518, 519, 524-525, 544
and multimodule mode, 529-530

javadoc utility program, 674, 679
tags, list of some, 674

JavaFX, 548-549, 584-617
event handling, 591, 593-598
layout panes, 586
life-cycle methods, 586-587, 589
nodes. See Node(s), JavaFX
packages, 585
scene, 585, 586, 589, 590, 591
scene graph, 586, 589, 591, 593
Script, 584
stage, 585, 589, 590, 591
versus Swing, 584-585

JavaFX application
compiling and running a, 590-591
and Java Web Start, 590, 686
skeleton, 587-590
thread, 591

javafx.application package, 585, 586, 589
javafx.base module, 585
javafx.beans.value package, 604
javafx.collections package, 591, 603
javafx.controls module, 585
javafx.event package, 594
javafx.geometry package, 597
javafx.graphics module, 585
javafx.scene package, 585, 589
javafx.scene.control package, 591, 594, 598
javafx.scene.effect package, 611
javafx.scene.layout package, 585, 586, 589
javafx.scene.text package, 617
javafx.scene.transform package, 613
javafx.stage package, 585, 589
javafxpackager, 587
javaws tool, 690
javax.swing package, 551, 555, 556, 572
javax.swing.event package, 559, 560, 571
JButton component, 551, 552, 559, 560-563, 564

See also Push buttons, Swing
JCheckBox component, 551, 552, 567-570
JComponent class, 551, 552
JDialog container, 551, 552
JDK (Java Development Kit), 11-12
JFrame container, 551, 552, 554, 555-558, 563

adding a component to a, 556, 558
JIT (just-in-time) compiler, 7
JLabel component, 551, 552, 554, 556, 557, 562-563
jlink tool, 544
JList component, 551, 552, 571-574
JNLP (Java Network Launch Protocol) file, 590

and applets, 690
and Java Web Start, 682, 683, 684-686

join(), 375, 390-392
JPanel container, 551, 552
JRE (Java Runtime Environment), 526, 682
JRootPane container, 551, 552
JScrollPane container, 551, 552, 571, 574
jshell, 692
JShell, 692-700

commands, 694-695, 700-701
and state information, 692, 694

JTextComponent class, 564
JTextField component, 551, 552, 564-567

action command string of a, 564, 567
JToggleButton class, 551, 567
Jump statements, 66, 90-97
Just In Time (JIT) compiler, 7
JVM. See Java Virtual Machine (JVM)
JWindow container, 551, 552

K

Keystore file, 684, 687-688
keytool command-line tool, 684, 687, 688
Keywords, Java, 29-30

module-related, 519
restricted, 519

L

Label
with break, using a, 92-95
with continue, using a, 96-97
JavaFX, 591-593
Swing, 554, 556

Label class, 591
Labeled class, 591, 594
Lambda expression(s), 484-503

as arguments, passing, 496-500
block, 493-494
body, 485, 493
definition of the term, 485
event handling using, 580, 581, 594, 595, 598, 610
and exceptions, 502-503
expression, 493
parameters, 485-486, 487-488, 491, 493, 503
target type, 485, 487, 498
target type context, 485, 487, 488, 496, 501, 503
and variable capture, 501-502

lastIndexOf(), 160-161
launch(), 587, 589
Layered pane, 551
Layout manager, 553

for a content pane, default, 553, 556, 563
LayoutManager interface, 553
LayoutManager2 interface, 553
length instance variable of arrays, 147-149
length(), 160-161
Libraries, class, 31, 278
Lightweight

components, 549, 552, 585
containers, 552

List class, 591
List selection event, 571, 572, 574
List view, JavaFX, 598, 603-607

change events, handling, 604, 607
multiple selections in a, enabling, 607
scroll bars, 603, 606

Listener, delegation event model, 558, 559, 560

Lists, Swing, 571-574
ListSelectionEvent class, 560, 571, 572
ListSelectionListener interface, 560, 571, 572
ListSelectionModel interface, 572
ListView class, 598, 603-607, 608
Literals, 41-44
load(), 535, 540, 541
Lock, 396
Logical operators, 50-52
Long class, 192, 363, 430-431
long data type, 35, 36, 41
longValue(), 431
Look and feels, 549-550
Loops, 24

break to exit, using, 90-91
criteria for choosing the right, 84
do-while, 66, 84, 85-86, 96
for. See for loop
infinite, 81, 90
nested, 90, 93-95, 96-97, 101
while, 66, 83-84, 85, 96

M

main(), 15-16, 17, 107, 109, 112, 206
and command-line arguments, 16, 165-166
and JavaFX applications, 589
and Swing applications, 557

Math class, 37, 198, 208, 437, 439
MAX_PRIORITY, 393
Member, class, 10, 107

access and inheritance, 229-232
controlling access to, 182-187, 268, 269, 272-276
dot operator to access, 108

static, 206-209, 479
and static import, 439

Member, using super to access a superclass, 238
Memory

allocation using new, 111, 130
leaks, 339, 345

Menu bar, Swing, 552
Metadata, 440

See also Annotation(s)
Method references, 484, 504-510

to generic methods, 509
to instance methods, 506-510
to static methods, 504-506
using super with, 510

Method(s), 10, 15, 16, 112-120
abstract. See Abstract Method(s)
accessor, 186, 230-232
anonymous, lambda expression as an, 485
and autoboxing/unboxing, 433-434
built-in, 31
calling, 112, 114
default interface, 279, 292-297, 298-299, 484, 486
dispatch, dynamic, 253-254
dot operator and, 108, 114
and enumerations, 419, 421-422
extension, 292
factory, 380, 382-383
final, 263
general form of, 112
generic, 447, 463-465, 479, 509
and interfaces, 278-280, 282, 283. See also Interface methods
JShell to experiment with a, using, 695-696
lambda expressions to pass executable code to, using, 496, 498
native, 706

overloading, 194-199, 220-222, 252-253
overriding. See Overriding, method
and parameters, 112, 117-120. See also Parameters
parsing, 363-364
passing objects to, 188-192
recursive, 204-206
reference. See Method references
returning from a, 114-115
returning objects from, 192-194
returning a value from, 112, 115-117
scope defined by, 45-47
signature, 199
static, 206, 208-209, 297-298, 479, 504-506, 696
using super to access hidden superclass, 233, 238, 251-252
synchronized, 396-399, 704
synthetic, 693
and the throws clause, 67, 302, 318-319, 321
and type parameters, 450, 463-465
varargs. See Varargs
variable-arity, 217

MIN_PRIORITY, 393
Model-Delegate architecture, Swing, 550
Model-View-Controller (MVC) architecture, 550
module keyword, 30, 519
module statement, 519, 526

using the open modifier, 543
Module(s), 518-545

basics, 519-526
compiling and running a, 524-525
declaration, 519-520
definition of the term, 519
descriptor, 519
example, 520-524
graph, 545

and implied dependence/readability, 530
and legacy code, 528
naming conventions, 520-521
open, 543
path, 525 528
platform, 526-527
services and service providers, example application demonstrating, 536-543
unnamed, 528

module-info.class file, 524, 544
module-info.java file, 519, 524, 525, 526

and javadoc, 675
Modulus operator (%), 48-49
Monitor, 396
Mouse motion events, handling, 559
Multicore systems, 375

and the Fork/Join Framework, 402
MULTIPLE_INTERVAL_SELECTION, 572
MultipleSelectionModel class, 604, 607
Multitasking

operating system implementation of, 392-393, 395
process-based versus thread-based, 374

Multithreaded programming, 374-414
and deadlock, 408, 409
and multicore versus single-core systems, 375
and synchronization. See Synchronization
and threads. See Thread(s)
effective use of, 412

MVC (Model-View-Controller) architecture, 550

N

Name hiding, 439
Namespace

default (global), 268-269

packages and, 268-269, 439
static import and, 439

Narrowing conversion, 57-58
native modifier, 706
Naughton, Patrick, 3
Negative numbers, representation of, 171-172
NetBeans, 12
nextX methods, Scanner’s, 371
new, 111, 127, 129, 130, 137, 139, 159, 200, 216, 313

and abstract classes, 259
and type inference, 476

NIO (New I/O) system, 362
Node class, 586, 590, 594, 611, 613
Node(s), JavaFX, 586

effects and transforms to alter the look of, using, 611-617
root, 586, 589
text, 617

NORM_PRIORITY, 393
NOT operator

bitwise unary (~), 166, 167, 170-171
Boolean logical unary (!), 50, 51

notify(), 265, 402, 403-407
notifyAll(), 265, 402, 403
null, 30, 127
Number class, 431
NumberFormatException, 321, 431

O

Oak, 3
Object, 10, 106-107, 109-110

creating an, 108, 110-111
to a method, passing an, 188-192
monitor, 396

returning an, 192-194
Object class, 265-266, 359, 402, 430, 447, 450

and erasure, 477
and functional interfaces, public methods of the, 485

Object initialization
with another object, 200-201
with a constructor, 126-130

Object reference variables
and assignment, 111-112, 146-147
declaring, 111
and dynamic method dispatch, 253-254
to a method, effect of passing, 191-192
to superclass reference variables, assigning subclass, 246-250, 253-254, 258

Object-oriented programming (OOP), 4, 9-11, 12, 106, 182, 187, 226
observableArrayList(), 603, 607
ObservableList, 591, 593, 603, 606-607
ObservableValue <T>, 604
Octal literals, 42
onAction property, 595
One’s complement (bitwise unary NOT) operator, 166, 167, 170-171
open

keyword, 30, 519
modifier, 543

opens
keyword, 30, 519
statement, 544

Operator(s), 48
? ternary, 176-178
arithmetic, 19, 48-50
assignment. See Assignment operator(s)
bitwise, 166-176
diamond (< >), 476-477
logical, 50-52
parentheses and, 40, 58, 60, 62

precedence, table of, 58
relational, 22-23, 40, 50-52

OR operator (|)
bitwise, 166, 167, 168-169
Boolean logical, 50, 51, 52, 54

OR operator, short-circuit or conditional-or (||), 50, 52, 53, 54
Ordinal value of enumeration constant, 423
ordinal(), 423, 424
out, 16, 335. See also System.out standard output stream
OutputStream class, 333, 334, 336, 338, 348, 352, 359

methods, table of, 337
OutputStreamWriter class, 335, 360
Overloading

constructors, 199-204
methods, 194-199, 220-222, 252-253

Overriding, method, 250-253
and dynamic method dispatch, 253-254
using final to prevent, 263
and polymorphism, 253, 255

P

package statement, 269
Package(s), 183, 268-278, 298

and access control, 183, 268, 269, 272-276
default (global), 269
defining a, 269-270
and directories, 269, 270, 271
importing, 276-278
and JShell, 699-700

Panes, container, 552
Parameters, 16, 112, 117-120, 128

final, 265
lambda, 485-486, 487-488, 491, 493, 503

and overloaded constructors, 200
and overloaded methods, 194, 196-198, 221
type. See Type parameter(s)
variable-length, 218-219, 222

Parent class, 586, 590, 594
parseDouble(), 363-364
parseInt(), 363-364
Pascal, 9
PasswordField JavaFX control, 610
PATH environmental variable, 14
Peers, 549
Pipeline for actions on stream API stream data, 514
Plug-in and pluggable application architecture, 534-535, 536-537
Pluggable look and feel, 549-550, 551
Polymorphism, 10-11

and dynamic method dispatch, run-time, 253
and interfaces, 278
and overloaded methods, 194, 198
and overridden methods, 253, 255

Portability problem, 3, 4, 6-7, 35
Pos enumeration, 597
pow(), 437-439
Predicate<T> predefined functional interface, 513-515
print(), 19, 338, 339, 359
printf(), 339, 354
println(), 16, 19, 20, 38, 44, 266, 278, 315, 338, 339, 359, 363, 418, 432
printStackTrace(), 314-316
PrintStream class, 334, 335, 338, 339
PrintWriter class, 335, 359-360
private access modifier, 16, 183-188, 272

and inheritance, 229-232
and packages, 272

Programming
art of, 121

concurrent, 401
multithreaded. See Multithreaded programming
object-oriented, 4, 9-11, 12, 106, 182, 187, 226
parallel, 402
structured, 9-10

protected access modifier, 183, 272
and packages, 272, 274-276

provides
keyword, 30, 519, 536
statement, 536, 543

public access modifier, 16, 183-187, 272
and interfaces, 279, 280
and packages, 272

Push buttons, JavaFX, 594-598
Push buttons, Swing, 560-563

action command string of, 561, 563, 564

Q

Queue(s), 149-150
generic, creating a, 468-473
interface, creating a, 285-290

Quicksort algorithm, 141, 206, 210-213, 447

R

RandomAccessFile class, 352-354
Raw types, 473-475
Read-evaluate-print loop (REPL) execution, 692
read(), 66-67, 86, 336, 337-338, 339, 340, 343, 353, 355, 357-358, 363
Reader class, 334, 335, 354, 355, 361

methods defined by, table of, 355
readInt(), 349, 353

readLine(), 354, 358, 362, 363-364
readPassword(), 354
Recursion, 204-206
Reflection, 543
Reflection class, 611, 612

program demonstrating, 614-617
Region class, 586
Relational operators, 22-23, 40, 50-52
remove(), 593, 613
removeActionListener(), 560, 564
removeKeyListener(), 559
removeTypeListener(), 559
REPL execution, 692
replace(), 499
requires keyword, 30, 519
requires statement, 520, 525-526, 527

using transitive with a, 530-534
requires static, 543, 544
resume(), 408-409
return statement, 66, 114-115, 116

and block lambdas, 493, 494
Root pane, 552
Rotate class, 613

program demonstrating, 614-617
run(), 375, 376, 485, 557

overriding, 383, 388
using a flag variable with, 409-412

Runnable interface, 375, 485, 557
implementing the, 376-382, 383, 388

Run-time
exception, 130, 139, 206, 302
system, Java, 6-7
type information, 704-705

RuntimeException class, 303, 318, 321, 322

S

SAM (Single Abstract Method) type, 485
Sandbox, 7, 682, 687
Scale class, 613, 614

program demonstrating, 614-617
Scanner class, 370-371
Scene class, 585, 586, 589, 590
Scene graph, 586, 589, 591, 593
Scientific notation, 41
Scopes, 45-47
Scroll bars, 603, 606
Scroll panes, 571, 574
Security problem, 4, 6, 7
seek(), 353
selectedItemProperty(), 604, 607
Selection

event, 574
statements, 66, 67-74

SelectionMode, 607
SelectionModel class, 604
Selectors (NIO), 362
Separable model architecture, Swing, 550
ServiceLoader class, 535, 540, 541
Services and service providers, 535-543

definition of the terms, 535
and modules, 536
module-based example, 536-543

Servlets, 8, 617
setActionCommand(), 564
setAlignment(), 597
setAllowIndeterminate(), 602
setAngle(), 613
setBottomOpacity(), 612

setCharAt(), 163
setDefaultCloseOperation(), 556
setEffect(), 611
setFraction(), 612
setHeight(), 612
setIterations(), 612
setName(), 380
setOnAction(), 594-595, 597, 598
setPivotX(), 613
setPivotY(), 613
setPrefColumnCount(), 608
setPreferredSize(), 574
setPrefHeight(), 604
setPrefSize(), 604
setPrefWidth(), 604
setPriority(), 393
setPromptText(), 608
setRotate(), 613
setScaleX(), 613
setScaleY(), 613
setScene(), 590
setSelectionMode(), 571-572, 607
setSize(), 555
setText(), 565, 568, 597, 608
setTitle(), 589
setTopOffset(), 612
setTopOpacity(), 612
setTranslateX(), 613
setTranslateY(), 613
setVisible(), 556-557
setWidth(), 612
setX(), 614
setY(), 614
Shear class, 613

Sheridan, Mike, 3
Shift operators, bitwise, 166, 171-176
Short class, 192, 363, 430-431
short data type, 35, 36, 41
shortValue(), 431
show(), 590
showAll(), 601
Sign bit, 171, 172
Signature of a method, 199
SINGLE_INTERVAL_SELECTION, 572
SINGLE_SELECTION, 572
size(), 593
sleep(), 375, 378
Snippet, code, 692
Source

delegation event model, 558, 559
file, 13, 14, 109

Spurious wakeup, 403, 406
sqrt(), 37, 208, 437-439
Stacks, 149

and polymorphism, 11
Stage class, 585, 586, 589, 590
start(), 375, 376, 378, 380, 382, 383, 386, 586-587, 589, 590, 591
Statements, 16, 27

null, 81
Statements, control, 22

iteration, 66, 77-86
jump, 66, 90-97
selection, 66, 67-74

static, 16, 206-210, 213, 216, 265, 437, 438-439
and generics, 479
used in a requires statement, 544

Static import, 437-439
stop()

defined by the Application class, 586, 587, 589, 590, 591
deprecated Thread method, 408-409

Stream interface, 514
Stream, stream API, 514
Stream(s), I/O

definition of the term, 333
predefined, 335

Streams, byte, 333, 355
classes, table of, 334
using, 336-352

Streams, character, 333, 334, 336-337, 338, 355
classes, table of, 335
using, 355-362

strictfp, 705
String class, 16, 158-165, 499

methods, some, 160-162
String(s)

arrays of, 162
concatenating, 161
constructing, 159-160
definition of the term, 43
immutability of, 162-163
length, obtaining, 160-161
literals, 43-44, 159
as objects, 158-159
reading, 358
representations of numbers into binary format, converting, 192, 363-365,

370-371
searching, 160
switch, used to control a, 72, 164

StringBuffer class, 163
StringBuilder class, 163
Subclass, definition of, 226
substring(), 163

Sun Microsystems, 3
super

and bounded wildcard arguments, 463
default interface method implementation, used to refer to a, 297
method reference, used with a, 510
and superclass members, 233, 238, 251-252

super()
and superclass constructors, 233-238, 244, 245, 250
and this(), 707

Superclass, definition of, 226
Supplier<T> predefined functional interface, 513
suspend(), 408-409
Swing, 548-581

application, example of a simple, 553-557
and the AWT, 549, 550, 560
components, table of class names for, 551
containers and components, relationship between, 551
file comparison utility, 575-580
and Java Web Start, 686
and JavaFX, 584-585
and MVC architecture, 550
programs, event-driven nature of, 557, 558

Swing: A Beginner’s Guide, 549
SwingUtilities class, 557
switch statement, 66, 71-74, 77, 91

using enumeration values in a, 71, 417-419
using integer numeric objects to control a, 436
using a string to control a, 72, 164

Synchronization, 375, 396-401
and deadlock, 408, 409
race condition and, 408
via a synchronized block, 399-401
via a synchronized method, 396-399

synchronized keyword, 396

used with a block, 399-401
used with a method, 396-399

Syntax errors, 17
System class, 16, 31, 278, 335
System.console(), 354
System.err standard error stream, 335
System.in standard input stream, 66, 67, 335, 337, 354, 355, 356, 357, 371
System.in.read(), 66-67
System.out standard output stream, 16, 31, 66, 335, 338, 354, 359, 360

and static import, 439

T

Templates, C++, 447
Text class, 617
Text field, JavaFX, 608-610
Text field, Swing, 564-567

action command string, 564, 567
and action listeners, 577

TextArea JavaFX control, 610
TextField class, 598, 608
TextInputControl class, 608
TextInputDialog JavaFX control, 610
this, 131-133, 209, 501
this(), 706-707
Thread class, 375, 376, 393, 408, 409, 414

constructors, 376, 379, 383
extending the, 375, 376, 383-386, 388

Thread(s)
application, 591
child, 386-389, 393
communication among, 402-407
creating, 376-389
and deadlock, 408, 409

definition of the term, 374
event-dispatching, 557, 563
launcher, 591
main, 376, 379, 412-414, 557, 591
possible states of, 375
priorities, 392-395
race condition and, 408
and spurious wakeup, 403, 406
suspending, resuming, and stopping, 408-412
synchronization. See Synchronization
terminates, determining when a, 389-392

throw, 303, 312-314
Throwable class, 303, 310-311, 312, 314-316, 323, 347

and chained exceptions, 322-323
and generic classes, 481
methods defined by, table of commonly used, 315

throws, 67, 303, 318-319, 321
to

clause, 529, 544
keyword, 30, 519

toString(), 265, 266, 314-316, 359, 432
toLowerCase(), 499
toUpperCase(), 499
Transform class, 613
Transforms, 611, 613-614

program demonstrating, 614-617
transient modifier, 704
transitive keyword, 30, 519, 531
Translate class, 613
true, 30, 39, 51
True and false in Java, 39, 51
try block(s), 303-306, 309

and finally, 316-318
nested, 311-312

try-with-resources, 304, 319, 345-348
Two’s complement, 171-172
Type argument(s), 450, 451, 453, 473

and bounded types, 455, 457, 468
and generic functional interfaces, 495- 496
type inference and, 476-477
and type safety, 452
See also Wildcard arguments

Type inference
and constructor references, 513
the diamond operator (< >) and, 476-477
and lambda expressions, 492, 493, 494, 503
and a method reference to a generic method, 509

Type parameter(s), 447
and bounded types, 454-457, 468
and erasure, 477, 478
instance of a, cannot create an, 479
and primitive types, 451
and static members, 479
used with a class, 449, 452, 453, 467
used with a generic interface, 467-468
used with a method, 450, 463-465

Type safety
and generics, 447, 450, 452
and raw types, 473-475
and wildcard arguments, 457

Type(s), 18, 19, 21, 34-35
bounded, 454-457, 468
casting, 56-58, 61
checking, 34, 44, 55, 246, 450, 474
class as a data, 108, 189
conversion, automatic, 55, 196-198
enumeration as a, 416
inference. See Type inference

information, run-time, 704-705
numeric, default value of, 127
promotion in expressions, 60-61, 173
raw, 473-475
reference, default value of, 127
simple or elemental, 35

Type(s), primitive, 33-40, 41, 130, 190-192, 430, 433, 436
and binary I/O, 348-351
table of, 35
and type parameters, 451
wrappers, 192, 363-365, 430-432, 436, 451

Types, parameterized, 266, 446-447
versus C++ templates, 447

U

UI delegate, 550
UnaryOperator<T> predefined functional interface, 513
Unboxing, 432. See also Autoboxing/unboxing
Unchecked warnings and raw types, 475
Underscore

with integer and floating-point literals, using an, 41
as a keyword, 29

Unicode, 37, 38, 39, 167, 333, 334, 360
uses

keyword, 30, 519, 536
statement, 536, 543

V

valueChanged(), 571, 572, 574
valueOf(), 419-420, 421, 431
values(), 419-421

Varargs, 216-222
and ambiguity, 221-222
methods, overloading, 220-222
parameter, declaring a, 217-218, 219

Variable(s)
capture, 501-502
character, 38
declaration, 18, 19, 24, 44, 45-47
definition of the term, 17
dynamic initialization of, 45
effectively final, 501-502
enumeration, 417
final, 264-265, 417, 419, 423
initializing, 44
instance. See Instance variables
interface, 279, 290-291, 293
interface reference, 283-284
and JShell, 693-694
member, 10
object reference. See Object reference variables
scope and lifetime of, 45-47
static, 206-208, 209, 265, 501, 693
transient, 704
volatile, 704

Virtual functions (C++), 254
void, 16

methods, 112, 115
volatile modifier, 704

W

wait(), 265, 402-407
Warth, Chris, 3
Web browser

executing applet in, 5
and Java Web Start, 682, 685

while loop, 66, 83-84, 85, 96
Widening conversion, 55-56
Wildcard arguments, 457-463

bounded, 460-463
WindowConstants interface, 556
with keyword, 30, 519, 536
World Wide Web, 3
Wrappers, primitive type, 192, 363-365, 430-432, 436, 451
write(), 337, 338-339, 343, 353, 356
Writer class, 334, 335, 354, 355, 360

methods defined by, table of, 356
writeDouble(), 348, 353

X

XOR (exclusive OR) operator (^)
bitwise, 166, 167, 169-170
Boolean logical, 50, 51

	Title Page
	Copyright Page
	Contents
	INTRODUCTION
	1 Java Fundamentals
	The Origins of Java
	Java’s Lineage: C and C++
	How Java Impacted the Internet
	Java Simplified Web-Based Programming
	Java Applets
	Security
	Portability

	Java’s Magic: The Bytecode
	Moving Beyond Applets
	The Java Buzzwords
	Object-Oriented Programming
	Encapsulation
	Polymorphism
	Inheritance

	Obtaining the Java Development Kit
	A First Simple Program
	Entering the Program
	Compiling the Program
	The First Sample Program Line by Line

	Handling Syntax Errors
	A Second Simple Program
	Another Data Type
	Try This 1-1: Converting Gallons to Liters
	Two Control Statements
	The if Statement
	The for Loop

	Create Blocks of Code
	Semicolons and Positioning
	Indentation Practices
	Try This 1-2: Improving the Gallons-to-Liters Converter
	The Java Keywords
	Identifiers in Java
	The Java Class Libraries
	Chapter 1 Self Test

	2 Introducing Data Types and Operators
	Why Data Types Are Important
	Java’s Primitive Types
	Integers
	Floating-Point Types
	Characters

	The Boolean Type
	Try This 2-1: How Far Away Is the Lightning?
	Literals
	Hexadecimal, Octal, and Binary Literals
	Character Escape Sequences
	String Literals

	A Closer Look at Variables
	Initializing a Variable
	Dynamic Initialization

	The Scope and Lifetime of Variables
	Operators
	Arithmetic Operators
	Increment and Decrement

	Relational and Logical Operators
	Short-Circuit Logical Operators
	The Assignment Operator
	Shorthand Assignments
	Type Conversion in Assignments
	Casting Incompatible Types
	Operator Precedence
	Try This 2-2: Display a Truth Table for the Logical Operators
	Expressions
	Type Conversion in Expressions
	Spacing and Parentheses

	Chapter 2 Self Test

	3 Program Control Statements
	Input Characters from the Keyboard
	The if Statement
	Nested ifs
	The if-else-if Ladder
	The switch Statement
	Nested switch Statements
	Try This 3-1: Start Building a Java Help System
	The for Loop
	Some Variations on the for Loop
	Missing Pieces
	The Infinite Loop

	Loops with No Body
	Declaring Loop Control Variables Inside the for Loop
	The Enhanced for Loop
	The while Loop
	The do-while Loop
	Try This 3-2: Improve the Java Help System
	Use break to Exit a Loop
	Use break as a Form of goto
	Use continue
	Try This 3-3: Finish the Java Help System
	Nested Loops
	Chapter 3 Self Test

	4 Introducing Classes, Objects, and Methods
	Class Fundamentals
	The General Form of a Class
	Defining a Class

	How Objects Are Created
	Reference Variables and Assignment
	Methods
	Adding a Method to the Vehicle Class

	Returning from a Method
	Returning a Value
	Using Parameters
	Adding a Parameterized Method to Vehicle

	Try This 4-1: Creating a Help Class
	Constructors
	Parameterized Constructors
	Adding a Constructor to the Vehicle Class
	The new Operator Revisited
	Garbage Collection
	The this Keyword
	Chapter 4 Self Test

	5 More Data Types and Operators
	Arrays
	One-Dimensional Arrays

	Try This 5-1: Sorting an Array
	Multidimensional Arrays
	Two-Dimensional Arrays

	Irregular Arrays
	Arrays of Three or More Dimensions
	Initializing Multidimensional Arrays

	Alternative Array Declaration Syntax
	Assigning Array References
	Using the length Member
	Try This 5-2: A Queue Class
	The For-Each Style for Loop
	Iterating Over Multidimensional Arrays
	Applying the Enhanced for

	Strings
	Constructing Strings
	Operating on Strings
	Arrays of Strings
	Strings Are Immutable
	Using a String to Control a switch Statement

	Using Command-Line Arguments
	The Bitwise Operators
	The Bitwise AND, OR, XOR, and NOT Operators
	The Shift Operators
	Bitwise Shorthand Assignments

	Try This 5-3: A ShowBits Class
	The ? Operator
	Chapter 5 Self Test

	6 A Closer Look at Methods and Classes
	Controlling Access to Class Members
	Java’s Access Modifiers

	Try This 6-1: Improving the Queue Class
	Pass Objects to Methods
	How Arguments Are Passed

	Returning Objects
	Method Overloading
	Overloading Constructors
	Try This 6-2: Overloading the Queue Constructor
	Recursion
	Understanding static
	Static Blocks

	Try This 6-3: The Quicksort
	Introducing Nested and Inner Classes
	Varargs: Variable-Length Arguments
	Varargs Basics
	Overloading Varargs Methods
	Varargs and Ambiguity

	Chapter 6 Self Test

	7 Inheritance
	Inheritance Basics
	Member Access and Inheritance
	Constructors and Inheritance
	Using super to Call Superclass Constructors
	Using super to Access Superclass Members
	Try This 7-1: Extending the Vehicle Class
	Creating a Multilevel Hierarchy
	When Are Constructors Executed?
	Superclass References and Subclass Objects
	Method Overriding
	Overridden Methods Support Polymorphism
	Why Overridden Methods?
	Applying Method Overriding to TwoDShape

	Using Abstract Classes
	Using final
	final Prevents Overriding
	final Prevents Inheritance
	Using final with Data Members

	The Object Class
	Chapter 7 Self Test

	8 Packages and Interfaces
	Packages
	Defining a Package
	Finding Packages and CLASSPATH
	A Short Package Example

	Packages and Member Access
	A Package Access Example

	Understanding Protected Members
	Importing Packages
	Java’s Class Library Is Contained in Packages
	Interfaces
	Implementing Interfaces
	Using Interface References
	Try This 8-1: Creating a Queue Interface
	Variables in Interfaces
	Interfaces Can Be Extended
	Default Interface Methods
	Default Method Fundamentals
	A More Practical Example of a Default Method
	Multiple Inheritance Issues

	Use static Methods in an Interface
	Private Interface Methods
	Final Thoughts on Packages and Interfaces
	Chapter 8 Self Test

	9 Exception Handling
	The Exception Hierarchy
	Exception Handling Fundamentals
	Using try and catch
	A Simple Exception Example

	The Consequences of an Uncaught Exception
	Exceptions Enable You to Handle Errors Gracefully

	Using Multiple catch Statements
	Catching Subclass Exceptions
	Try Blocks Can Be Nested
	Throwing an Exception
	Rethrowing an Exception

	A Closer Look at Throwable
	Using finally
	Using throws
	Three Additional Exception Features
	Java’s Built-in Exceptions
	Creating Exception Subclasses
	Try This 9-1: Adding Exceptions to the Queue Class
	Chapter 9 Self Test

	10 Using I/O
	Java’s I/O Is Built upon Streams
	Byte Streams and Character Streams
	The Byte Stream Classes
	The Character Stream Classes
	The Predefined Streams
	Using the Byte Streams
	Reading Console Input
	Writing Console Output

	Reading and Writing Files Using Byte Streams
	Inputting from a File
	Writing to a File

	Automatically Closing a File
	Reading and Writing Binary Data
	Try This 10-1: A File Comparison Utility
	Random-Access Files
	Using Java’s Character-Based Streams
	Console Input Using Character Streams
	Console Output Using Character Streams

	File I/O Using Character Streams
	Using a FileWriter
	Using a FileReader

	Using Java’s Type Wrappers to Convert Numeric Strings
	Try This 10-2: Creating a Disk-Based Help System
	Chapter 10 Self Test

	11 Multithreaded Programming
	Multithreading Fundamentals
	The Thread Class and Runnable Interface
	Creating a Thread
	One Improvement and Two Simple Variations

	Try This 11-1: Extending Thread
	Creating Multiple Threads
	Determining When a Thread Ends
	Thread Priorities
	Synchronization
	Using Synchronized Methods
	The synchronized Statement
	Thread Communication Using notify(), wait(), and notifyAll()
	An Example That Uses wait() and notify()

	Suspending, Resuming, and Stopping Threads
	Try This 11-2: Using the Main Thread
	Chapter 11 Self Test

	12 Enumerations, Autoboxing, Static Import, and Annotations
	Enumerations
	Enumeration Fundamentals

	Java Enumerations Are Class Types
	The values() and valueOf() Methods
	Constructors, Methods, Instance Variables, and Enumerations
	Two Important Restrictions

	Enumerations Inherit Enum
	Try This 12-1: A Computer-Controlled Traffic Light
	Autoboxing
	Type Wrappers
	Autoboxing Fundamentals
	Autoboxing and Methods
	Autoboxing/Unboxing Occurs in Expressions
	A Word of Warning

	Static Import
	Annotations (Metadata)
	Chapter 12 Self Test

	13 Generics
	Generics Fundamentals
	A Simple Generics Example
	Generics Work Only with Reference Types
	Generic Types Differ Based on Their Type Arguments
	A Generic Class with Two Type Parameters
	The General Form of a Generic Class

	Bounded Types
	Using Wildcard Arguments
	Bounded Wildcards
	Generic Methods
	Generic Constructors
	Generic Interfaces
	Try This 13-1: Create a Generic Queue
	Raw Types and Legacy Code
	Type Inference with the Diamond Operator
	Erasure
	Ambiguity Errors
	Some Generic Restrictions
	Type Parameters Can’t Be Instantiated
	Restrictions on Static Members
	Generic Array Restrictions
	Generic Exception Restriction

	Continuing Your Study of Generics
	Chapter 13 Self Test

	14 Lambda Expressions and Method References
	Introducing Lambda Expressions
	Lambda Expression Fundamentals
	Functional Interfaces
	Lambda Expressions in Action

	Block Lambda Expressions
	Generic Functional Interfaces
	Try This 14-1: Pass a Lambda Expression as an Argument
	Lambda Expressions and Variable Capture
	Throw an Exception from Within a Lambda Expression
	Method References
	Method References to static Methods
	Method References to Instance Methods

	Constructor References
	Predefined Functional Interfaces
	Chapter 14 Self Test

	15 Modules
	Module Basics
	A Simple Module Example
	Compile and Run the First Module Example
	A Closer Look at requires and exports

	java.base and the Platform Modules
	Legacy Code and the Unnamed Module
	Exporting to a Specific Module
	Using requires transitive
	Try This 15-1: Experiment with requires transitive
	Use Services
	Service and Service Provider Basics
	The Service-Based Keywords
	A Module-Based Service Example

	Additional Module Features
	Open Modules
	The opens Statement
	requires static

	Continuing Your Study of Modules
	Chapter 15 Self Test

	16 Introducing Swing
	The Origins and Design Philosophy of Swing
	Components and Containers
	Components
	Containers
	The Top-Level Container Panes

	Layout Managers
	A First Simple Swing Program
	The First Swing Example Line by Line

	Swing Event Handling
	Events
	Event Sources
	Event Listeners
	Event Classes and Listener Interfaces

	Use JButton
	Work with JTextField
	Create a JCheckBox
	Work with JList
	Try This 16-1: A Swing-Based File Comparison Utility
	Use Anonymous Inner Classes or Lambda Expressions to Handle Events
	Chapter 16 Self Test

	17 Introducing JavaFX
	JavaFX Basic Concepts
	The JavaFX Packages
	The Stage and Scene Classes
	Nodes and Scene Graphs
	Layouts
	The Application Class and the Life-cycle Methods
	Launching a JavaFX Application

	A JavaFX Application Skeleton
	Compiling and Running a JavaFX Program
	The Application Thread
	A Simple JavaFX Control: Label
	Using Buttons and Events
	Event Basics
	Introducing the Button Control
	Demonstrating Event Handling and the Button

	Three More JavaFX Controls
	CheckBox

	Try This 17-1: Use the CheckBox Indeterminate State
	ListView
	TextField

	Introducing Effects and Transforms
	Effects
	Transforms
	Demonstrating Effects and Transforms

	What Next?
	Chapter 17 Self Test

	A Answers to Self Tests
	Chapter 1: Java Fundamentals
	Chapter 2: Introducing Data Types and Operators
	Chapter 3: Program Control Statements
	Chapter 4: Introducing Classes, Objects, and Methods
	Chapter 5: More Data Types and Operators
	Chapter 6: A Closer Look at Methods and Classes
	Chapter 7: Inheritance
	Chapter 8: Packages and Interfaces
	Chapter 9: Exception Handling
	Chapter 10: Using I/O
	Chapter 11: Multithreaded Programming
	Chapter 12: Enumerations, Autoboxing, Static Import, and Annotations
	Chapter 13: Generics
	Chapter 14: Lambda Expressions and Method References
	Chapter 15: Modules
	Chapter 16: Introducing Swing
	Chapter 17: Introducing JavaFX

	B Using Java’s Documentation Comments
	The javadoc Tags
	@author
	{@code}
	@deprecated
	{@docRoot}
	@exception
	{@index}
	{@inheritDoc}
	{@link}
	{@linkplain}
	{@literal}
	@param
	@return
	@see
	@serial
	@serialData
	@serialField
	@since
	@throws
	{@value}
	@version

	The General Form of a Documentation Comment
	What javadoc Outputs
	An Example That Uses Documentation Comments

	C An Overview of Java Web Start
	What Is Java Web Start?
	Four Key Java Web Start Essentials
	Java Web Start Apps Require a JAR File
	Java Web Start Apps Are Signed
	Java Web Start Relies on JNLP
	Linking to the Java Web Start JNLP File

	Experimenting with Java Web Start Using the Local File System
	Create a JAR File for ButtonDemo
	Create a Keystore and Sign ButtonDemo.jar
	Create a JNLP file for ButtonDemo
	Create a Short HTML File Called StartBD.html
	Add ButtonDemo.jnlp to the Exception Site List in the Java Control Panel
	Execute ButtonDemo via Your Browser

	Running a Java Web Start Application Using javaws
	Using Java Web Start with an Applet

	D Introducing JShell
	JShell Basics
	List, Edit, and Rerun Code
	Add a Method
	Create a Class
	Use an Interface
	Evaluate Expressions and Use Built-in Variables
	Importing Packages
	Exceptions
	Some More JShell Commands
	Exploring JShell Further

	E More Java Keywords
	The transient and volatile Modifiers
	instanceof
	strictfp
	assert
	Native Methods
	Another Form of this

	Index

